Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Teras EK-03 Lõige 1-1 - sarnased materjalid

thumbnail
14
pdf

HULGAD, hulgaaritmeetilised tehted ja hulgaalgebra

HULGAD Hulgaaritmeetilised tehted I Ü Hulgaalgebra T T A B . . . . Hulk on koosvaadeldavate hulgaelementide kogum . . . . ( hulk koosneb elementidest ) Hulkade jaoks on defineeritud 5 hulgaaritmeetilist tehet : tehte NIMI formaalne tähistus AB a hulkade ühend k __ i

Matemaatika
10 allalaadimist
thumbnail
1
docx

Vektorid

Koordinaadid-AB=(X2-X1;Y2-Y1) a*b=0 Pikkus-AB=X2+Y2 2 vektori summa-a+b=(X1+X2;Y1+Y2) Koordinaadid-AB=(X2-X1;Y2-Y1) Skalaarkorrutis-a*b=X1X2; a*b=a*b*cos Pikkus-AB=X2+Y2 Vektorite vaheline nurk-cos=X1X2+Y1Y2/a*b 2 vektori summa-a+b=(X1+X2;Y1+Y2) Kollineaarsus-X1/X2=Y1/Y2 Skalaarkorrutis-a*b=X1X2; a*b=a*b*cos Ristseisund-X1X2+Y1Y2=0; Vektorite vaheline nurk-cos=X1X2+Y1Y2/a*b a*b=0 Kollineaarsus-X1/X2=Y1/Y2 Ristseisund-X1X2+Y1Y2=0;

Matemaatika
137 allalaadimist
thumbnail
7
rtf

Aritmeetika ja algebra

ARITMEETIKA 1.1 Mõningate arvude kõrgemad astmed 24 = 16 29 = 512 34 = 81 44 = 256 64 = 1296 25 = 32 210 = 1024 35 = 243 45 = 1024 65 = 7776 26 = 64 211 = 2048 36 = 729 46 = 4096 7 4 = 2401 27 = 128 212 = 4096 37 = 2187 54 = 625 84 = 4096 28 = 256 213 = 8192 38 = 6561 55 = 3125 94 = 6561 1.2 Hariliku murru põhiomadus Murru väärtus ei muutu, kui murru lugejat ja nimetajat korrutada või jagada ühe ja sama nullist erineva arvuga. Kui k 0 , siis a ka = b kb (murru laiendamine), ka ka : k a = = kb kb : k b (murru taandamine). 1.3 Tehetevahelised seosed

Matemaatika
212 allalaadimist
thumbnail
4
docx

Algebralised süsteemid

Algebralised süsteemid Algebralise süsteemi mõiste kaasneb hulga mõistest ja algebralise tehte ehk arvutusoperatsiooni mõistest. Olgu hulk M selline, mis koosneb arvudest, funktsioonidest, vektoritest võik ükskõik millistest samalaadsetest elementidest, milliseid edaspidi nimetatakse hulga elementideks. M = {a; b; c;....} a = b korral loeme kehtivaks järgmised 3 omadust: ( ekvivalentsi postulaadid 1. a = a refleksiivsus 2. kui a = b, siis ka b = a sümmeetria 3. kui a = b ja b = c, siis ka a = c transitiivsus Def1 Kui hulga M igale kahele kindlas järjekorras võetud elemendi paarile (a; b ) on seotud mingi eeskirja f alusel vastavusse üks kindel element f (a; b), siis öeldakse, et hulgas M on defineeritud arvutusoperatsioon ehk tehe. Def2 Hulka, kus on määratud vähemalt üks arvutusoperatsioon nimetatakse algebraliseks süsteemiks. Kui mistahes a, b korral hulgast

Lineaaralgebra
170 allalaadimist
thumbnail
3
docx

Diskreetne matemaatika 1.kodutöö 2012

1.On antud hulgad A={a b c d e} ja B={a b c d e f g h} Leida AB AB AB BA BA Vastus: AB={a b c d e}=A AB={a b c d e f g h} =B AB = BA ={ f g h} BA={ f g h} 2.Leida hulgad A ja B, kui järgnevad tehted nendega annavad järgnevad tulemused: Vastus: AB ={1, 5, 7, 8} BA ={2, 10} AB={3, 6, 9} Vastus: A={1, 3, 5, 6, 7, 8, 9} B={2, 3, 6, 9, 10} 3.Mida võib ütelda hulkade A ja B kohta järgneval viiel juhul ( ehk millistel erijuhtudel need võrdused kehtivad?): AB=A AB=A AB =A AB=BA AB = BA Vastus: Need viis võrdused kehtivad ainult juhul, kui A= ja B= 4.Viirutada 3 hulga Venni diagrammil piirkond/hulk (AB)C Viirutada 3 hulga Venni diagrammil piirkond/hulk ABC Viirutada 3 hulga Venni diagrammil piirkond/hulk C(AB) 5

Diskreetne matemaatika
69 allalaadimist
thumbnail
4
pdf

Diskreetne Matemaatika KAUGÕPE

Tallinna Tehnikaülikool Diskreetne Matemaatika KAUGÕPE 1.arvestustöö Tallinna Tehnikaülikool Lk.53 ülesanded · A B = {a; b; c; d; e; f; g; h} A B = {a; b; c; d; e} AB=Ø B A = {f; g; h} B A = {f; g; h} · Hulk A {1;3;5;6;7;8;9} Hulk B {2;3;6;9;10} · A B = A Juhul kui A on B sees A B = A Juhul kui B on A sees A B = A Erijuhul kui B on tühihulk A B = B A Kirjeldab kommutatiivsus teooriat A B = B A Kirjeldab mitte lõikuvaid hulki, ehk puudub ühisosa · (A B) C ABC C(AB) Tallinna Tehnikaülikool · A(BC)=(AB)(AC) A(BC)=(AB)(AC) · AB=A AB=A · [ (A B) (A B) (A C) ] = = (A B) (A B) (A C) = = Ø (A B) Ø = (A B) = = ( A) ( B) = Ø ( B) = B · (A C) (B C) (A C ) ( B C) =

Diskreetne matemaatika
70 allalaadimist
thumbnail
2
pdf

Matemaatika valemid

Hulkliikmete korrutamine Tehted Arvu ruutjuur Funktsioonide graafikud Ring (a+b)2 =a2+2ab+b2 astmetega a, kui a > 0 Võrdeline seos : y=ax d (a-b)2=a2-2ab+b2 (a : b)n=an : bn a>0 d = 2r r= a = a = - a, kui a p 0 2 2 (a-b)(a+b)=a2-b2 (ab)n=an bn 0, kui a = 0

Algebra I
142 allalaadimist
thumbnail
4
pdf

MATEMAATIKA GÜMNAASIUMI (GEOMEETRIA, PLANIMEETRIA, STEREOMEETRAIA) JA PÕHIKOOLI EKSAMIKS KÕIK VAJALIKUD VALEMID

Hulkliikmete korrutamine Tehted Arvu ruutjuur Funktsioonide graafikud Ring (a+b)2 =a2+2ab+b2 astmetega ⎧a, kui a > 0 Võrdeline seos : y=ax d (a-b)2=a2-2ab+b2 (a : b)n=an : bn a>0 d = 2r r= a = a = ⎨ - a, kui a p 0 2 2 (a-b)(a+b)=a2-b2 (ab)n=an bn ⎪0, kui a = 0

Matemaatika
871 allalaadimist
thumbnail
7
doc

Hulgateooria põhimõisted

Hu lgateooria põh im õis ted N B ! Värv ilin e tek s t arves tu s es . H ulk on baas ter min iks nii ma te ma at ikas kui ka arvutiteadus es . J ärgnevalt tuvu me hulgateoori a põhikonts epts ioonidega ja hulkadele rakendatavate operats ioonidega. P aradoks : a) H abemeaj aj a puzle- kapten käs ib rühma habemeaj aj ale aj ada habet kõikidel kompan ii liikmete l, eeldus el et rühma liik med ei tohi is e habet aj ada. O lles kõigi teis te habemed aj anud, kas vab talle endale habe. Enda habet ei s aa ta aj ada, s es t nii rikuks ta kapteni käs ku. Kui ta aga enda habet ei aj a, s iis ta peaks ühtpidi kapteni käs u järgi enda habet aj ama (kõikidel liik me tel). D ef: Hu lk A on k ollek ts ioon k orrek ts elt d ef in eeritu d ob jek tid es t, n ii et iga ob jek ti k orral k eh tib ük s järgevas t k ah es t võim alu s es t - x k u u lub h u lk a A , k irju tam e x A

Matemaatika ja statistika
57 allalaadimist
thumbnail
1
pdf

Matemaatika abivalemid

Matemaatika abivalemid Tehete p~ ohiomadused Kommutatiivsus (vahetuvus) Assotsiatiivsus (¨ uhenduvus) Distributiivsus (jaotuvus) a+b=b+a a + (b + c) = (a + b) + c a(b + c) = ab + ac ab = ba a(bc) = (ab)c a(b - c) = ab - ac Sulgude avamine a + (b + c) = a + b + c a - (b + c) = a - b - c a + (b - c) = a + b - c a - (b - c) = a - b + c Tehted harilike murdudega a c a±c a c ac a c a d ad ± = · = : = · =

48 allalaadimist
thumbnail
7
doc

Hulgateooria põhimõisted

Hulgateooria põhimõisted H ulk on baas ter min iks nii ma te ma at ikas kui ka arvutiteadus es . J ärgnevalt tuvu me hulgateoori a põhikonts epts ioonidega ja hulkadele rakendatavate operats ioonidega. P aradoks : a) H abemeaj aj a puzle- kapten käs ib rühma habemeaj aj ale aj ada habet kõikidel kompan ii liikmete l, eeldus el et rühma liik med ei tohi is e habet aj ada. O lles kõigi teis te habemed aj anud, kas vab talle endale habe. Enda habet ei s aa ta aj ada, s es t nii rikuks ta kapteni käs ku. Kui ta aga enda habet ei aj a, s iis ta peaks ühtpidi kapteni käs u järgi enda habet aj ama (kõikidel liik me tel). D ef: Hu lk A on k ollek ts ioon k orrek ts elt d ef in eeritu d ob jek tid es t, n ii et iga ob jek ti k orral k eh tib ük s järgevas t k ah es t võim alu s es t - x k u u lub h u lk a A , k irju tam e x A - x ei ku u lu h u lk a A , k irju tam e x A

Algebra ja Analüütiline...
8 allalaadimist
thumbnail
1
doc

Negatiivsete arvudega teostatavate tehete eeskirjad

Negatiivsete arvudega teostatavate tehete a n an eeskirjad 5. = b bn 1. ­a + (-b) = -b + (-a) = -(a + b) 2. ­a + b = b + (-a) = b ­ a , kui b a Abivalemid ja tegurdamine 3. ­a + b = b + (-a) = - (a ­ b), kui b ( a + b) 2 = a 2 + 2ab + b 2 a ( a - b) 2 ( a + b) 3 = a 2 - 2ab + b 2 = a 3 + 3a 2 b + 3ab 2 + b 3 4. ­a + a = a + (-a) = 0 ( a - b) 3 = a 3 - 3a 2 b + 3ab 2 - b 3 5

Matemaatika
12 allalaadimist
thumbnail
4
doc

Abivalemid

Korrutamise abivalemid (a + b) 2 = a 2 + 2ab + b 2 (a - b) 2 = a 2 - 2ab + b 2 a 2 - b 2 = ( a + b )( a - b ) a 3 + b 3 = (a + b)(a 2 - ab + b 2 ) a 3 - b 3 = ( a - b)( a 2 + ab + b 2 ) (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a - b) 3 = a 3 - 3a 2 b + 3ab 2 - b 3 Näiteid · Lahutada tegureiks : 1. 6z 7 ­ 3z 5 = 3 z 5 (2z2 -1) 2. 5a (a + b ) ­ 2b ( a + b) = (a + b)( 5a ­ 2b) 3. 2a ( x +y) ­ x ­ y = 2a ( x +y) ­ (x + y ) = ( x + y)(2a -1) 4. x4 n ­ x3 n = x3 n ( x n -1) 5. 25 ­ c2 = (5 ­ c)(5 + c) 6. (v + b)2 ­ n 2 = ((v + b) +n)((v + b) ­ n )= ( v +b + n)(v + b ­ n ) 7. m 2 +6m + 9 = (m + 3)2 8. 9a 2 ­ 6a + 1 = (3a -1)2 9. 27s 3 ­ 8d 3 = (3s ­ 2d)(9s 2 + 6 s d + 4d 2) 10. 64 + f 3 = (4 + f )(16 ­ 4f + f 2) b

Matemaatika
23 allalaadimist
thumbnail
2
docx

Algebra abivalemid

Abivalemid RUUTUDE VAHE: (a+b) (a-b) = a +ab-ab+b =a2-b2 2 2 (a+b) (a-b) = a2-b2 NÄIDE: 16-a 2 = 4 2 -a 2 = (4+a) (4-a) SUMMA RUUT: (a+b) = (a+b) (a+b) = a +ab+ba+b2 = a2+2ab+b2 2 2 (a+b)2 = a2+2ab+b2 NÄIDE: (7x+4y) 2 = (7x) 2 +2(7x)(4y)+(4y) 2 = 49x 2 +56xy+16y 2 VAHE RUUT: (a-b) = (a-b) (a-b) = a -ab-ba+b2 = a2-2ab+b2 2 2 (a-b)2 = a2-2ab+b2 NÄIDE: (3a-b) 2 = (3a) 2 -2(3a)b+b 2 = 9a 2 -6ab+b 2 KUUPIDE SUMMA: (a+b) (a - ab+b ) = a - a b+ab2+ba2- ab2+b3 = a3+ b3 2 2 3 2 (a+b) (a2- ab+b2) = a3+ b NÄIDE: (a+3)(a 2 -3a+9) = a 3 +3 3 = a 3 +27 KUUPIDE VAHE:

Matemaatika
64 allalaadimist
thumbnail
13
docx

Majanduse ja ettevõtluse alused- KT küsimused

Majanduse alused KT küsimused 1 Majandusteooria metoloogilised alused 1. Pole olemas ühtegi inimlikku probleemi, mid ei saaks lhendada majandusanalüüsi kasutades. a) õige b) vale 2. Makroökonoomilise analüüsi üheks eesmärgiks on selgitada ning prognoosida tarbijate ja müüjate käitumist. a) õige b) vale 3. Mikroökonoomilise analüüsi üheks eesmärgiks on selgitada ning prognoosida tarbijate ja müüjate käitumist. a) õige b) vale 4. Mikro- ja makroökonoomika uurivad, kuidas jaotatakse piiratud ressursse alternatiivsete kasutusviiside vahel, et rahuldada inimeste piiramatuid vajadusi. a) õige b) vale 5. Mikroökonoomika uurimisobjektiks on:

Majandus
38 allalaadimist
thumbnail
499
doc

Polümeeride keemia ja füüsika vene keeles

###############f#####bjbj��################## ###X##��##��##�k######>###############@#######��##########��##########��########## ########�#####@#######@###@#######P#######�#######�#######�###$###########�#######� E######�E######�E##P###�E##$### G##�###�#######}�##2###�G##�###�K######�K######�K######�K######�b######�b######�b## ##### ######θ######θ######θ######θ######θ######θ##$###��##h####�##6###�##E########### ########�#######~c######################�a##�###�b######~c######~c######�########## ####`#######`#######�K##############�K## %###7�######�######�######�######~c##@###`###@###�K######�#######�K####### ########## ####�######################################################~c#######

Keemia
14 allalaadimist
thumbnail
2
doc

Reaalarvud ja avaldised

1. Reaalarvud ja avaldised Põhiteadmised: · Arvuhulgad N, Z, Q ja R, nende omadused; · arvtelje vahemik, lõik ja poollõigud; · arvu absoluutväärtus; · ratsionaalarvulise astendajaga aste; · ratsionaal- ja irratsionaalavaldised; · protsent; · aritmeetiline ja geomeetriline keskmine; · korrutamise abivalemid. Põhioskused · Võrrandi ja võrratuse lahendihulga, funktsioonimääramis-, muutumis-, positiivsus- ja negatiivsuspiirkondade ning kasvamis- ja kahanemisvahemike kujutamine punktihulkadena; · astmeid ja juuri sisaldavate avaldiste lihtsustamine; · protsendi mõiste kasutamine: protsendi leidmine arvust, arvu leidmine protsendi järgi, kahe arvu suhte väljendamine protsentides. Valemid a, kui a 0 · Arvu absoluutväärtus ­ a= - a, kui a < 0 · Astme mõiste ja omadused

Matemaatika
122 allalaadimist
thumbnail
2
doc

Matemaatika valemid

Ring ­ S=r2 ; P=2r Rööpkülik ­ S=ah ; P=2(a+b) Ruut ­ S=a ; P=4a 2 Romb ­ S=d1*d2/2 = a*h Ristkülik ­ S=a*b ; P=2(a+b) Trapets ­ S=a+b/2*h = k*h ; P=a+b+c+d Kolmnurk ­ S=a*h:2 ; P=a+b+c Täisnurkne kolmnurk ­ S=1/2*ah ; Risttahukas ­ S=2(ab+ac+bc) ; V=abc Viete teoreem: X1+X2 = -p Püstprisma ­ Sk=P*h ; St=Sk+2Sp; V=Sp*h X1*X2 = q Kuup ­ Sp=a ; Sk=4*a 2 2 Silinder ­ Sp=r2 ; St=2r ; Sk=2rh ; V=r2h Kera ­ S=4r2 ; V= 4/3 r3 Koonus ­ Sp=r2 ; Sk=rm ; St=r ; V= 1/3 r2h Korrapärane püramiid ­ Sk=P*h ; St=Sk+2Sp ; V=Sp*h Püramiid ­ Sk=Pm/2 ; St =Sk+Sp ; V=1/3Sp*h · (a+b)(a-b)= a²- b² · (a-b)³=a³-3a²b+3ab²-b³ · (a+b)²= a²+2ab+b² · (a+b)(a²-ab+b²)= a³+b³ · (a-b)²= a²-2ab+b² · (a-b)(a²+ab+b²)= a³-b³ · (a+b)³= a³+3a²b+3ab²+b³ Sin = a/c a = c*sin c = a/sin Sin = b/c

Matemaatika
205 allalaadimist
thumbnail
10
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b  N korral a  b  b  a

Matemaatika
27 allalaadimist
thumbnail
5
doc

X klassi matemaatika lühikonspekt

X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b  N korral a  b  b  a

Matemaatika
113 allalaadimist
thumbnail
1
doc

Valemid

Ruutvõrrandi lahend: Vete'i teoreem: ax² + bx + c = 0 x2+px+q=0 x = -b±b²-4ac 2a x1+x2=-p x1*x2=q Pythagorase teoreem: Protsendid: %arvust x*%/100 a2+b2=c2 a=c2-b2 moodustaja x=25/10%*100=250 c=a2+b2 b=c2-a2 arv-arvust x-y-st x/y*100=% Korrutamise valemid (a+b)² = a² +2ab +b² (a-b)² = a² -2ab +b² (a+b)(a-b) = a² - (a+b)³ = a³ +3a²b +3ab² +b² (a-b)³ = a³ -3a²b +3ab² -b² (a-b)(a² +ab +b²) =a³ -b³ (a+b)(a² -ab +b²) =a³ +b³ Pythagorase joonis: c a b sin=a/c sin=b/c cos=b/c cos=a/c tan=a/b tan=b/a Rööptahukas: Sp=ab, Sk=2(a+b)h, V=Sp*h Koonus: Sp=r , Sk=rm, V=Sph/3=r2h/3 2 Püramiid: V=1/3Sph Ring: C=2r S=r2 Silinder: c=2r, Sk=2rh, St=Sk+2Sp, Sp=r2, V=r 2h=Sp*h Kera: S=4r2, V=4/3r3 Kuup: S=6*a2, V=a3

Matemaatika
174 allalaadimist
thumbnail
2
doc

Reaalarvud ja avaldised

Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 1. Reaalarvud ja avaldised Põhiteadmised: · Arvuhulgad N, Z, Q ja R, nende omadused; · arvtelje vahemik, lõik ja poollõigud; · arvu absoluutväärtus; · ratsionaalarvulise astendajaga aste; · ratsionaal- ja irratsionaalavaldised; · protsent; · aritmeetiline ja geomeetriline keskmine; · korrutamise abivalemid. Põhioskused · Võrrandi ja võrratuse lahendihulga, funktsioonimääramis-, muutumis-, positiivsus- ja negatiivsuspiirkondade ning kasvamis- ja kahanemisvahemike kujutamine punktihulkadena; · astmeid ja juuri sisaldavate avaldiste lihtsustamine; · protsendi mõiste kasutamine: protsendi leidmine arvust, arvu leidmine protsendi järgi, kahe arvu suhte väljendamine protsentides. Valemid

Matemaatika
19 allalaadimist
thumbnail
36
docx

Enesekontrolli testid

nõudluse suurenemise. a) Õige b) Vale 15. Muude tingimuste samaks jäädes, mida kõrgem on hind, seda väiksem on nõutav kogus. a) Õige b) Vale 16. Eeldades, et banaanid on normaalhüvised, toob majapidamiste keskmise sissetuleku kasv endaga kaasa banaanide nõudluskõvera nihkumise alla ja vasakule. a) Õige b) Vale 17. Nõutav kogus on selline kaupade ja teenuste kogus, mida tarbijad kavatsevad osta mingi perioodi jooksul olemasoleva hinnataseme juures. a) Õige b) Vale Elastsus 1. Kui nõudluse hinnaelastsuse absoluutväärtus on suurem kui üks siis hinna tõstmine suurendab ettevõtte kasumist. a) Õige b) Vale 2. Kui nõudmine käitub hinna suhtes elastselt, toob hinnatõus endaga kaasa tarbijate kulutuste suurenemise a) Õige b) Vale 3. Nõudluse hinnaelastsus leitakse koguse muudu ja hinna muudu suhtena a) Õige b) Vale 4. Kui nõudluse hinnaelastsuse absoluutväärtus on suurem kui üks, siis hinna tõstmine

Majandus (mikro ja...
94 allalaadimist
thumbnail
12
docx

Matemaatiline analüüs I 3. kollokviumi spikker

Küsimused: 1.Määratud integraali (Riemanni mõttes) definitsioon. Darbouc ülem- ja alamsummad. Riemanni summa ja Darboux’ summade seos-viimane pilt. ∫ f ( x ) dx st ∫ f ( x ) dx=F ( x ) +C . Määramata integraali tuletis on f (¿ ξi) ∆ xi SΠn n võrdne integreeritava funktsiooniga st ( ∫ f ( x ) dx )’= f(x). Tõestus: ( ∫ f ( x ) dx Riemanni summa lõigul [a,b] (f) = ∑¿ .

Matemaatiline analüüs 1
24 allalaadimist
thumbnail
4
doc

Tõenäosusteooria

12. klass Tõenäosusteooria 1. Sündmuse klassikaline tõenäosus Sündmuse A tõenäosuseks p(A) nimetatakse sündmusele A soodsate elementaarsündmuste (võimaluste) arvu k ja kõigi elementaarsündmuste (võimaluste) arvu n suhet. k p(A) = n Siin eeldakse: 1) arvu n lõplikkust; 2) välistatust (korraga saab toimuda vaid üks elementaarsündmus); 3) võrdvõimalikkust. Näide 1. Kausis on 5 kollast, 4 sinist ja 7 punast ploomi. Kausist võetakse juhuslikult üks ploom. Kui suur on tõenäosus, et see ploom on sinine? Kausis on kokku 5 + 4 + 7 = 16 ploomi. Ühe ploomi valikuks on 16 erinevat võimalust. Siniseid ploome on kausis 4, see tähendab et soodsaid võimalusi on 4.

Matemaatika
256 allalaadimist
thumbnail
2
rtf

Matemaatika valemid

Ruutude vahe valem (a + b)(a - b) = a2 - b2 (a + b)(a - b) = a2 - ab + ab - b2 = a2 - b2 Summa ruudu valem (a + b)2 = a2 + 2ab + b2 (a + b)2 = (a + b)(a + b) = a2 + ab + ba + b2 = a2 + 2ab + b2 Vahe ruudu valem (a - b)2 = a2 - 2ab + b2 (a - b)2 = (a - b)(a - b) = a2 - ab - ba + b2 = a2 - 2ab + b2 Kuupide summa valem (a + b)(a2 - ab + b2) = a3 + b3 (a + b)(a2 - ab + b2) = a3 - a2b + ab2 + ba2 - ab2 + b3 = a3 + b3 Kuupide vahe valem (a - b)(a2 + ab + b2) = a3 - b3 (a - b)(a2 + ab + b2) = a3 + a2b + ab2 - ba2 - ab2 - b3 = a3 - b3 Summa kuubi valem (a + b)3 = a3 + 3a2b + 3ab2 + b3 (a + b)3 = (a + b)(a + b)2 = (a + b)(a2 + 2ab + b2) = a3 + 2a2b + ab2 + a2b + 2ab2 + b3 = a3 + 3a2b + 3ab2 + b3 Vahe kuubi valem (a - b)3 = a3 - 3a2b + 3ab2 - b3 (a - b)3 = (a - b)(a - b)2 = (a - b)(a2 - 2ab + b2) = a3 - 2a2b + ab2 - a2b + 2ab2 - b3 = a3 - 3a2b + 3ab2 - b3

Matemaatika
19 allalaadimist
thumbnail
5
doc

Arvutiõpetus

IX klass II grupp Kordamine kontrolltööks Tõmba õigele vastusevariandile (õigetele vastusevariantidele) joon alla (märgista ära ning siis näiteks klahvikombinatsioon Ctrl + U) Näide Õpin järgmisel reedel toimuvaks kontrolltööks a) natuke b) vähe c) piisavalt Valmis ülesanne salvesta nimega Eesnimi_kordamine.doc ning saada see mulle aadressile [email protected]; ekirja teemaks sisesta eesnimi ja tänane kuupäev. 1) Kirja rasvaseks muutmiseks peab klõpsama tööriistanuppu: a) b) c) d) 2) Kursiivkirja (kiri on kaldu) tööriistanuppu: a) b) c) d) 3) Kui on soov kirjavärvi muuta, siis peab klõpsama tööriistanuppu: a) b) c) d)

Arvuti õpetus
25 allalaadimist
thumbnail
4
odt

Pythagorase teoreem

ruuduga. c²=a²+b² 1.1 Pythagorase ''püksid'' Pythagorase teoreemi väljendavas võrduses võib vaadelda suurusi a², b², c² kui selliste ruutude pindalasid, mille kylgedeks on a, b ja c. Seoses sellega võib pythagorase teoreemi sõnastada ka järgmiselt: täisnurkse kolmnurga kaatetitele joonestatud ruutude pindala summa on võrdne hüpotenuusile joonestatud ruudu pindalaga. 1.2 Kasutamine 1.2.1 Täisnurkne kolmnurk c²=a²+b² c= a2+b2 a²=c²-b² a= c ²-b ² b²=c²-a² b= c ²-a ² 1.2.2 Ruut d²=a²+a²=2a² d= 2 a2 a²+a²=d² 2a²=d² | :2 2 a²= d 2 a= d 2 2 1.2.3 Ristkülik d²=a²+b² d= a2+b2 b²=d²-a² b= d ²-a² a²=d²-b² a= d ²-b ² 1.2.4 Võrdhaarne kolmnurk 2 b²=h²+ ( a ) 2 2 b= h2+( a ) 2 2 h²=b²- ( a ) 2 2 h= b2-( a )

Matemaatika
104 allalaadimist
thumbnail
89
docx

Matemaatiline maailmapilt

1. LOENG Sissejuhatus Lausearvutus: Teoreemid sõnastatakse tavaliselt kujul: ,,Kui A, siis B". Teoreemi osa A, mis on seotud sõnaga kui, nimetatakse teoreemi eelduseks, ja osa, mis on seotud sõnaga siis, väiteks. Näide: Kui kaks vektorit on risti, siis nende vektorite skalaarkorrutis on null. Näide: Kui nurgad on kõrvunurgad, siis nende summa on 180o. Teoreemi tõestamine tähendab selle näitamist, et eeldusest A järeldub väide B. Tõestamisel lähtutakse aksioomidest ja varem tõestatud teoreemidest.

Matemaatika
49 allalaadimist
thumbnail
19
doc

Matemaatika valemid.

1. Reaalarvud ja avaldised a, kui a 0 · Arvu absoluutväärtus ­ a = - a, kui a < 0 · Astme mõiste ja omadused a 0 = 1, kui a 0 a1 = a a n = a a a a, kui n N 2 1 a-k = , kui a 0 ja k Z või ak kui a > 0 ja k Q m n a m , kui a > 0, m Z ja n N a = n 2 0, kui a = 0, m N 1 ja n N1

Matemaatika
807 allalaadimist
thumbnail
25
doc

Määratud integraal ja selle rakendused

MÄÄRATUD INTEGRAAL, SELLE RAKENDUSED 1.1 Määratud integraali rakendused 1.2 SISSEJUHATUS MÄÄRATUD INTEGRAALI a) Integraalne alam ­ja ülemsumma · On antud funktsioon y= f(x), mis on PIDEV lõigul [a;b] (argumendi väärtused) · Sellel lõigul eksisteerib kaks olulist väärtust: funktsiooni suurim väärtus ja funktsiooni vähim väärtus. · Tähistame funktsiooni f(x) suurima väärtuse tähega M ja väikseima väärtuse tähega m · Funktsiooni väärtusi näitab graafiliselt y-telg (alati!) N2 B A xn=b · Nüüd jaotame selle lõigu [a, b] mitmeteks osadeks, alamlõikudeks..

Matemaatiline analüüs
221 allalaadimist
thumbnail
8
odp

KORRUTAMISE ABIVALEMID

KORRUTAMISE ABIVALEMID Ruutude vahe valem (a+b)(a-b)=a²-b² Näide: (7+k)(7-k)=49-k² Summa ruudu valem (a+b)²=a²+2ab+b² Näide: (4+a)²=4²+2·4·a+ a²=16+8a+ a² Vahe ruudu valem (a-b)²=a²-2ab+b² Näide: (4-a)²=4²-2·4·a+ a²=16-8a+ a² Kuupide summa valem a³+b³=(a+b)(a² -ab+b)² Näide: 27+a³=(3+a)(9-3a+a²) Kuupide vahe valem a³-b³=(a-b)(a² +ab+b)² Näide: 27-a³=(3-a)(9+3a+a²) Summa kuubi valem (a+b)³=a³+3a²b+3ab²+b³ Näide: (2+a)³=8-3·2²·a+3·2·a²+a³=8+12a+6a²+a³ Vahe kuubi valem (a-b)³=a³-3a²b+3ab²-b³ Näide: (2-a)³=8-3·2²·a+3·2·a²-a³=8-12a+6a²-a³

Matemaatika
33 allalaadimist
thumbnail
21
docx

Matemaatiline analüüs 1, teine teooriatöö kordamisküsimused

23. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (tõestada!). Loetleda diferentsiaali omadused. Funktsiooni muudu esitus diferentsiaali ja jääkliikme summana y ' =f ( a ) +r ( x ) x Korrutame saadud avaldise x-ga ja saame y=f ' ( a ) x+ , kus =r ( x ) x Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? (Tõestada) ' lim f ( a ) x dy lim r ( x ) x =¿ x o = lim f ' ( a )=f ' ( a ) 0 x x x o lim = x o = lim r ( x ) =0 lim ¿ x o x x x o

Matemaatika
10 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun