Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

KG Kodutoo1 Hulktahk v6 - sarnased materjalid

geomeetria
thumbnail
1
pdf

Kujutav Geomeetria - Kodune töö 1 Variant 1

2' A B B' y1 KUJUTAV GEOMEETRIA TTÜ VARIANT nr 1 Hulktahk N° 1

Kujutav geomeetria
272 allalaadimist
thumbnail
32
pdf

Kujutava geomeetria põhivara

Eesti Põllumajandusülikool Maaehituse instituut INSENERIGRAAFIKA Ainekursus MIT-7.307 Kujutava geomeetria põhivara Koostanud Harri Lille Keeletoimetaja Karin Rummo Tartu 2003 Sissejuhatus Kujutav geomeetria on see geomeetria eriharu, milles pitakse tasandil (joonisel) ruumiliste ülesannete lahendamise meetodeid ning positsiooni-, mte- ja konstruktiivsete ülesannete lahendamise vtteid. Positsiooniülesanneteks nimetatakse geomeetriliste kujundite vastastikuse kuuluvuse ja likumise määramist. Mteülesanded on geomeetriliste kujundite kauguste ja nende telise suuruse leidmine. Konstruktiivsete ülesannete sisuks on etteantud tingimustele vastavate geomeetriliste kujundite (nende kujutised joonisel) loomine.

Kujutav geomeetria
443 allalaadimist
thumbnail
2
doc

Vektor

7. VEKTORID 7.1 Vektori mõiste Vektoriks nimetatakse suunatud sirglõiku. r Vektorit tähistatakse v või AB , kus A on vektori alguspunkt ja B on lõpp-punkt. B Y Vektori AB koordinaatideks on tema ristprojektsioonid koordinaattelgedele. Kui A ( x1 ; y1 ; z1 ) ja B ( x2 ; y2 ; z2 ) , siis uuur uuur AB = ( x2 - x1 ; y2 - y1 ; z2 - z1 ) ehk AB = ( X ; Y ; Z ) , kus X = x2 - x1 , Y = y2 - y1 , Z = z2 - z1 . r r r Telgede suunalised ühikvektorid on i = ( 1; 0; 0 ) , j = ( 0;1; 0 ) , k = ( 0; 0;1) . Nende r uuur kaudu avaldub vektor v = AB = ( X ; Y ; Z ) järgmiselt: r uuur r r r

Matemaatika
192 allalaadimist
thumbnail
1
doc

Vektorid

r r u v Nurk vektorite vahel cos = r r, uv r r r r Vektorite ristseisu tunnus u v u v = 0 r r r r Kahe vektori skalaarkorrutis u v = u v cos X1 Y1 Z1 Vektorid on komplanaarsed X 2 Y2 Z 2 = 0 X 3 Y3 Z3 Vektorid on samasihilised e. kollineaarsed r r r r X 1 Y1 Z1 u Pv u = kv = = =k . X 2 Y2 Z 2 r uuur Vektori pikkus: v = AB = X 2 + Y 2 + Z 2 . uuur Vektori koordinaat AB = ( x2 - x1 ; y2 - y1 ; z 2 - z1 ) r r u + v = ( X 1 + X 2 ; Y1 + Y2 ; Z1 + Z 2 ) , r r u - v = ( X 1 - X 2 ; Y1 - Y2 ; Z1 - Z 2 ) , r ku = ( kX 1 ; kY1 ; kZ1 ) r r u v Nurk vektorite vah

Matemaatika
105 allalaadimist
thumbnail
32
docx

IAY0150 - Digitaalsüsteemid I kodutöö

TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond I KODUTÖÖ Koostas: Nimi tudengikood Tallinn 2017 Funktsioonide leidmine f1 142438 * 5 * 5 * 5 * 5 * 5 = 445 118 750 = 1A87 F91E => Σ(1,7,8,9,10,15,16) 445 118 750 / 3 = 148 372 916 = 8D7 FDB4 => (4,13,11)- f2 142438 * 7 * 7 * 7 * 7 = 341 993 648 = 1462 68B0 => Σ(0,1,2,4,6,8,11) 341 993 648 / 3 = 113 997 882 = 6CB 783A => (3,7,10,12)- f3 142438 * 11 * 11 * 11 * 11 = 2 085 434 758 = 7C4D 3586 => Σ(3,4,5,6,7,8,12,13) 2 085 434 758 / 3 = 695 144 919 = 296F 11D7 => (1,2,9,14,16)- f4 142438 * 13 * 13 * 13 = 312 936 286 = 12A7 075E => Σ(0,1,2,5,7,10,15) 312 936 286 / 3 = 104 312 095 = 637 AD1F => (3,6,14,16)- Minimeerimine Lähte- espresso tulemus espr. v2 (-Dexact) espr. v3 (#010

Digitaalsüsteemid
80 allalaadimist
thumbnail
11
doc

Kodutöö ülesanne nr 1

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT Õppeaine TUGEVUSÕPETUS I Pinnamomendid Ülesanne 1 Kodutöö Õppejõud: Priit Põdra Üliõpilane: Matrikli number: Rühm: Kuupäev: 20.11.09 Tallinn 2009 1. Ülesande püstitus Andmed: 80 a = 9 cm a, b ­ pikkused, cm b = 8 cm Arvutada joonisel esitatud kujundi keskpeainertsimomendid. 80 Nõutav lahenduskäik: · Määrata kujundi keskpeateljed · Arvutada kujundi peainertsmomendid. 90 · Esitada sobivas mõõtkavas joonis, kus on näidatud kujundi mõõtmed, a

Tugevusõpetus i
400 allalaadimist
thumbnail
11
doc

Pinnamomendid

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT Õppeaine TUGEVUSÕPETUS I Pinnamomendid Ülesanne 1 Kodutöö Õppejõud: Priit Põdra Üliõpilane: Matrikli number: Rühm: Kuupäev: 20.11.09 Tallinn 2009 1. Ülesande püstitus Andmed: 80 a = 9 cm a, b ­ pikkused, cm b = 8 cm Arvutada joonisel esitatud kujundi keskpeainertsimomendid. 80 Nõutav lahenduskäik: · Määrata kujundi keskpeateljed · Arvutada kujundi peainertsmomendid. 90 · Esitada sobivas mõõtkavas joonis, kus on näidatud kujundi mõõtmed, a

Tugevusõpetus i
103 allalaadimist
thumbnail
17
pdf

Detaili sisepinna omadused

z Varda telg on kõverdunud Kesk-peateljed m y Joonis 5.2 Painutatud varda ristlõike geomeetria analüüs (Joon. 5.3) hõlmab kolme ülesannet. Painutatud varda ristlõike analüüs Määrata ristlõike Määrata kesk- Arvutada kesk- pinnakeskme asukoht peateljestiku asend peainertsimomendid Joonis 5.3

Materjaliõpetus
4 allalaadimist
thumbnail
17
pdf

Detaili sisepinna omadused

z Varda telg on kõverdunud Kesk-peateljed m y Joonis 5.2 Painutatud varda ristlõike geomeetria analüüs (Joon. 5.3) hõlmab kolme ülesannet. Painutatud varda ristlõike analüüs Määrata ristlõike Määrata kesk- Arvutada kesk- pinnakeskme asukoht peateljestiku asend peainertsimomendid Joonis 5.3

Materjaliõpetus
6 allalaadimist
thumbnail
1
doc

3 KT teooria spikker

Olgu hulgad V ja W vektorruumid siis 2 vektorruumi korral määratud kujutust f:VW nimetatakse lineaarkujutuseks kui ta rahuldab tingimust f(·a+·b)= ·f(a) + ·f(b) J: = =1 f(a+b)=f(a)+f(b) J2: =0 f(·a)= ·f(a) J3: = =0 f(0)=0. Vektorruumi V korral määratud lineaarkujutlust f:VV nim selle vektorruumi V lineaarteisenduseks (ehk kujutusest vektorruumist V iseendasse tagasi. 1º leidub või eksisteerib vähemalt üks punkt. 2º igale kahele kindlas järjekorras võetud punktide paarile (A;B) on vastavusse seatud parajasti üks vektor AB. 3º iga punkti A ja iga vektori a korral eksisteerib parajasti üks B nii et punktidele A ja B vastab vektor a. 4º rööpküliku aksioom, kui vektor AB on võrdne vektoriga CD siis AC on võrdne BD'ga. J1: AC=BD a+b=b+a. J2: AD=BD+AB a+(b+c)=(a+b)+c. J3: BB=0 a=a+0. J4: BA=(-a) a+(-a)=0 1* igale paarile (,a) on vastavusse seatud parajasti üks vektor a. 2* (+)a= a+ a. 3* (a)=( )a. 4* (a+b)= a+ b. 5* 1 ·a=a. J5: =a(a)= · a. (-a)=-1 ·a. J6: ·

Lineaaralgebra
299 allalaadimist
thumbnail
24
doc

ANALÜÜTILINE GEOMEETRIA RUUMIS, VEKTORID

Toome  sisse koordinaattelgede  suunalised ühikvektorid: i  1,0,0  , i  1,   j   0,1,0  , j  1,   k   0,0,1 , k  1,   0 Px  xi ,   Px Pxy  yj ,   Pxy P  zk . VEKTORITE ANALÜÜTILINE ESITUS KOORDINAATIDE KAUDU Analüütiline geomeetria on matemaatika haru, mis uurib geomeetria objekte algebra vahenditega, kasutades koordinaatide meetodit. 2 On erinevaid koordinaatsüsteeme, enamasti kasutame ristkoordinaadistikku. Antud koordinaatsüsteem määrab järjestatud arvupaaride või –kolmikute näol punkti koordinaadid (geomeetrilise asukoha) ehk punkti analüütilise esituse. Punktide koordinaatide kaudu on võimalik iseloomustada jooni ja pindu võrranditega (võrrandi- süsteemidega).

Matemaatika
38 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

ANALÜÜTILISE GEOMEETRIA VALEMID 1. Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z 1 8. Vektorite kollineaarsus a b,(

Analüütiline geomeetria
39 allalaadimist
thumbnail
10
doc

Analüütilise geomeetria valemid

ANALÜÜTILISE GEOMEETRIA VALEMID 1. Vektori koordinaadid a = Xi +Yj + Zk = ( X ; Y ; Z ) 2. Vektori koordinaatide seos lõpp- ja alguspunktide koordinaatidega AB = ( x B ­ x A ; y B ­ y A ; z B ­ z A ) 3. Vektori pikkus a = X +Y +Z 2 2 2 X Y Z cos = ; cos = ; cos = 4. Vektori suuna koosinused a a a cos 2 + cos 2 + cos 2 = 1 5. Vektorite võrdsus a = b, ( X 1 = X 2 ; Y1 = Y2 ; Z 1 = Z 2 ) 6. Vektorite summa c = a + b, ( X 3 = X 1 + X 2 ; Y3 = Y1 + Y2 ; Z 3 = Z 1 + Z 2 ) 7. Vektori korrutamine skalaariga b = na, ( X 2 = nX 1 ; Y2 = nY1 ; Z 2 = nZ1 ) X 1 Y1 Z 1 8. Vektorite kollineaarsus a b,(

Analüütiline geomeetria
140 allalaadimist
thumbnail
14
odt

DV II KT vastused

DV II teooriatöö kordamisküsimused 1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. V: Kõrgemat järku harilikud diferentsiaalvõrrandid: Üldkuju: F(x, y, y', y'', ..., y(n)) = 0, kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y(n-1)) (1) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. {y(x0) = y0 {y'(x0) = y0(1) {... (2) (n-1) (n-1)

Dif.võrrandid
73 allalaadimist
thumbnail
1
docx

Diferntsiaalvõrrandidte teooria nr. 2

1. Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. Kõrgemat jär harilikud dvid: Üldkuju: F(x, y, y', y'', ..., y (n)) = 0 (1), kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y (n-1))(2) (( F(x,y, y')=0 (1) ja y' =f(x;y) (2))) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. ***{y(x0) = y0 {y'(x0) = y0(1) {... {y(n-1)(x0) = y0(n-1) ***Lahendi olemasolu : kõrgemat järku DV lahend ­ funktsioon, mille asendamisel võrrandisse saame samasuse F(x, y(x), y'(x), y''(x), ..., y(n)) 0 x. Peano teoreem e. olemasolu teoreem: olgu funktsioon f pidev muutujate x, y, y', y'', ..., y(n-1) piirkonnas D, siis iga punkt (x0, y0, y0(n-1) ) D korral on Cauchy ülesanne {(1);(2)} vähemalt 1 lahend. Cauchy teoreem e. ühesuse tingimused

Dif.võrrandid
6 allalaadimist
thumbnail
8
docx

Dif 2. kollokvium

n Kõrgemat järku harilik DV-Üldkuju(F,x,y,y’,y’’,.., y ),kus x-sõltumatu muutuja,y=y(x) otsitav funkt ja y’.. ' n x , y , y , .. y on otsitava fun tuletised.Lahendiks y=y(x)>y=y(x,C1,C2,..,Cn). Normkuju: y =f ¿ , (n ) y (n−1) ¿(1) . Algtingimused y( x 0 ¿= y 0 ; y( x 0 ¿= y 0 ' ; y n−1 ( x 0 ) = y 0n�

Dif.võrrandid
88 allalaadimist
thumbnail
1
pdf

Kujutav Geomeetria - Kodune töö 2 Variant 5

M 25 10 25 A C KUJUTAV GEOMEETRIA TTÜ Sirge ja tasand N° 2

Kujutav geomeetria
206 allalaadimist
thumbnail
54
doc

Valemid ja mõisted

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK - alfa - nüü - beeta - ksii - gamma - omikron - delta - pii - epsilon - roo - dzeeta - sigma - eeta - tau - teeta - üpsilon - ioota - fii - kapa - hii - lambda - psii - müü - oomega

Matemaatika
1099 allalaadimist
thumbnail
108
doc

MATEMAATIKA TÄIENDÕPE: Valemid

MATEMAATIKA TÄIENDÕPE VALEMID JA MÕISTED KOOSTANUD LEA PALLAS 1 2 SAATEKS Käesolev trükis sisaldab koolimatemaatika valemeid, lauseid, reegleid ja muid seoseid, mille tundmine on vajalik kõrgema matemaatika ülesannete lahendamisel. Kogumikus on ka mõned kõrgema matemaatika õppimisel vajalikud mõisted, mida koolimatemaatika kursuses ei käsitletud.. 3 KREEKA TÄHESTIK Α α  alfa Ν ν  nüü Β β  beeta Ξ ξ  ksii Γ γ  gamma Ο ο  omikron Δ δ  delta Π π  pii Ε ε  epsilon Ρ ρ  roo Ζ ζ  dzeeta Σ σ  sigma Η η  eeta Τ τ  tau Θ θ  teeta Υ υ  üpsilon Ι ι  ioota Φ φ  fii Κ κ  kap

Algebra I
60 allalaadimist
thumbnail
26
docx

Lineaaralgebra eksami kordamisküsimused vastused

1. Ristkoordinaadid- kui ruumis on antud ristkordinaadisüsteem, siis ruumi iga punkt P on üheselt määratud ristkordinaatidega x,y,z, kus x on punkti P ristprojektsioon absissteljele, y on punkti P ristprojektsioon ordinaattelele ja z on punkti P ristprojektsioon aplikaattelele P(x,y,z) 2. Kahe punkti vaheline kaugus- Kui P1(x1,y1,z1), P2(x2,y2,z2) on ruumi punktid siis kaugus d punktide P1 ja P2 vahel on määratud valemiga √ 2 2 d= ( x 2−x 1 ) + ( y 2− y 1 ) + ( z 2 + z 1) 2 3. Vektori mõiste-Vektor on suunatud lõik millel on kindel algus- ja lõpp-punkt. 4. Nullvektor-Vektorit, mille pikkus on null, nimetatakse nullvektoriks ja tähistatakse sümboliga . Nullvektori suund on määramata. 5. Ühikvektor- Kui vektori pikkus on 1 6. vektorite liitmine-rööpkülikureegel: Vektorite a ja b summaks nimetatakse niisugust vektorit c, mis väljub nend

Matemaatiline analüüs 1
124 allalaadimist
thumbnail
13
pdf

Majandusmatemaatika IIE eksami kordamisküsimused

Majandusmatemaatika TEM0222 konspekt 1. Gaussi meetod e. elimineerimise meetod täpselt määratud süsteemi korral (võrrandite arv=tundmatute arv): maatriksis jäätakse kõik peadiagonaali elemendid 1ks, kõik ülejäänud elemendid muudetakse 0ks. Selleks valitakse igast reast ja veerust ühe korra juhtelement. Ühest reast või veerust mitu korda juhtelementi valida ei saa. Juhtelemendi rida lahutatakse või liidetakse teistele ridadele, et ülejäänud ridadest saada samasse veergu kus juhtelemend asub nullid. N: -1 2 1 1 ! 7 1 3 -1 1 ! 4 1 8 1 1 ! 13 11 11!6 Mittestabiilse süsteemi korral: Kasutusele tuleb Crameri valem. X1=x1(maatriks)/kogumaatriks Crameri valemit ei kasuta ükski arvutiprogramm, sest see võib anda väga suure vea. Gaussi meetodis saab arvutusvigade vähendamiseks valida juhtelemendiks maksimaalse absoluutväärtusega arvu (antud veerus kui ka kogu süsteemis). Gaussi meetodiga saab leida ka pöördmaatriksit. Pöördmaatr

Majandusmatemaatika
623 allalaadimist
thumbnail
1
pdf

Kujutav Geomeetria - Kodune töö 2 Variant 1

M 15 15 0 A B KUJUTAV GEOMEETRIA TTÜ Variant 1 Sirge ja tasand N° 2

Kujutav geomeetria
227 allalaadimist
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

Kordajad xi( i= 1,2,..,n) nim vektori x koordinaatidex antud baasil ja tähistataxe x=( x1,x2,....,xn). Sirge ja tasand ruumis Sirge vektorvõrrand nim vek) x= x0+ ts, kus t kuulub R => (x,y,z ) = (x0,y0,z0) +t(sx,sy,sz) =>parameetrilised võrrandid ja kanoonilised võrrandid => (x,y,z) = ( x0+tsx, y0+ tsy, z0+ tsz) => { x= x0+tsx; y= y0+tsy; z= z0+tsz: => avaldame t saame lõpux kanooniline võrrand => x-x0/sx= y- y0/sy=z-z0/ sz. Tasandi üldvõrrand Ax+by+Cz+ D= 0 Mõnede analüütilise geomeetria ülesannete lahendamine vektorkujul Tasandi suhtes sümmeetrilise punkti kohavektori leidmine.*paneme kirja tasandi üldvõrrand -> kust Ax+By+Cz => 1) vek)< n, x> ja 2) x,y,z; 1) on on tasandi normaal vektorite kordinaadid, ja 2) tasandi muutuva punkti koordinadid. Vek x=( x,y,z); ( kasulik teha joonis) => x=x0+ tn=> < n, x0+ tn> +D=0 => < n, x0> +t< n,n>+ D=0 => t = - ( < n, x0> +D)/ => ja lõpux x0' = x0 -2* ( < n, x0> +D)/ *n:.

Lineaaralgebra
863 allalaadimist
thumbnail
3
doc

Ettevõte kavandab 4 toote tootmist

Ettevõte kavandab 4 erinevat reisikoti tootmist. Kottide valmistamiseks kasutatakse 5 materjali: pärisnahk; kangas nr 1; kunstnahk; kangas nr 2. Kotid plaanitakse teha materjalidest, mis jäid üle mööblivalmistamisel. Materjali kogus vastavalt 400 m, 200 m, 100 m, 150m. Muud tingimused on esitatud tabeli kujul järgmised: Materjali kogus ühele tootele Materjali Materjal kogus meetrites Reisikott 1 Reisikott 2 Reisikott 3 Reisikott 4 0 1 4 Pärisnahk 400 2 200 4 2 4 0 Kangas nr1 Kunstnahk 100 2 1 2 4 80 0 1 0 4 Kangas nr

Majandus
107 allalaadimist
thumbnail
1
doc

Geodeesia lab.töö nr.3

Ülesanne: 1) Tähista Eesti baaskaardil geodeetiline võrk 2) Määra oma kolmele punktile geodeetilised kordinaadid 3) Tähtista Eesti baaskaardil TM-võrk 4) Määra oma kolmele punktile tasapinnalised ristkoordinaadid 5) Arvuta koordinaatide järgi joonepikus 1-2, 2-3, 3-1 6) Arvuta joone mõõtmise suhteline viga (flub<1/100) 7) Konstrueeri eelmisele laboratoorsele tööle L-EST koordinaatvõrk 8) Määra veel kolmele nurgale koordinaadid L-EST süsteemis Lahendus: 2) ja 4) Punkt B L X Y 1 59°12'42" 26°23'3" 6565,7 635,8 2 59°13'41" 26°18'48" 6567,5 631,7 3 59°15'47" 26°13'16" 6571,4 626,45 B1= 59°12'+42"=59°12'42" 3,7cm=60" 2,6cm=x" x=42" L1=26°23'+3"=26°23'3" 1,9cm=60"

Geodeesia
117 allalaadimist
thumbnail
32
doc

Eksamiküsimused ja vastused 2009

EKSAMIKÜSIMUSED 2009 1. Infoedastussüsteemi struktuurskeemid. Üksikute osade: infoallikas, kooder, edastuskanal jne ühtsed kirjeldused. Infoedastuse põhiseadused. (Slaididelt: paragrahv 1) Struktuurskeem: info allikas -> kodeerimine -> edastuskanal -> dekodeerimine -> info tarbija Info allikas ­ edastamisele kuuluvad teatud sõnumid ajalise järjestikuse jadana, siia lisandub ideaalne vaatleja, kes saab sõnumis aru; info allikad on pidevad (elektrilised signaalid) ja diskreetsed (lõplik arv teateid, diskreetsed allikad võivad olla lihtallikad ja kahendallikad); diskreetsed lihtallikad võivad olla mäluta (üksteiele järgnevad sümbolid on teineteisest statistiliselt sõltumatud) või mäluga (sümbolid on stat. sõltuvad); diskreetsel kahendallikal on kaks võimalikku väljundsümbolit ­ null ja üks; Kodeerimine ­ kooder on sobituste kogu; Edastuskanal ­ edastuskanalil on välismõjud; edastuskanal on tehniliste vahendite kogum, toimib teatud reaalses füüsikalises

Kodeerimine ja krüpteerimine
72 allalaadimist
thumbnail
14
doc

LAEVA UJUVUS

2. Laeva ujuvus 2. LAEVA UJUVUS Archimedese seadus laevale Igale vedelikus või gaasis asetsevale laevale mõjub üleslükkejõud, mis on võrdne selle laeva poolt väljatõrjutud vedeliku või gaasi kaaluga. See on laeva ujuvuse hüdro- ja aerostaatika seadus. 2.1. Laeva mõjujõud z XG z W G G G B KG KB KB KG XB K x K y Joon. 3. Ujuva laeva mõjujõud Staatilises olukorras, s.t. häirimata veepinnal liikumatult püsivale laevale mõjuvad laeva raskusjõud ja ujuvusjõud. Laeva raskusjõud või kaal W

Laevandus
69 allalaadimist
thumbnail
3
docx

KESKPEAINERTSMOMENDID

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT KODUTÖÖ AINES "MHE0061 MASINATEHNIKA" TÖÖ NIMETUS: KESKPEAINERTSMOMENDID ÜLESANNE NR: 1 ÜLIÕPILANE: KOOD: RÜHM: AAAB30 Töö esitatud: 18.12.2016 Arvestatud: Parandada: TALLINN 2016 B 0 1 2 3 4 5 6 7 8 9 a 8 4 6 3 9 10 7 5 11 12 1 b 12 7 10 8 11 14 9 3 15 16 Kuju number: 7 a: 5 cm b: 13 cm Sx S + S +S y A + y A + y A S x = y cA=¿ y c = =¿ X 1 X 2 X 3 =¿ 1 1 2 2 3 3 A A1 + A2 + A 3 A 1 + A 2 + A3 a a y 1= =2,5 cm y 2=a+a=10 cm y 3=a+ a+ =12,5

Masinatehnika
9 allalaadimist
thumbnail
16
docx

Matemaatiline analüüs referaat - Määratud integraali ligikaudne arvutamine Simpsoni valemiga. Veahinnangud. Näited

TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond Referaat Määratud integraali ligikaudne arvutamine Simpsoni valemiga. Veahinnangud. Näited 2015 Määratud integraali arvutamine Simpsoni valemiga Simpsoni valemiga määratud integraali leidmiseks teosteme lõigu [a, b] alajaotuse 2n võrdseks osaks: x 0  a  x1  x 2  ...  x 2 n 1  b  x 2 n Joonis 1 ja märgime jaotuspunktidele x1, x2, ...., x2n-1 vastavad punktid funktsiooni f(x) graafikul AB vastavalt tähtedega P1, P2, ... , P2n-1, kusjuures P0 = A, Pn = B (joonis 1). Olgu i mingi paaritu arv (0

Matemaatiline analüüs 1
22 allalaadimist
thumbnail
13
doc

Kõrgema matemaatika eksam

1. Maatriksi mõiste, järk, tähistused, liigid. Maatriks on ristkülikukujuline arvude tabel, milles on m-rida ja n-veergu ja mis on ümbritsetud ümarsulgudega. Maatriksit tähistatakse suure tähega: Maatriksi järk tähistab maatriksi mõõtmeid: A on m*n järku maatriks. Liigid: · Ruutmaatriks (m=n) · Diagonaalmaatriks ­ ruutmaatriks, mille peadiagonaalis arvud, muud elemendid 0-d. · Ühikmaatriks ­ diagonaalmaatriksi erijuht. Peadiagonaali elemendid 1-d. Täh E. · Nullmaatriks ­ kõik nullid. Täh . 2. Tehted maatriksitega (korrutamine arvuga, liitmine, lahutamine, korrutamine). · Korrutamine arvuga: korrutades maatriksit reaalarvuga, muutuvad kõik elemendid, selle arvu korra suuremaks. · Maatriksite liitmine: mõõtmed peavad olema samad. Ühemaatriksi elemendid liidetakse teise maatriksi vastavate elementidega: A = (a ij) ja B = (bij) A+B =(cij) kus cij = aij + bij. ·

Kõrgem matemaatika
356 allalaadimist
thumbnail
11
pdf

Elektriahelad kodutöö 2 - Vahelduvvooluahel

Ülesande algandmed: E₁ = 100 V f = 50 Hz E₂ = 100 V L₁ = 20 mH ⍺ = 30˚ L₂ = 30 mH R₁ = 4 Ω L₃ = 10 mH R₂ = 5 Ω C₁ = 200 µF R₃ = 2 Ω C₂ = 250 µF Joonis 1. Ülesande algskeem. 1. Võrrandisüsteem Kirchoffi seaduste põhjal Joonis 2. Algskeem, vattmeeter eemaldatud. Joonis 3. Lihtustatud skeem Kirchoffi seaduste põhjal saab koostada võrrandsüsteemi. Võrrandite arvu määramine: NKI = 2 - 1 = 1 NKII = 3 - 1 = 2 Differenttsiaalkujul: i₁ + i₂ - i₃ = 0 1 di di C′1 ∫ i1R′1 + i1dt + L1 1 + L 3 3 + i3 R3 = E1 dt dt 1 di di C2 ∫ i2 R2 + i2 dt + L 2 2 + L 3 3 + i3 R3 = E2 dt dt Sümbolmeetodil komplekssuuruste kujul: i₁ + i₂ - i₃ = 0 i1(r′1 − jxC′1 + jxL1) + i3( jxL 3 + r3) = e1 i2(r2

Elektriahelad I
58 allalaadimist
thumbnail
25
doc

Algebra ja geomeetria kordamine

MAATRIKS: Maatriks ­ nimetatakse ümarsulgudesse paigutatud reaalarvude tabelit, milles on eristatavad read ja veerud. Maatriksi mõõtmed ­ Maatriksit, milles on m rida ja n veergu nimetatakse täpsemalt (m,n)- maatriksiks ning arvupaari (m,n) selle maatriksi mõõtmeteks. Maatriksi järk ­ Omadus, mis esineb ainult ruutmaatriksil: Näiteks Mat(n,n) nim. n-järku maatriksiks. Maatriksi elemendid ­nimetatakse reaalarve, milledest maatriks koosneb. Maatriksi ja maatriksite hulga tähistused ­ Maatrikseid tähistatakse tavaliselt suurte ladina tähtedega: A, B,....X, Y, Z. Maatriksite elemente tähistatakse vastavate väikeste ladina tähtedega, mis võivad olla varustatud ka indeksitega: a, b, c, jne. Kõigi (kõikvõimalike mõõtmetega) maatriksite hulka tähistame edaspidi Mat abil ning kõigi (m, n)-maatriksite hulka tähistame edaspidi Mat(m, n) abil. Ruutmaatriks ­maatriks, mille ridade arv on võrdne veergude arvuga, s.t. m=n Ristkülikmaatriks ­maatriks, mille ridade arv

Algebra ja geomeetria
62 allalaadimist
thumbnail
82
pdf

Funktsionaalsed signaaliprotsessorid

FUNKTSIONAALSED SIGNAALIPROTSESSORID Loengumaterjal 1 Toomas Ruuben Toomas Ruuben. TTÜ Raadio ja sidetehnika 1 instituut. Teemad Ülevaade DSP-dest, signaalitöötlusest, FPGA-dest Digitaalarvuti töö üldpõhimõtted Tehted kahendsüsteemis (+,-,*,/ jne) Erinevaid arvsüsteemid Peamisi loogikafunktsioonid (AND, OR jne) Loogikavõrrandid Trigerid, registrid, dekoodrid, multipleksorid, demultipleksorid, aritmeetika loogika seadmed jne) Toomas Ruuben. TTÜ Raadio ja sidetehnika 2 instituut. 1 Teemad Programmeeritavad loogikaseadmed CPLD, PLD FPGA FPGA (Field programmable gate array)arhidektuurid, tööpõhimõtted Arenduskeskkonnad (Verilog, VHDL) DSP versus FPGA Signaali

Funktsionaalsed...
47 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun