Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Silindri Inertsimoment - sarnased materjalid

inertsmomendi, ajamõõtja, nurkkiirus, inertsimoment, allaveeremise, joonkiiruse, inertsmoment, teoreetilise, ehitusteaduskond, juhendaja, katseseade, kaldpind, nihik, automaatne, teoreetilised, inertsimomendid, lugedes, libisemine, masskese, laske, silinder, katseandmed, kandke, 0211, vahemaa, silindritel, diameeter, kehadega
thumbnail
6
docx

SILINDRI INERTSMOMENT

SILINDRI INERTSMOMENT. 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 2 2 mv Iω Wk= + (1) 2 2 m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² ) ω - nurkkiirus tsentrit läbiva telje suhtes ( rad/s ) Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused võrdseks: mv2 Iω2

Füüsika
66 allalaadimist
thumbnail
8
docx

Silindri inertsmoment - laboratoorium

SILINDRI INERTSMOMENT ARUANNE Õppeaines: FÜÜSIKA LABORITÖÖ Transporditeaduskond Õpperühm: AT11b Üliõpilased: Keith Tauden Hendrik Tammi Risto Sepp Juhendaja: õppejõud Peeter Otsnik Esitamiskuupäev: 8.10.2014 Tallinn 2014 1.Töö ülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3.Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aegu ja arvutatakse antud silindrite inertsmomendid. Veereva silindri kineetiline energia avaldub valemiga mv 2 I ω2 Wk = 2 + 2 (1)

Füüsika
20 allalaadimist
thumbnail
3
docx

Silindri inertsmomendi määramine kaldpinna abil

SILINDRI INERTSMOMENT 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 2 2 mv I Wk= + 2 2 m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² ) - nurkkiirus tsentrit läbiva telje suhtes ( rad/s )

Mehaanika ja soojuse valemid
1 allalaadimist
thumbnail
4
docx

SILINDRI INERTSMOMENT

Taavi Tiirats Jüri Averjanov Andrei Mintsenkov SILINDRI INERTSMOMENT PRAKTIKA ARUANNE Õppeaines: Füüsika I Ehitusteaduskond Õpperühm: TE 11a Juhendaja: lektor Jana Paju Esitamiskuupäev: 30.11.2016 Õppejõu allkiri: _________ Tallinn 2016 1. Töö ülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töö vahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 2 2 mv I (1)

Füüsika
3 allalaadimist
thumbnail
10
docx

SILINDRI INERTSMOMENT

SILINDRI INERTSMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA I Ehitusteaduskond Õpperühm: Juhendaja Esitamiskuupäev: Õppejõu allkiri: …………… Tallinn 2016 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt alla veeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga: 2 2 mv I ❑ W k= 2 + 2 (1)

Füüsika
15 allalaadimist
thumbnail
8
doc

Aruanne: Silindri inertsmomendi määramine kaldpinna abil

Robert Kikas Ragnar Piir Sergei Dikarev Mikk–Martin Anvelt SILINDRI INERTSMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA (I) Mehaanikateaduskond Õpperühm: TI 11(B) Juhendaja: lektor Irina Georgievskaya Esitamiskuupäev: 18.11.2014 Tallinn 2014 SILINDRI INERTSMOMENT. 1.Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3.Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² )

Füüsika
28 allalaadimist
thumbnail
6
pdf

Silindri inertsimoment

SILINDRI INERTSIMOMENT LABORATOORSED TÖÖD Õppeaines: FÜÜSIKA I Mehaanikateaduskond Õpperühm: TI-11 (B2) Juhendaja: Karli Klaas Esitamiskuupäev: 20.10.2015 Tallinn 2015 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 𝒎𝒗𝟐 𝑰𝝎𝟐 𝑾𝒌 = +

Füüsika
32 allalaadimist
thumbnail
4
docx

SILINDRI INERTSMOMENT

SILINDRI INERTSMOMENT LABORATOORSE TÖÖ ARUANNE Õppeaines: FÜÜSIKA Ehitusinstituut Õpperühm: HE 11/21 Juhendaja: Esitamiskuupäev:................ Üliõpilase allkiri:................. Õppejõu allkiri: .................. Tallinn 2018 5. SILINDRI INERTSMOMENT Tööülesanne Silindri inertsmomendi määramine kaldpinna abil. Töövahendid Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. Töö teoreetilised alused Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga 2 2 W k = mv + I , 2 2

Füüsika
1 allalaadimist
thumbnail
8
docx

Silindri inertsmomendi määramine kaldpinna abil.

1.Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3.Teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga(1) mv 2 Iω2 Wk= + 2 2 m – silindri mass (kg) v – masskeskme kulgeva liikumise kiirus (m/s) I - inertsmoment ( kgm² ) ω - nurkkiirus tsentrit läbiva telje suhtes ( rad/s ) Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused võrdseks: ( 2 ) mv2 Iω2 mgh= + 2 2 h- kaldpinnakõrgus Kui veeremisel puudub libisemine, siis võib nurkkiiruse avaldada joonkiiruse kaudu :( 2 ) v ω= r , kus r – silindri raadius

Füüsika
15 allalaadimist
thumbnail
10
docx

Silindri inertsmoment

Anton Adoson Roman Ibadov Rauno Alp Gert Elmik SILINDRI INSERTSMOMENT LABORITÖÖ NR. 4 Õppeaines: FÜÜSIKA Transporditeaduskond Õpperühm: AT 11/21 Juhendaja: dotsent: Peeter Otsnik Esitamise kuupäev: 12.11.2015 /Allkirjad/ Tallinn 2015 1. Tööülesanne. Silindri inertsmomendi määramine kald pinna abil. 2. Töövahendid. Katseseade (kald pind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kald pinnalt alla veeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga: 2 2 mv I ❑ W k= 2

Füüsika
64 allalaadimist
thumbnail
3
docx

Silindri inertsmoment.

SILINDRI INERTSMOMENT. 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga Wk = mv²/2+ I²/2 (1) m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² ) - nurkkiirus tsentrit läbiva telje suhtes ( rad/s ) Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused võrdseks:

Füüsika
308 allalaadimist
thumbnail
6
pdf

Silindri inertsmoment

Nimi: 1. TÖÖÜLESANNE Silindri inertsmomendi määramine kaldpinna abil. 2. TÖÖVAHENDID Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. TÖÖ TEOREETILISED ALUSED Antud töös mõõdame erinevate silindrite kaldpinnalt allaveeremise aja ja arvutame nende inertsimomendid. 2 mv2 ​ Veereva silindri kineetiline energia avaldub valemiga W k = 2 + lω2 (1)​, kus m on silindri mass (kg), v on masskeskme kulgeva liikumise kiirus (m/s), I on inertsmoment (kgm²) ja ω on nurkkiirus tsentrit läbiva telje suhtes (rad/s).

Füüsika
13 allalaadimist
thumbnail
4
docx

Füüsika laboratoorne töö - Silindri inertsmoment

TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING Füüsika laboratoorne töö Silindri inertsmoment Õppeaines: Füüsika I Mehaanikateaduskond Õpperühm: Üliõpilased: Juhendaja:P.Otsnik Tallinn 1.Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3.Teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva silindri kineetiline energia avaldub valemiga(1) m ­ silindri mass (kg) v ­ masskeskme kulgeva liikumise kiirus (m/s)

Füüsika
194 allalaadimist
thumbnail
2
docx

Silindri inertsmomendi määramine kaldpinna abil.

Tööülesanne Silindri inertsmomendi määramine kaldpinna abil. Töövahendid Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. Töö teoreetilised alused Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsmomendid. Veereva silindri kineetiline energia avaldub valemiga: m v 2 I 2 Wk= + 2 2 m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus (m/s) I - inertsmoment (kgm2) - nurkkiirus tsentrit läbiva telje suhtes (rad/s) Veereva keha masskese liigub kaldpinnalt alla ühtlaselt kiirenevalt ja sirgjooneliselt. Inertsmomendi valem: g t 2 sin I =mr 2( -1) 2l r - silindri raadius (m) g = 9,81 (m/s2) sin = 0,093 Töökäik Mõõtmised teostasime 4 erineva silindriga. Mõõtsime kaldpinna pikkuse l, silindri massi m ja silindri diameetri d

Füüsika
3 allalaadimist
thumbnail
25
docx

Laboratoorsed tööd

LABORATOORSED TÖÖD LABORATOORNE TÖÖ Õppeaines: FÜÜSIKA I Tehnikainstituut Õpperühm: Juhendaja: Esitamiskuupäev:.................. Üliõpilase allkiri:.................. Õppejõu allkiri:.................... Tallinn 2017 SISUKORD 1.1Tööülesanne.....................................................................................................................................5 1.2Töövahendid..............................................................................................................

Füüsika
16 allalaadimist
thumbnail
6
docx

Silindri inertsmoment

SILINDRI INERSMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA (I) Mehaanikateaduskond Õpperühm: Juhendaja: Esitamiskuupäev:……………. Tallinn 2014 1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Joonised. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Veereva keha masskese liigub kaldpinnalt alla ühtlaselt kiirenevalt ja sirgjooneliselt. Katse nr l, m t, s m, kg d, m I, kgm2 It, kgm2 1

Füüsika
25 allalaadimist
thumbnail
3
docx

Silindri inertsmoment

TALLINNA TEHNIKAKÕRGKOOL TALLINN COLLEGE OF ENGINEERING LABORATOORSE TÖÖ ARUANNE SILINDRI INERTSMOMENT Õppeaines: FÜÜSIKA Transporditeaduskond Õpperühm: AT12a Üliõpilased: X X X X Juhendaja: P.Otsnik Tallinn 2010 1.Töö ülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid Silindrite komplekt, nihik, katseseade (kaldpind), automaatne ajamõõtja. 3.Töö teoreetilised alused Antud töös mõõdame erinevate silindrite kaldpinnalt allaveeremise aegu ja arvutame antud silindrite inertsmomendid. Veereva silindri kineetiline energia avaldub valemiga = + m-silindri mass (kg) v-massikeskme kulgeva liikumise kiirus (m/s) I-inertsmoment (kgm2) -nurkkiirus tsentrit läbiva telje suhtes (rad/s)

Füüsika
165 allalaadimist
thumbnail
3
doc

Silindri Inertsmoment

1.Tööülesanne Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Joonised. Antud töös mõõdeti erinevate silindrite kaldpinnalt allaveeremise aega ja arvutati nende inertsmomendid. 4. Kasutatud valemid koos füüsikaliste suuruste lahtikirjutamisega. Wk = Wk- Kineetiline energia m- silindri mass(kg) v- masskeskme kulgeva liikumise kiirus(m/s) I- inertsmoment - nurkkiirus tsentrit läbiva telje suhtes (rad/s) Lugedes hõõrdejõudude töö tühiseks, võib võtta kineetilise energia ja potensiaalse energia muutused võrdseks: Mgh= h- kaldpinna kõrgus I= mr2 l- kaldpinna pikkus g- raskuskiirendus (9.81 m/s ) t- allaveeremise aeg 2 - kaldenurk (0.085) 5. Täidetud arvutus tabelid

Füüsika praktikum
135 allalaadimist
thumbnail
3
docx

Laboriaruanne teemal - Silindri inertsimoment

SILINDRI INERTSIMOMENT PRAKTIKA ARUANNE Õppeaines: FÜÜSIKA I Ehitusinstituut Õpperühm: HE 11/21b Juhendaja: lektor Esitamiskuupäev:................ Õppejõu allkiri: .................. Tallinn 2018 Töö ülesanne: Silindri inertsmomendi määramine kaldpinna abil. Töö vahendid: Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. Töö teoreetilised alused: Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. Koostasime katseandmete tabeli Katse nr. l, m t, s m, kg d, m I, kgm² It, kgm² 1. 0,702 1,67 0.155 0,0125 0,00002027 0,00001211 1,785 1,65

Füüsika
2 allalaadimist
thumbnail
4
docx

Silindri inertsmoment

1. Tööülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2. Töövahendid. Katseseade (kaldpind), silindrite komplekt, nihik, automaatne ajamõõtja. 3. Töö teoreetilised alused. Antud töös mõõdetakse erinevate silindrite kaldpinnalt allaveeremise aeg ja arvutatakse nende inertsimomendid. 4. Kasutatud valemid. Veereva silindri kineetiline energia avaldub valemiga m - silindri mass (kg) v - masskeskme kulgeva liikumise kiirus ( m/s ) I - inertsmoment ( kgm² ) - nurkkiirus tsentrit läbiva telje suhtes ( rad/s ) I - inertsmoment ( kgm² ) m - silindri mass (kg) r - silindri raadius g - 9,81 t - aeg sin ­ 0,085 l ­ kaldpinna pikkus 5. Tabel. Katse l,m t,s m , kg d,m I , kg nr. 1. 0,940 1,87 30× 21,53× 1,9× 1.7× 2. 0,940 1,84 154× 24,96× 12× 12× 3. 0,940 1,83 89× 26,58× 7,7× 7,9× 4. 0,940 1,86 64× 32,93× 9,3× 8,7× 6

Füüsika
241 allalaadimist
thumbnail
2
doc

Silindri inertsmoment

1.Töö ülesanne. Silindri inertsmomendi määramine kaldpinna abil. 2.Töövahendid Silindrite komplekt, nihik, katseseade (kaldpind), automaatne ajamõõtja. 3.Töö teoreetilised alused Antud töös mõõdame erinevate silindrite kaldpinnalt allaveeremis aegu ja arvutame antud silindrite inertsmomendid. Veereva silindri kineetiline energia avaldub valemiga m-silindri mass (kg) v-massikeskme kulgeva liikumise kiirus (m/s) I-inertsmoment (kgm2) -nurkkiirus tsentrit läbiva telje suhtes (rad/s) Pärast teisendusi ja asendusi saame avaldise inertsmomendi leidmiseks. l-kaldteepikkus t-allaveeremis aeg r-silindri raadius g-9,81 (m/s2)

Füüsika
239 allalaadimist
thumbnail
20
docx

SILINDRI INERTSIMOMENT N7

Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Vladimir Bednõi Teostatud: 27.02.2017 Õpperühm: YAEB-21 Kaitstud: Töö nr: 7 TO: SILINDRI INERTSIMOMENT Töö eesmärk: Töövahendid: Silindri inertsimomendi määramine Katseseade (kaldpind koos elektroonilise kellaga), kaldpinna abil. silindrite komplekt, nihik, ajamõõtja, kaalud, mõõtelint. Skeem TÖÖ KÄIK 1

Füüsika praktikum
70 allalaadimist
thumbnail
34
doc

Mehhaaniline energia

Chris Naerismaa FÜÜSIKA LABORIARUANNE LABORATOORSED TÖÖD Õppeaines: FÜÜSIKA Ehitusteaduskond Õpperühm: KHE11 Juhendaja: JANA PAJU Esitamiskuupäev:……………. Üliõpilase allkiri:…………….. Õppejõu allkiri: ……………… Tallinn 2016 SISUKORD 1 LABORATOORNE TÖÖ NR. 1.......................................................................................................3 1.1 Mehhaaniline energia.................................................................................................

Füüsika praktikum
39 allalaadimist
thumbnail
52
doc

D’Alembert’i printsiip

mOA = m = 25 kg OA=l=50 cm z A 3 Variant 3. Varras OA liigub vertikaaltasapinnas ülespoole, pööreldes ümber horisontaalse telje mis läbib punkti O. Alghetkel on varda nurkkiirus 0 = 6,3 1/s. Leida liigendi O reaktsioonkomponendid sel hetkel, mil pöördenurk on parajasti võrdne väärtusega 1. A z mOA = m = 40 kg OA=l=80 cm 1/s

Dünaamika
71 allalaadimist
thumbnail
69
docx

FÜÜSIKA 1 eksami vastused

nende punktide joonkiirused erinevad. Mida suurem on punkti tiirlemisraadius, seda suurem on ka kiirus. Kuna aga kõikide punktide jaoks jääb pöördenurk alati samaks, on otstarbekas ringliikumise kirjeldamiseks defineeridagi kiirus just nurga kaudu. Erinevate punktide joonkiirused on erinevad Seepärast kasutataksegi ringliikumise iseloomustamiseks pöördenurga ja selle sooritamiseks kuluva ajavahemiku jagatist. Seda jagatist nimetatakse ringliikumise nurkkiiruseks. Nurkkiirus on võrdne ajaühikus sooritatava pöördenurgaga. Seda suurust tähistatakse kreeka tähega (omega) ja valemiks on: (2.30) Kui pöördenurka mõõdetakse radiaanides ja aega sekundites, on nurkkiiruse mõõtühikuks radiaan sekundis (1 rad/s). Nurkkiirus on seotud joonkiirusega v.

Füüsika
108 allalaadimist
thumbnail
60
doc

Kineetilise energia teoreem

Tallinna Tehnikaülikool Mehhatroonikainstituut Jüri Kirs, Kalju Kenk Kodutöö D-3 Kineetilise energia teoreem Tallinn 2009 Kodutöö D-3 Kineetilise energia teoreem Leida mehaanikalise süsteemi mingi keha kiirus ja kiirendus, või mingi ploki nurkkiirus ja nurk- kiirendus vaadeldaval ajahetkel, kasutades kineetilise energia muutumise teoreemi. Mõningates variantides tuleb leida ainult mingi keha kiiruse. See, millise suuruse tuleb variandis leida, on täpsustatud iga variandi juures. Kõik süsteemid on alghetkel paigal. Kõik vajalikud arvulised andmed on toodud vastava variandi juures. Kõik rattad veerevad ilma libisemata. Kõik kehad on absoluutselt jäigad, niidid on venimatud ning kaalutud. Niidid plokkide suhtes kunagi ei libise

Dünaamika
75 allalaadimist
thumbnail
4
docx

Skalaarid ja vektorid

1.Skalaarid ja vektorid - Suurused (ntx aeg ,mass,inertsmom),mis on määratud üheainsa arvu poolt. Seda arvu 3.Ühtlaselt muutuv ringliikumine - Nurkkiirus pole konstantne sellepärast et on olemas nurkkiirendus ,mille nim antud füüsikalise suuruse väärtuseks.Neid suurusi aga skalaarideks.Mõnede suuruste määramisel on lisaks väärtusele vaja näidata ka suunda (ntx jõud ,kiirus,moment).Selliseid füüs suurusi nim vektoriteks.Tehted: a) vektori * skalaariga av-=av-- b)v liitm v=v1+v2 c)kahe vektori skalaarkorrutis on skalaar, mis on võrdne nende

Füüsika
7 allalaadimist
thumbnail
414
pdf

TTÜ üldfüüsika konspekt

1b Masskeskme liikumise teoreem 5.1c Reaktiivliikumine (iseseisvalt) 5.2 Töö, võimsus, kasutegur 5.3 Energia, selle liigid 5.3 Energia jäävuse seadus 5.4 Konservatiivsed jõud. Potentsiaalse energia gradient 5.5 Põrge 5.5a Absoluutselt mitteelastne põrge 5.5b Absoluutselt elastne põrge 6. PÖÖRDLIIKUMISE DÜNAAMIKA 6.1 Jõumoment 6.1a Newtoni III seaduse analoog pöördliikumisel. 6.2 Impulsimoment 6.3 Impulsimomendi jäävuse seadus. 6.4 Inertsimoment 6.5 Pöördliikumise dünaamika põhivõrrand 6.6 Steineri lause 6.7 Mõningate lihtsamate kehade inertsimomentide arvutamine 6.7a Homogeense varda inertsimoment varda keskpunkti suhtes. 6.7b Ketta inertsimoment tema sümmeetriatelje suhtes 6.8 Pöörleva keha kineetiline energia. 7. VÕNKUMISED 7.1 Tasakaalu liigid 7.2 Sumbuvvõnkumine 7.2 Harmooniline võnkumine. 7.2a Matemaatiline pendel 7.2b Füüsikaline pendel 7.3 Harmoonilise võnkumise energia. 7

Füüsika
177 allalaadimist
thumbnail
10
docx

KINEMAATIKA ALUSED

skalaarseostega,sest on tegemist sirgjoonelise liikumisega.Järelikult on ajaühikus läbitud teepikkus võrdne kiirusega ühtlasel sirgliikumisel: V=S/t Ja aja t jooksul läbitud teepikkus on siis vastavalt S=Vt. SI süsteemis on kiiruse mõõtühikuks m/s. Ühtlane ringliikumine - Ühtlase ringliikumise korral on nii joonkiirus kui nurkkiirus konstantsed.ω-nurkkiirus ω=φ’ ω=φ/t f-sagedus T-periood f=l/T=ω/2Π V=Rω an=v2/R an- normaalkiirendus. Ühtlaselt muutuv ringliikumine - Nurkkiirus pole konstantne sellepärast et on olemas nurkkiirendus ,mille vektor on nurkkiiruse vektoriga samasuunaline e aksiaalvektor. a τ =εR DÜNAAMIKA ALUSED Dünaamika pôhisuurused -(Newton): 1.(inertsi seadus) masspunkt, millele ei mõju jõude, püsib paigal või liigub ühtlaselt sirgjooneliselt. 2.(määrab jõu F ja kiirenduse a vahelise sõltuvuse) masspunktile mõjuv jõud annab temale jõuga samasuunalise kiirenduse, mis on suuruselt võrdeline jõuga. A=F/m 3. (mõju ja

Füüsika
9 allalaadimist
thumbnail
23
doc

Füüsika arvestus 2011 teooria

Nihke tähis s→ , Nihke valem s→=V→t (s→-nihkevektor, V→ - kiirus, t-aeg ühik meeter m) Nihke valem s→=V0t + Lõppkiiruse valem V=V0+at (V-lõppkiirus, V0-algkiirus, a-kiirendus, t-aeg ühik m/s) 5.Taustsüsteem. Suhteline kiirus Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste kordinaatide süsteem, mis koosneb kolmest elemendist: taustkeha, koordinaadistik ja ajamõõtja. Taustkeha on keha mille suhtes teiste kehade asukohta kirjeldatakse. Keha kiirus on suhteline kiirus, sest keha kiirus sõltub selle keha taustsüsteemi valikust, mille suhtes kiirust mõõdetakse. Tavaliselt valitakse taustsüsteemiks maapind. 6.Hõõrdejõud. Ka kaldpinnal. Hõõrdejõud on liikumisele vastassuunaline jõud, mis tekib kahe pinna kokkupuutel. Kui keha on paigal on tema hõõre suurem, kui siis kui keha libiseb (paigaloleku hõõre on suurem kui

Füüsika täiendusõpe
18 allalaadimist
thumbnail
11
doc

Füüsika eksam

7. Ühtlaselt muutuv liikumine- konstantse kiirendusega liikumist nimetatakse ühtlaseks muutuvaks (kiirenevaks või aeglustuvaks) liikumiseks. a=const 8. Kiirendus- suurus mis iseloomustab keha kiiruse muutumist ajaühikus. a=v/t a<0aeglustuv, a=0 ühtlane, a>0kiirenev Raskuskiirendus: g=9,81 m/s2 Kesktõmbekiirendus (normaalkiirendus) väljendab ringliikumisel kiiruse suuna muutumist ajas. a n = v2/R = 2R -nurkkiirus Nurkkiirendus näitab, kui palju muutub keha nurkkiirus ajaühikus. = ( - 0) / t (rad/sek2) Kiiruse suuruse muutumist näitab tangentsiaalkiirendus. at = r 9. Pöörlemine on ringliikumisega sarnane liikumine, pöörlemisel on aga keskpunkt keha sees. Pöörlemise all mõistetakse jäiga, liikumise käigus mitte deformeeruva keha asendi muutus. = /t ­ raadiuse pöördenurk t ­ selle moodustamiseks kujunud ajavahemik = v/r (nurkkiirus) [rad/s] v= R (joonkiirus) [m/s] = t -nurkkiirus -pöördenurk = ot ± t2/2 10

Füüsika
393 allalaadimist
thumbnail
15
doc

Diisel

TSüKLI INDIKAATORTÖÖ ON kutsub esile ka teiste liikmete muutumise. Näiteks silindri survestme effektiivsuse ja kasuteguri tõstmisel , töötavad kõik tegelikul VÕRDELINE INDIKAATORDIAGRAMMI PINDALAGA suurendamine vähendab ühtlasi jääkgaaside tegurit ja segu tsüklil sisepõlemismootorid teoreetilise ringprotsessi termilisest 2.Diiselmootori silindri täiteprotsessi arvutuse alused; 4- ja 2- soojenemist. kasutegurist madalama kasuteguriga. taktilise mootori täiteprotsess ülelaadimiseta ja ülelaadimisega Diiselmootori koormuse suurenemisel tõuseb silindri , kolvi ja

Abimehanismid
81 allalaadimist
thumbnail
15
doc

Füüsika eksam

18. Lähtudes kiirenduse ja kiiruse definitsioonist, tuletage liikumisvõrrand. dv ds a= v= dt dt dv ds a= v= dt dt 20. On antud Galilei teisendused. Joonistage nendele teisendustele vastavad taustsüsteemid ja leidke seos kiiruste vahel. 21. Kujutage joonisel, kus on kujutatud ringjooneline trajektoor, järgmised suurused: kohavektor, joonkiiruse vektor, pöördenurk, pöördenurga vektor, nurkkiiruse vektor. d - d 22. Andke nurkkiiruse ja nurkkiirenduse definitsioonvõrrandid. Milline on kiireneva pöördliikumise liikumisvõrrand. Kasutage kiireneva kulgliikumise liikumisvõrrandit eeskujuna. kiirus kiirendus võrrand 23. Lähtudes seosest pöördliikumist iseloomustavate suuruste vahel, tuletage seos kiiruste vahel. 24

Füüsika
967 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun