Sergei Dikarev Mikk–Martin Anvelt SILINDRI INERTSMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA (I) Mehaanikateaduskond Õpperühm: TI 11(B) Juhendaja: lektor Irina Georgievskaya Esitamiskuupäev: 18.11.2014 Tallinn 2014 SILINDRI INERTSMOMENT. 1.Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3.Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² ) - nurkkiirus tsentrit läbiva telje suhtes ( rad/s )
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Natalia Novak Teostatud: Õpperühm: YAMB11 Kaitstud: Töö nr: 28 TO: PINDPINEVUS Töö eesmärk: Töövahendid: Vee pindpinevusteguri määramine tilga Katseseade, vesi, mõõteskaala, tehnilised kaalud. meetodil. Skeem 1. Töö teoreetilised alused Pindpinevus avaldub vedeliku pinna omadusest tõmbuda kokku. Seda põhjustavad molekulaarjõud. Kui vedeliku sees olevale molekulile on teda ümbritsevate molekulide poolt mõjuv keskmine jõud võrdeline nulliga, siis pinnakihi molekulile mõjuv summaarne jõud on nullist erinev. Pinnast ühele ja
Tallinna Tehnikaülikooli Füüsika instituut Üliõpilane: Teostatud: Õpperühm: Kaitstud: Töö nr. 6 OT Pöördliikumine Töö eesmärk: Töövahendid: Pöördliikumise dünaamika Katseseade, raskuste komplekt. põhiseaduse kontrollimine. Skeem Töö teoreetilised alused. Pöördliikumise dünaamika põhiseadus annab seose jõumomendi M1 , inertsmomendi I ja nurkkiirenduse vahel M (1) I Sellest järeldub, et konstanse inertsmomendi korral on nurkkiirendused võrdelised kehale mõjuvate jõumomentidega: ~M (2)
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Teostatud: Õpperühm: Kaitstud: Töö nr. 27 OT: SOOJUSJUHTIVUS Töö eesmärk: Töövahendid: Soojusjuhtivusteguri määramine Katseseade, ajamõõtja, nihik, katsekeha Soojusjuhtivusteguri määramine d=...... ± ....... m=...... ± ....... c=...... ± ....... h=...... ± ....... Katse nr t, s L ln L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Tallinna Tehnikaülikool Füüsika instituut Üliõpilane: Teostatud: Õpperühm: Kaitstud: Töö nr: 14 OT: Poiseuille' meetod Töö ülesanne: Töövahendid: Vee sisehõõrdeteguri määramine Katseseade, mensuur või kaalud, Poiseuille' meetodil. mõõtejoonlaud, termomeeter, anum. Tabelid Mõõdetav suurus Mõõtarv ja ühik Absoluutne viga Veesamba kõrgus katse algul R Veesamba kõrgus katse lõpul R Keskmine kõrgus Kapillaari pikkus Väljavoolanud vee ruumala Kapillaari raadius r Voolamise kestus Vee temperatuur
Tallina Tehnikaülikool Füüsikainstituut Üliõpilane: Teostatud: Õpperühm: Kaitstud: Töö nr. 14 TO: Poiseuille' meetod Töö eesmärk: Töövahendid: Vedeliku sisehõõrdeteguri Katseseade, mensuur või kaalud, määramine Poiseuille' mõõtejoonlaud, termomeeter, meetodil anum Skeem: 3.Katseandmete tabelid Mõõdetav suurus Mõõtarv ja -ühik Määramatus Veesamba kõrgus h1 katse algul Veesamba kõrgus h2 katse lõpul Keskmine kõrgus Kapillaari pikkus l Väljavoolanud vee ruumala V Kapillaari raadius r Voolamise kestus t Vee temperatuur
Termistori takistuse sõltumine temperatuurist. 1.Töö ülessanne: Mõõta termistori takistus mitmesugustel temperatuuridel ja kanda tulemused graafikule. 2. Töö vahendid: a)Juhtmed e)Anum veega b)Oommeeter f)Pooljuht seade c)Termomeeter g)Statiiv d)Pliit h)Vooluallikas 3.Töö käik: a)Koostada katseseade b)Soojendada pliit ja asetada sinna anum veega(algtemperatuur 10 °C ) c)Märkida iga 10 °C järel üheaegselt temperatuur ja määrata takistus. d)Vett soojendada kuni 90 °C ´ni e)Koostada tabel ja graafik. Temperatuur °C 10 20 30 40 50 60 70 80 90 95 Takistus R() 1350 1300 1250 1150 1050 950 760 600 500 450 Rauno Sander
Stanley L. Miller Saskia Kivi Bioloogia Tallinna 32. Keskkool 12d 2010 Millised pidid olema elu tekke tingimused? Louis Pasteur 1860 Kõik elus pärineb elusast 20 sajandil hakati põhjalikumalt uurima Elu tekke 3 põhiseisukohta On toimunud elu algne loomine Elu alged on Maale saabunud teistel taevakehadelt Elu on Maale tekkinud elutu aine arengu tulemusena Evolutsioonivormid Füüsikaline Evolutsioon Elementaarosakestest tekkisid aatomid Universum 1215 miljardit aastat tagasi Päikesesüsteem 5 miljardit aastat tagasi Maa vanus on 4,55 mijardit aastat Keemiline evolutsioon Lihtsatest anorgaanilistest ja orgaanilistest molekulidest tekkisid keerukamad orgaanilised ühendid. Millerurey eksperiment 1952 sooritatud, avaldatud 1953. aastal Univesity of Chicago H2 CH4...
1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. 4. Kasutatud valemid. Veereva silindri kineetiline energia avaldub valemiga m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² ) - nurkkiirus tsentrit läbiva telje suhtes ( rad/s ) I - inertsmoment ( kgm² ) m - silindri mass (kg) r - silindri raadius g - 9,81 t - aeg sin 0,085 l kaldpinna pikkus 5. Tabel. Katse l,m t,s m , kg d,m I , kg nr. 1. 0,940 1,87 30× 21,53× 1,9× 1.7× 2. 0,940 1,84 154× 24,96× 12× 12× 3. 0,940 1,83 89× 26,58× 7,7× 7,9× 4. 0,940 1,86 64× 32,93...
KATSEANDMETE TABEL Tabel 1. Õhu erisoojuste suhte määramine. Katse nr. h1 cm h2, cm h1-h2, cm (i-)2 1. 17,7 13,7 4,0 4,42500 0,76367 2. 19,3 14,1 5,2 3,71154 0,02573 3. 21,8 14,8 7,4 2,94595 0,36624 4. 20,5 14,5 6,0 3,41667 0,01808 5. 20,1 14,4 5,7 3,52632 0,00062 6. 21,0 14,6 6,4 3,28125 0,07283 Keskmine 20,06667 5,78333 3,55112 Summa 1,24716 ARVUTUSED ...
1.Tööülesanne Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Joonised. Antud töös mõõdeti erinevate silindrite kaldpinnalt allaveeremise aega ja arvutati nende inertsmomendid. 4. Kasutatud valemid koos füüsikaliste suuruste lahtikirjutamisega. Wk = Wk- Kineetiline energia m- silindri mass(kg) v- masskeskme kulgeva liikumise kiirus(m/s) I- inertsmoment - nurkkiirus tsentrit läbiva telje suhtes (rad/s) Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused võrdseks: Mgh= h- kaldpinna kõrgus I= mr2 l- kaldpinna pikkus g- raskuskiirendus (9.81 m/s ) t- allaveeremise aeg 2 - kaldenurk (0.085) 5. Täid...
SILINDRI INERSMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA (I) Mehaanikateaduskond Õpperühm: Juhendaja: Esitamiskuupäev:……………. Tallinn 2014 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Joonised. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva keha masskese liigub kaldpinnalt alla ühtlaselt kiirenevalt ja sirgjooneliselt. Katse nr l, m t, s m, kg d, m I, kgm2 It, kgm2 1. ...
SILINDRI INERTSIMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA I Ehitusinstituut Õpperühm: HE 11/21b Juhendaja: lektor Esitamiskuupäev:................ Õppejõu allkiri: .................. Tallinn 2018 Töö ülesanne: Silindri inertsmomendi määramine kaldpinna abil. Töö vahendid: Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. Töö teoreetilised alused: Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Koostasime katseandmete tabeli Katse nr. l, m t, s m, kg d, m I, kgm² It, kgm² 1. 0,702 1,67 0.155 0,0125 0,00002027 0,00001211 1,785
Michael Faraday katseseadet, mille ta valmistas 3. septembril 1821 ja milles voolust läbitud varras pöörles ümber seisva magneti (joonis 4). Faraday esimest elektriajamit võib nimetada elektromagnetiliseks segistiks, sest pöörlev varras paneb anumas oleva vedeliku (elavhõbeda) keeriseliselt liikuma. Kuna aga vool kulgeb ka elavhõbedas, tekivad selles vedelmetallis endas samuti liikumapanevad magnetohüdrodünaamilised jõud. Seega sisaldab Faraday katseseade endas ka esimese magnetohüdrodünaamilise ajami tunnuseid. Joonis 1. Katseseade 1831. a. avastas elektromagnetilise induktsiooni nähtuse – kui üksteise sisse asetada kaks pooli, millest esimene on ühendatud ainult ampermeetriga, siis saab selles esimeses poolis tekitada elektrivoolu, kui teises poolis on muutuva tugevusega elektrivool. Muutuvat voolu võib tekitada teise pooli vooluallikaga ühendamise ja lahtiühendamise
1.Töö ülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid Silindrite komplekt, nihik, katseseade (kaldpind), automaatne ajamõõtja. 3.Töö teoreetilised alused Antud töös mõõdame erinevate silindrite kaldpinnalt allaveeremis aegu ja arvutame antud silindrite inertsmomendid. Veereva silindri kineetiline energia avaldub valemiga m-silindri mass (kg) v-massikeskme kulgeva liikumise kiirus (m/s) I-inertsmoment (kgm2) -nurkkiirus tsentrit läbiva telje suhtes (rad/s) Pärast teisendusi ja asendusi saame avaldise inertsmomendi leidmiseks. l-kaldteepikkus t-allaveeremis aeg
SILINDRI INERTSMOMENT. 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga Wk = mv²/2+ I²/2 (1) m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² ) - nurkkiirus tsentrit läbiva telje suhtes ( rad/s ) Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused võrdseks: mgh = mv²/2+ I²/2 (2) h - kaldpinna kõrgus Kui veeremisel puudub libisemine, siis võib nurkkiiruse avaldada joonkiiruse kaudu: ...
TALLINN COLLEGE OF ENGINEERING LABORATOORSE TÖÖ ARUANNE SILINDRI INERTSMOMENT Õppeaines: FÜÜSIKA Transporditeaduskond Õpperühm: AT12a Üliõpilased: X X X X Juhendaja: P.Otsnik Tallinn 2010 1.Töö ülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid Silindrite komplekt, nihik, katseseade (kaldpind), automaatne ajamõõtja. 3.Töö teoreetilised alused Antud töös mõõdame erinevate silindrite kaldpinnalt allaveeremise aegu ja arvutame antud silindrite inertsmomendid. Veereva silindri kineetiline energia avaldub valemiga = + m-silindri mass (kg) v-massikeskme kulgeva liikumise kiirus (m/s) I-inertsmoment (kgm2) -nurkkiirus tsentrit läbiva telje suhtes (rad/s) Pärast teisendusi ja asendusi saame avaldise inertsmomendi leidmiseks. I=m -1) l-kaldteepikkus
Tööülesanne Silindri inertsmomendi määramine kaldpinna abil. Töövahendid Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. Töö teoreetilised alused Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsmomendid. Veereva silindri kineetiline energia avaldub valemiga: m v 2 I 2 Wk= + 2 2 m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus (m/s) I - inertsmoment (kgm2) - nurkkiirus tsentrit läbiva telje suhtes (rad/s) Veereva keha masskese liigub kaldpinnalt alla ühtlaselt kiirenevalt ja sirgjooneliselt. Inertsmomendi valem: g t 2 sin I =mr 2( -1) 2l r - silindri raadius (m) g = 9,81 (m/s2) sin = 0,093 Töökäik Mõõtmised teostasime 4 erineva silindriga. Mõõtsime kaldpinna pikkuse l, silindri...
Töövahendid: Seade gaasi mahu mõõtmiseks, mõõtesilinder (25 cm3), lehter, filterpaber, termomeeter, baromeeter, hügromeeter Kasutatud ained: 10%-ne soolhappelahus, 5,0...10,0 mg metallitükk (magneesium) Töö käik: Katse ettevalmistusel pesen katseklaasi destilleeritud veega. Ettevalmistuseks tõstan veel ühe büreti teisest 15 cm kõrgemale ning veendun, et vee nivoo oleks bürettides ühel kõrgusel. Seejärel jälgin, kas vee tase bürettides muutub. Kuna seda ei juhtu on katseseade hermeetiline ja võib alustada katsega. Kõigepealt mähin metallitüki filterpaberisse ja teen selle destilleeritud veega märjaks. Mõõdan mõõtesilindrisse 5cm3 10%-list soolhappelahust ja valan selle läbi lehtri katseklaasi. Seejärel asetan filterpaberis oleva metallitüki katseklaasi seinale. Sulgen katseklaasi hermeetiliselt. Siis liigutan bürette nii, et vee nivood bürettides oleksid ühes tasapinnas. Märgin üles näidu V1
Tallinna Tehnikaülikooli Füüsika instituut Üliõpilane: Teostatud: Õpperühm: Kaitstud: Töö nr. 28 OT Pindpinevus Töö eesmärk: Töövahendid: Vee pindpinevusteguri määramine Katseseade, vesi, mõõteskaala, tehnilised tilga meetodil. kaalud. Skeem 1. Pipett 2. Kraan 3. Anum 4. Mõõtemikroskoop 5. Nihutatav tuubus Töö teoreetilised alused. Pindpinevus avaldub vedeliku pinna omadusest tõmbuda kokku
Tallinna Tehnikaülikooli Füüsika instituut Üliõpilane: Teostatud: Õpperühm: Kaitstud: Töö nr. 6 OT Pöördliikumine Töö eesmärk: Töövahendid: Pöördliikumise dünaamika Katseseade, raskuste komplekt. põhiseaduse kontrollimine. Skeem Töö teoreetilised alused. Pöördliikumise dünaamika põhiseadus annab seose jõumomendi M1 , inertsmomendi I ja nurkkiirenduse vahel M = (1) I Sellest järeldub, et konstanse inertsmomendi korral on nurkkiirendused võrdelised kehale mõjuvate jõumomentidega: ~M (2)
nurgamõõtja veaks tervelt 1o, mis teeb 2o nurga juures ju lausa määramatuseks 50%). Teine valem oli teoreetiline, oluliselt lihtsam ja võib-olla seeläbi kindlasti ka ebatäpsem. Ma ei saanud garanteerida, et silinder liigub ühest ajafikseerijast teiseni alati kõige lühemat teed pidi, kui arvan, et see mõne millimeetrine erinevus ei määra tulemuse usaldusväärsust. Leian, et meetod ja katseseade on sobiv silindri inertsimomendi määramiseks, kui väga suurt täpsus pole oluline.
TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING Füüsika laboratoorne töö Silindri inertsmoment Õppeaines: Füüsika I Mehaanikateaduskond Õpperühm: Üliõpilased: Juhendaja:P.Otsnik Tallinn 1.Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3.Teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga(1) m silindri mass (kg) v masskeskme kulgeva liikumise kiirus (m/s) I - inertsmoment ( kgm² ) - nurkkiirus tsentrit läbiva telje suh...
SILINDRI INERTSMOMENT 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 2 2 mv I Wk= + 2 2 m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² ) - nurkkiirus tsentrit läbiva telje suhtes ( rad/s ) Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused võrdseks: mv2 I2 mgh= + 2 2 h - kald...
SILINDRI INERTSIMOMENT LABORATOORSED TÖÖD Õppeaines: FÜÜSIKA I Mehaanikateaduskond Õpperühm: TI-11 (B2) Juhendaja: Karli Klaas Esitamiskuupäev: 20.10.2015 Tallinn 2015 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 𝒎𝒗𝟐 𝑰𝝎𝟐 𝑾𝒌 = + 𝟐 𝟐 m - silindri ma...
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Teostatud: Õpperühm: Kaitstud: Töö nr. 14 OT: POISEUILLE' MEETOD Töö eesmärk: Töövahendid: vee sisehõõrdeteguri määramine katseseade, mensuur või kaalud, mõõtejoonlaud, Poiseuille' meetodil termomeeter, anum Skeem Töö käik 1. Seadke kapillaartoru C horisontaalseks. Valage reservuaari A vett, kuni vee nivoo ulatub 1... 2 cm allapoole anuma ülemisest äärest. 2. Kontrollige, et torus B poleks õhku. Õhu olemasolul tõusevad õhumullid reservuaari A, kui pigistada ühendatavat kummivoolikut. 3
veega. Üks bürett on ühendatud katseklaasiga, milles metall reageerib happega. 2. Katse ettevalmistus. Eemaldada katseklaas ja pesta ning loputada see hoolikalt destilleeritud veega. Sättida büretid ühele kõrgusele ning kontrollida, et vee nivoo oleks mõlemas büretis silma järgi ühel kõrgusel ja büreti keskel. Tõsta üks büretiharu teisest 15...20 cm kõrgemale ning jälgida paar minutit, kas vee nivoo püsib paigal. Kui nivoo ei muutu, on katseseade hermeetiline ja võib alustada katset. Vastasel juhul kontrollida korke ja voolikuid, et tagada hermeetilisus, ja proovida uuesti. Viia büretid taas ühele kõrgusele ja eemaldada katseklaas. 3. Katse. Küsida juhendajalt metallitükk. Metallitükk on keeratud nummerdatud paberisse (märkida üles number). Võtta metall paberist välja ningmähkida filterpaberisse (mitte väga tihedalt, sest paber peaks katse käigus avanema). Teha filterpaber märjaks destilleeritud veega
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Vladimir Bednõi Teostatud: 27.02.2017 Õpperühm: YAEB-21 Kaitstud: Töö nr: 7 TO: SILINDRI INERTSIMOMENT Töö eesmärk: Töövahendid: Silindri inertsimomendi määramine Katseseade (kaldpind koos elektroonilise kellaga), kaldpinna abil. silindrite komplekt, nihik, ajamõõtja, kaalud, mõõtelint. Skeem TÖÖ KÄIK 1. Määrake silindri mass ja tema läbimõõt (õõnsa silindri korral ka tema siseläbimõõt d'). Mõõtke veereva silindri masskeskme poolt läbitud tee pikkus l . 2
1.Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3.Teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga(1) mv 2 Iω2 Wk= + 2 2 m – silindri mass (kg) v – masskeskme kulgeva liikumise kiirus (m/s) I - inertsmoment ( kgm² ) ω - nurkkiirus tsentrit läbiva telje suhtes ( rad/s ) Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused võrdseks: ( 2 ) mv2 Iω2 mgh= + 2 2 h- kaldpinnakõrgus Kui veeremisel puudub libisemine, siis võib nurkkiiruse avaldada joonkiiruse kaudu :( 2 ) v ω= r , kus r – silin...
3. Töö käik Katse ettevalmistus: Eemaldada katseklaas ja pesta ning loputada see hoolikalt destilleeritud veega. Sättida büretid ühele kõrgusele ning kontrollida, et vee nivoo oleks mõlemas büretis silma järgi ühel kõrgusel ja büreti keskel. Tõsta üks büretiharu teisest 15...20 cm kõrgemale ning jälgida paar minutit, kas vee nivoo püsib paigal. Kui nivoo ei muutu, on katseseade hermeetiline ja võib alustada katset. Katse: Küsida juhendajalt metallitükk. Võtta metall paberist välja ning mähkida filterpaberisse. Teha filterpaber märjaks destilleeritud veega. Mõõta väikese mõõtesilindriga 5...6 cm3 10%-st soolhappelahust. Valada hape läbi lehtri katseklaasi nii, et katseklaasi ülaosa ei puutuks happega kokku.
täidetud veega. Üks bürett oli ühendatud katseklaasiga, milles metall reageerib happega. Katse ettevalmistus: Eemaldasin katseklaasi ja pesin hoolikalt destilleeritud veega. Sättisin büretid ühele kõrgusele ning kontrollisin, et vee nivoo oleks mõlemas büretis silma järgi ühel kõrgusel ja büreti keskel. Tõstsin ühe büretiharu teisest 15 - 20 cm kõrgemale ning jälgisin paar minutit, kas vee nivoo püsis paigal. Kui nivoo ei muutunud, oli katseseade hermeetiline ja võis alustada katset. Vastasel juhul kontrollisin ja proovisin uuesti. Katse: Võtsin metalli paberist välja ning mähkisin filterpaberisse (mitte väga tihedalt) Tegin filterpaberi märjaks destilleeritud veega. Mõõtsin väikese mõõtesilindriga 5 - 6 cm3 10%-st soolhappelahust. Valasin happe läbi lehtri katseklaasi nii, et katseklaasi ülaosa ei puutuks happega kokku. Hoides katseklaasi happega väikese nurga all, asetasin metallitüki niisutatud
Taavi Tiirats Jüri Averjanov Andrei Mintsenkov SILINDRI INERTSMOMENT PRAKTIKA ARUANNE Õppeaines: Füüsika I Ehitusteaduskond Õpperühm: TE 11a Juhendaja: lektor Jana Paju Esitamiskuupäev: 30.11.2016 Õppejõu allkiri: _________ Tallinn 2016 1. Töö ülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töö vahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 2 2 mv I (1) Wk= ...
SILINDRI INERTSMOMENT. 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 2 2 mv Iω Wk= + (1) 2 2 m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² ) ω - nurkkiirus tsentrit läbiva telje suhtes ( rad/s ) Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused võrdseks: mv2 Iω2 mgh= + (2) 2 2 h - kaldpinna kõrgus Kui veeremisel puudub libisemine, siis võib nurkkiiruse avaldada joonkiiruse kaudu: v ...
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Teostatud: 13.11.2008 Õpperühm: Kaitstud: Töö nr. 14 OT: Poiseuille' meetod Töö eesmärk: Töövahendid: Vee sisehõõrdeteguri määramine Katseseade, mensuur või kaalud, Poiseuille' meetodil. mõõtejoonlaud, termomeeter, anum. SKEEM Teoreetilised alused Vedeliku laminaarsel voolamisel on vedeliku kahe teineteisega paralleelse kihi vaheline sisehõõrdejõud arvutatav Newtoni sisehõõrdejõu valemi järgi: = ,
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Teostatud: 02.10.2008 Õpperühm: Kaitstud: Töö nr. 27 OT: SOOJUSJUHTIVUS Töö eesmärk: Halbade Töövahendid: Katseseade, ajamõõtja, nihik, soojusjuhtide katsekeha soojusjuhtivusteguri määramine JOONIS ~220V mV Teoreetilised alused Katse seisneb halva soojusjuhi (antud juhul paberi) soojusjuhtivusteguri määramises. Selleks asetatakse katsekeha kahe vasksilindri vahele, millest üks kuumutatakse 100-ni ja teine on toatemperatuuril. Seejärel ühendatakse
SILINDRI INERTSIMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA (I) Ehitusteaduskond Õpperühm: Juhendaja: Esitamiskuupäev: 19.11.2014 Tallinn 2014 1 Tööülesanne Silindri inertsmomendi määramine kaldpinna abil. 2 Töövahendid Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja 3 Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga m v2 I v2 Wk= + (1) , kus 2 2 m – silindri mass(kg) v – masskeskme kulgeva liikumise kiirus(m/s) I – inertsimoment (kg m2 ) ω – nurkkiirus tsentrit läbiva telje suhtes(rad/s) Lugedes hõõrdejõudude töö tühi...
Metalli massi on võimalik määrata reaktsiooni käigus eralduva gaasi mahu põhjal. Gaasi maht on sõltuvuses toatemperatuurist ja õhurõhust, mistõttu me fikseerisime need näidud laboris. Selles katses kogutakse eralduv vesinik vee kohale, mistõttu vesinik sisaldab ka veeauru on võimalik arvutada vesiniku maht normaaltingimustel Daltoni seaduse järgi. Sain arvutuslikul teel metalli massiks 6,075 mg, kuid tegelikult selle metalli tüki massiks oli 7,3 mg. Viga tuleneb ilmselt sellest, et katseseade ei olnud hermeetiline. Võimalik on ka see, et tegin mõõtmisel vigu. Ka arvutamisel võisin liialt palju ümardada.
SILINDRI INERTSMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA I Ehitusteaduskond Õpperühm: Juhendaja Esitamiskuupäev: Õppejõu allkiri: …………… Tallinn 2016 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt alla veeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga: 2 2 mv I ❑ W k= 2 + 2 (1) m - silindri mass (kg) v - masskesk...
Õppeaines: FÜÜSIKA Ehitusinstituut Õpperühm: HE 11/21 Juhendaja: Esitamiskuupäev:................ Üliõpilase allkiri:................. Õppejõu allkiri: .................. Tallinn 2018 5. SILINDRI INERTSMOMENT Tööülesanne Silindri inertsmomendi määramine kaldpinna abil. Töövahendid Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. Töö teoreetilised alused Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 2 2 W k = mv + I , 2 2 kus m silindri mass (kg),
baromeeter, hügromeeter. 3. Töö käik Eemaldada katseklaas ja pesta ning loputada see hoolikalt destilleeritud veega. Sättida büretid ühele kõrgusele ning kontrollida, et vee nivoo oleks mõlemas büretis silma järgi ühel kõrgusel ja büreti keskel. Tõsta üks büretiharu teisest 15...20 cm kõrgemale ning jälgida paar minutit, kas vee nivoo püsib paigal. Kui nivoo ei muutu, on katseseade hermeetiline ja võib alustada katset. Viia büretid taas ühele kõrgusele ja eemaldada katseklaas. Mähkida metall filterpaberisse (mitte väga tihedalt, sest paber peaks katse käigus avanema). Teha filterpaber märjaks destilleeritud veega. Mõõta väikese mõõtesilindriga 5...6 cm3 10%-st soolhappelahust. Valada hape läbi lehtri katseklaasi nii, et katseklaasi ülaosa ei puutuks happega kokku.
täidetud veega. teine bürett on ühendatud katseklaasiga (b), milles metall reageerib happega. 2. Katse ettevalmistus. Eemaldada katseklaas ja pesta ning loputada see hoolikalt destilleeritud veega. Sättida büretid ühele kõrgusele ning kontrollida, et vee nivoo (c) oleks mõlemas büretis silma järgi ühel kõrgusel ja büreti keskel. Tõsta üks büretiharu teisest 15...20 cm kõrgemale ning jälgida paar minutit, kas vee nivoo püsib paigal. Kui nivoo ei muutu, on katseseade hermeetiline ja võib alustada katset. Vastasel juhul kontrollida korke ja voolikuid, et tagada hermeetilisus, ja proovida uuesti. Viia büretid taas ühele kõrgusele ja eemaldada katseklaas. 3. Katse. Küsida juhendajalt metallitükk. Metallitükk on keeratud nummerdatud paberisse (märkida üles number). Võtta metall paberist välja ning mähkida filterpaberisse (mitte väga tihedalt, sest paber peaks katse käigus avanema). Teha filterpaber märjaks destilleeritud veega
Mina seda ei saavutanud. Siin võib olla ka erakordselt suur viga mõõdulindiga mõõtmisel, kuna koormised takistasid väga täpse näidu võtmist masskeskme kauguse määramisel prismast. Mõõtmisest tingitud ebatäpsus tõi kaasa möödamineku ilmselt ka arvutades (2) valemiga. Minu katsete tulemusest ei tohi ega saa järeldada, et parim meetod raskuskiirendus määramiseks on füüsikalise pendli meetod. Pöördpendel on siiski tunduvalt täpsem ja usaldusväärsem. Kuid kuna katseseade ei olnud kõige parem ja ise olin lohakas, siis seda tõestada ma ei suutnud.
veega. Üks bürett on ühendatud katseklaasiga, milles metall reageerib happega. 2) Katse ettevalmistus - Eemaldada katseklaas ja pesta ning loputada see hoolikalt destilleeritud veega. Sättida büretid ühele kõrgusele ning kontrollida, et vee nivoo oleks mõlemas büretis silma järgi ühel kõrgusel ja büreti keskel. Tõsta üks büretiharu teisest 15...20 cm kõrgemale ning jälgida paar minutit, kas vee nivoo püsib paigal. Kui nivoo ei muutu, on katseseade hermeetiline ja võib alustada katset. Vastasel juhul kontrollida korke ja voolikuid, et tagada hermeetilisus, ja proovida uuesti. Viia büretid taas ühele kõrgusele ja eemaldada katseklaas. 3) Katse - Küsida juhendajalt metallitükk. Metallitükk on keeratud nummerdatud paberisse (märkida üles number). Võtta metall paberist välja ningmähkida filterpaberisse (mitte väga tihedalt, sest paber peaks katse käigus avanema). Teha filterpaber märjaks destilleeritud veega
Nimi: 1. TÖÖÜLESANNE Silindri inertsmomendi määramine kaldpinna abil. 2. TÖÖVAHENDID Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. TÖÖ TEOREETILISED ALUSED Antud töös mõõdame erinevate silindrite kaldpinnalt allaveeremise aja ja arvutame nende inertsimomendid. 2 mv2 Veereva silindri kineetiline energia avaldub valemiga W k = 2 + lω2 (1), kus m on silindri mass (kg), v on masskeskme kulgeva liikumise kiirus (m/s), I on inertsmoment (kgm²) ja ω on nurkkiirus tsentrit läbiva telje suhtes (rad/s). Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused 2 2 võrdseks: mgh = mv2 + lω2 (2), kus h on kaldpinna kõrgus (m). Kui veeremisel puudub libisemine, siis võib nu...
SILINDRI INERTSMOMENT ARUANNE Õppeaines: FÜÜSIKA LABORITÖÖ Transporditeaduskond Õpperühm: AT11b Üliõpilased: Keith Tauden Hendrik Tammi Risto Sepp Juhendaja: õppejõud Peeter Otsnik Esitamiskuupäev: 8.10.2014 Tallinn 2014 1.Töö ülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3.Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aegu ja arvutatakse antud silindrite inertsmomendid. Veereva silindri kineetiline energia avaldub valemiga mv 2 I ω2 Wk = 2 + 2 (1) m - silindri mass ( kg ) v - masskeskme kulgeva liiku...
(a), mis on täidetud veega. Üks bürett on ühendatud katseklaasiga (b), milles metall reageerib happega. 2. Katse ettevalmistus. Eemaldada katseklaas ja pesta ning loputada see hoolikalt destilleeritud veega. Sättida büretid ühele kõrgusele ning kontrollida, et vee nivoo (c) oleks mõlemas büretis silma järgi ühel kõrgusel ja büreti keskel. Tõsta üks büretiharu teisest 15...20 cm kõrgemale ning jälgida paar minutit, kas vee nivoo püsib paigal. Kui nivoo ei muutu, on katseseade hermeetiline ja võib alustada katset. Vastasel juhul kontrollida korke ja voolikuid, et tagada hermeetilisus, ja proovida uuesti. Viia büretid taas ühele kõrgusele ja eemaldada katseklaas. 3. Katse. Küsida juhendajalt metallitükk. Metallitükk on keeratud nummerdatud paberisse (märkida üles number). Võtta metall paberist välja ningmähkida filterpaberisse (mitte väga tihedalt, sest paber peaks katse käigus avanema). Teha filterpaber märjaks destilleeritud veega
silma järgi ühel kõrgusel ja büreti keskel. 3. Eemaldada katseklaas ning loputada see hoolikalt destilleeritud veega. Sättida büretis ühele kõrgusele ning kontrollida, et vee nivoo oleks mõlemas büretis silma järgi ühel kõrgusel ja büreti keskel. 4. Tõsta üks büretiharu teisest 15-20cm kõrgemalening jälgida paar minutit, kas vee nivoo põsib paigal. Kui nivoo ei muutu on katseseade hermeetiline ja katset võib alustada. 5. Vastasel juhul kontrollida korke ja voolikuid, et tagada hermeetilisus ning proovida uuesti. 6. Võtta metall paberist välja ning mähkida filterpaberisse (mitte väga tihedalt, sest see peaks katse käigus avanema). 7. Teha filterpabermärjaks destilleeritud veega. 8. Mõõta väikese mõõtesilindriga 5-6cm3 10%-st soolhappelahust. 9. Valada hape läbi lehtri katseklaasi nii, et katseklaasi ülaosa ei puutuks happega kokku
Üks bürett on ühendatud katseklaasiga, milles metall reageerib happega. 2. Katse ettevalmistus. Eemaldan katseklaasi ja pesen ning loputan selle hoolikalt destilleeritud veega. Sätin büretid ühele kõrgusele ning kontrollin, et vee nivoo oleks mõlemas büretis silma järgi ühel kõrgusel ja büreti keskel. Tõstan üks büretiharu teisest 15...20 cm kõrgemale ning jälgin paar minutit, kas vee nivoo püsib paigal. Kui nivoo ei muutu, on katseseade hermeetiline ja võib alustada katset. Vastasel juhul kontrollin korke ja voolikuid, et tagada hermeetilisus, ja proovin uuesti. Viia büretid taas ühele kõrgusele ja eemaldada katseklaas. 3. Katse. Küsisin juhendajalt metallitüki. Metallitükk oli keeratud nummerdatud paberisse (märgin üles numbri). Võtan metalli paberist välja ning mähin filterpaberisse (mitte väga tihedalt, sest paber peaks katse käigus avanema). Teen filterpaber märjaks destilleeritud veega. Mõõdan väikese
Anton Adoson Roman Ibadov Rauno Alp Gert Elmik SILINDRI INSERTSMOMENT LABORITÖÖ NR. 4 Õppeaines: FÜÜSIKA Transporditeaduskond Õpperühm: AT 11/21 Juhendaja: dotsent: Peeter Otsnik Esitamise kuupäev: 12.11.2015 /Allkirjad/ Tallinn 2015 1. Tööülesanne. Silindri inertsmomendi määramine kald pinna abil. 2. Töövahendid. Katseseade (kald pind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kald pinnalt alla veeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga: 2 2 mv I ❑ W k= 2 +...