Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed (0)

1 Hindamata
Punktid
Vasakule Paremale
Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #1 Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #2 Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #3 Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #4 Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #5 Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #6 Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #7 Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #8 Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #9 Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #10 Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #11 Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #12 Eestikeele kirjandi ja võõrkeele riigieksamite tulemuste seosed #13
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 13 lehte Lehekülgede arv dokumendis
Aeg2011-03-25 Kuupäev, millal dokument üles laeti
Allalaadimisi 25 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor katlin10 Õppematerjali autor
Majandusmatemaatika uurimistöö

Kasutatud allikad

Sarnased õppematerjalid

thumbnail
18
xlsx

Metroloogia ja mõõtetehnika Kodutöö

79 74 85 55 45 22 Leian B keskväärtuseintervallhälve tõenäosusastmel P=0.95 ehk =0.05 Studenti tabelist kriitiline t (=0,05; n=50; kahepoolne) = 2,01 jaotusele vastav mõõtetulemuste arv ni" intervallis i on leitav valemiga: ni"= n*h*f( zi) õõtetulemuste koguarv, ervalli samm normaaljaotuse tihedusfunktsiooni väärtus kohal zi ORMDIST(xi;X ,s, FALSE), kus s on standardhälve ja X keskväärtus. se teoreetiline tulemuste kogus intervallides Column E Column G Column E Column G 8 9 10 misest põhikogumis Faktorid, p=10 F4 F5 F6 F7 F8 F9 yi4 yi4^2 yi5 yi5^2 yi6 yi6^2 yi7^2 yi8 yi8^2 yi9

Metroloogia ja mõõtetehnika
thumbnail
11
docx

DZ Rakendusstatistika

Variant 23 0, 1, 4, 5, 6, 7, 10, 10, 11, 12, 12, 15, 20, 22, 24, 25, 25, 26, 27, 27, 31, 33, 38, 38, 39, 40, 43, 44, 44, 45, 46, 48, 52, 52, 55, 56, 56, 62, 62, 65, 69, 71, 71, 71, 74, 74, 75, 75, 79, 79, 80, 82, 85, 86, 87, 91, 91, 95, 96, 98 Dixon-test Rlow=(x3-x1)/(xn-2-x1), n=60 -> Rlow=(4-0)/(95-0)=4/95=0,042 < Dkr=0,35 Rhigh=(xn-xn-2)/(xn-x3) = (98-95)/(98-4)=3/94=0,0319 Osa A. Hinnangud, usaldusvahemikud, statilised hüpoteesid ja jaotused Tabel 1. Valim xi-juhuslik arv, ni ­ xi kordumiste arv n=60 xmin=0 , xmax=98 xi ni ni*xi ni*xi2 ni(xi-x)2 2282,92 0 1 0 0 84 2188,36 1 1 1 1 84 1916,68 4 1 4 16 84 1830,12 5 1 5 25

Algebra ja analüütiline geomeetria
thumbnail
17
docx

Matmaatilise statistika uurimustöö

Nõo Reaalgümnaasium MATEMAATILISE STATISTIKA UURIMUS Õpilaste hinnang ühiselamu tubadele, sanitaartingimustele ja koolitoidule. Joonas Hallikas 12A Juhendajad: Kaja Kasak Sirje Sild Nõo 2010 SISUKORD Sisukord..........................................................................................................................................2 Üllesande püstitus...........................................................................................................................3 Mõisted...........................................................................................................................................4 Valemid...........................................................................................................................................5 Exceli funktsioon

Matemaatika
thumbnail
30
pdf

Rakendusstatistika kodutöö

Korrastatud variatsioonirida: 1; 6; 7; 8; 9; 12; 13; 18; 19; 23; 24; 26; 26; 33; 34; 35; 35; 38; 39; 39; 41; 44; 44; 45; 45; 45; 46; 47; 48; 48; 48; 54; 56; 58; 58; 58; 59; 60; 61; 62; 66; 68; 68; 69; 71; 71; 74; 75; 76; 77; 80; 86; 88; 89; 89; 90; 94; 94; 97; 99. Eksete hindamine 𝑥3 −𝑥1 Min 𝑅𝑙𝑜𝑤 = 𝑥 = 0.06452 < 0.265 𝑛−2 −𝑥1 𝑥𝑛 −𝑥𝑛−2 Max 𝑅ℎ𝑖𝑔ℎ = 𝑥𝑛 −𝑥3 = 0.05435 < 0.265 DCRIT(0.05; 60)= 0.265 Järeldus: Eksed puuduvad, sest nii Rlow kui ka Rhigh on väiksemad kui DCRIT. Tõenäosus, et partiis n=60 esineb vähemalt 2 erinevat väärtust 𝑣äℎ𝑒𝑚𝑎𝑙𝑡 2 𝑒𝑟𝑖𝑛𝑒𝑣𝑎 𝑎𝑟𝑣𝑢 𝑒𝑠𝑖𝑛𝑒𝑚𝑖𝑠𝑒 ℎ𝑢𝑙𝑘 46 𝑃(𝑣äℎ𝑒𝑚𝑎𝑙𝑡 2 𝑒𝑟𝑖𝑛𝑒𝑣𝑎𝑡 𝑎𝑟?

Rakendusmatemaatika
thumbnail
38
pptx

Statistika

Statistika on teadus, mis käsitleb andmete kogumist, töötlemist ja analüüsimist. 1 Üldkogum on objektide hulk, mille kohta soovime teha põhjendatud järeldusi. Uurimise võimalused: a) uuritakse kõiki elemente b) uuritakse mingit osahulka - valim 2 Tunnused jagunevad: arvtunnused (kvantitatiivsed tunnused) pidevad tunnused diskreetsed tunnused mittearvulised tunnused (kvalitatiivsed ) nominaalsed tunnused järjestustunnused binaarsed tunnused 3 Andmete töötlemine Vigaseid väärtusi ei tohi asendada õige väärtusega Andmeid võib kodeerida 4 Ühe klassi õpilaste pikkused (cm). 161, 173, 168, 159, 166, 64, 171, 170, 167, 177, 163, 159, 162, 172, 169, 170, 165, 16, 174, 162, 166. 5 Hinnang Vastajate arv Kodeerimine V

Statistika
thumbnail
17
doc

Tõenäosusteooria ja Rakendusstatistika MHT0031

0, 1, 1, 4, 5, 5, 6, 7, 10, 10, 11, 12, 12, 15, 17, 20, 22, 23, 24, 25, 25, 25, 27, 33, 38, 38, 39, 39, 40, 43, 44, 44, 46, 52, 62, 62, 69, 69, 71, 71, 74, 74, 75, 75, 78, 78, 79, 79, 80, 82, 82, 85, 86, 87, 91, 91, 96, 96, 96, 98 Dixon-test Rlow=(x3-x1)/(xn-2-x1), n=60 -> Rlow=(1-0)/(96-0)=1/96=0,01 -> x1 ­ ekse, sest et Rlow =0,01> Dkr=0,35 Osa A. Hinnangud, usaldusvahemikud, statilised h üpoteesid ja jaotused Tabel 1. Valim xi-juhuslik arv, ni ­ xi kordumiste arv xmin=0, xmax=98 xi ni ni*xi ni*xi² ni(xi-x)² 0 1 0 0 2254.35 4320.78 1 2 2 2 1 4 1 4 16 1890.51 3609.10 5 2 10 50 1 6 1 6 36 1720.59 7 1 7 49 1638.63 2809.50 10

Rakendusstatistika
thumbnail
16
doc

Rakendusstatistika kodutöö

Osa A. Hinnangud, usaldusvahemikud, statistilised hüpoteesid ja jaotused xi ni xi*ni ni*xi2 ni*(xi-xk)2 0 1 0 0 2907,37 6 1 6 36 2296,33 7 1 7 49 2201,49 8 2 16 128 4217,29 9 1 9 81 2017,81 12 1 12 144 1757,29 13 2 26 338 3348,89 18 1 18 324 1290,25 23 1 23 529 956,05 24 1 24 576 895,21 26 2 52 1

Rakendusstatistika
thumbnail
15
xls

Rakendusstatistika kodutöö

15 12 33 95 10 87 25 1 62 52 98 94 62 46 11 71 79 75 24 91 40 71 96 12 82 4 6 96 38 27 7 74 20 96 69 86 10 80 25 91 74 85 22 5 39 0 38 75 95 79 xi ni xi*ni ni*xi2 ni*(xi-xk)2 0 0 1 0 0 2132,59 1 1 1 1 1 2041,23 3 3 1 3 9 1864,51 4 4 1 4 16 1779,15 7 7 1 7 49 1535,07 8 8 1 8 64 1457,71 10 10 2 20 200 2617,98 10 13 3 39 507 3302,74 13 15 1 15 225 972,19 13 20 2 40 800 1370,78 13 22 2 44 968 1169,34 15 24 1

Rakendusstatistika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun