Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto

Aerodünaamika teise KT materjal (2)

4 HEA
Punktid
Aerodünaamika teise KT materjal #1 Aerodünaamika teise KT materjal #2 Aerodünaamika teise KT materjal #3 Aerodünaamika teise KT materjal #4
Punktid 5 punkti Autor soovib selle materjali allalaadimise eest saada 5 punkti.
Leheküljed ~ 4 lehte Lehekülgede arv dokumendis
Aeg2011-01-16 Kuupäev, millal dokument üles laeti
Allalaadimisi 113 laadimist Kokku alla laetud
Kommentaarid 2 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Tanel84 Õppematerjali autor

Märksõnad

Sarnased õppematerjalid

thumbnail
5
docx

Aerodünaamika esimese KT materjal

Tegijapoiss Aerodünaamika 1. KT konspekt ( Oma konspekti ja "Õpime lendame" põhjal) Dünaamiline rõhk on rõhk , mis tekib voolu liikumiskiiruse pidurdamise tulemusena . Õhuliikumine on gaaside ja kehade vastastikmõju uurimine. Staatiline rõhk on rõhk mis mõjub voolus ilma liikumis kiirust pidurdamata ühtlaselt igas suunas. Õhuhulga jäävuse seadus ­ ühes ajaühikus gaasijuga läbiva gaasi hulk on konstante sõltumata joa läbimõõdust. Lennuki õhus püsimiseks on vajalik õhu liikumine . Bernoulli seadus - Kui õhk liigub mõne pinna kõrval siis mõjub sellele pinnale väiksem rõhk kui seisva õhu korral.

Aerodünaamika
thumbnail
25
doc

Termodünaamika õppematerjal

Alljärgnevalt esitatav käib val-davalt ideaalse gaasi kohta. Kõige üldisemalt määratakse gaasi olek kolme olekupara-meetriga: absoluutne temperatuur T, rõhk p ja ruumala V (mõnikord kasutatakse eriruumala Vo - massiühiku ruumala). Ideaalse gaasi seadused Neid seadusi on kolm ja kõik nad on saadud empiiriliselt. (1) Boyle - Mariotte'i seadus. Jääval temperatuuril on antud gaasimassi rõhu ja ruum- ala korrutis konstantne: pV = const. (1) (tingimusel, et T = const.). (2) Charles'i seadus. Antud gaasikoguse temperatuuri tõstmisel ühe kraadi (1 oC) võrra konstantsel ruumalal kasvab tema rõhk po (0oC juures) = 1/273 võrra: p = po ( 1 + t ). (2) (3) Gay-Lussac'i seadus. Konstantsel rõhul temperatuuri tõstmisel ühe kraadi võrra paisuvad kõik gaasid = 1/273 võrra sellest ruumalast Vo , mis oli gaasil 0 0C juures.

thumbnail
11
docx

Aerodünaamika konspekt

seotud üks ja ainult üks vektor või skaalar. Voolujooneks nimetatakse mõttelist joont mille puutujateks igas joone punktis on kiirusvektorid, mõnikord ka keskmise kiiruse vektorid. Seega kannab voolujoon informatsiooni voolu suuna, mitte aga selle kiiruse kohta. Samakiirusjoonteks ehk isotahhideks nimetatakse jooni, mis ühendavad punkte, kus voolukiirus omab sama väärtust. isotahhid ei anna informatsiooni kiiruse suuna kohta Gaasi voolamise kirjeldamiseks on vaja kaks eeltingimust: 1. Gaas on mitte kokkusurtav 2. Voolamisel puudub takistusjõud - p - - l nimetatakse üldjuhul rõhu gradiendiks. - grad p = p*a ­ EULERI VÕRRAND Pidevuse võrrand: BERNOULLI VÕRRAND ­ - dünaamiline rõhk Ja bernoulli võrrand - Kui voolamine toimub nii, et voolava keskkonna kihid omavahel ei segune, nimetatakse taolist voolamist laminaarseks.

Masinatehnika
thumbnail
9
docx

Aerodünaamika konspekt

Tiiva plaan ­ tiiva kuju ehk vaadet ristisuunas(ülaltalla/ülevaltalla) 1. Ristkülikukujuline ­ plaan on ristkülik, kõige lihtsam ehituslikult. Puuduseks on suur takistus suurematel kiirustel ja ka suur induktiivtakistus. Alguspäeva lennukitel ja ka mõnel üksikul üle helikiiruslennukil. 2. Trapetsiline ­ tiiva plaan on trapets. Kõige levinum tiivaplaan tüüp kaasajal. Väiksem takistus suuremal kiirusel ja ühtlasem tõstejõujaguenemine pikki tiiba ja väike induktiivtakistus. See on keeruline aga see tasub ennast ära. Esineb ka komibinatsioone kus keskosa on trapertsiline ja tiivad on trapetsilased, kuid erineva kujuga. 3. Elliptiline- tiiva plaaniks on ellips. Alahelikiirusel head omadused. Sellel tiival on kõige ühtlasem tõstejõu jaotus tiival. See on keerukas, mistõttu seda enam ei kasutata väga palju aga, seda kasutati jõudsalt II maailmasõja ajal. 4

Materjaliõpetus
thumbnail
1
doc

Aerodünaamika IV töö

Aerodünaamika IV töö 1. Sirgelabalise propelleri korral a) iseloomustab sama seadenurk kõiki propelleri elemente, samm iseloomustab kogu propellerit b) erinevate elementide jaoks on seadenurgad erinevad, samm iseloomustab kogu propellerit c) erinevatel elementidel on erinevad seadenurgad ja ka erinevad sammud d) seadenurk on sama kõigi propelleri elementide jaoks, iga elemendi jaoks on samm erinev e) seadenurk on sama kõigi elementide jaoks ja ta samm on sama kõigi elementide jaox 2. Propelleri kasulikuks võimsuseks nimetatakse a) seda osa võimsusest mis läheb tõmbe tekitamiseks b) propelleri pöörlemiseks tarvisminevat võimsust c) propelleri poolt ajaühikus lennuki liigutamiseks tehtavat tööd d) propelleri poolt tehtavat tööd tõmbe tekitamiseks e) propelleri takistusmomendi ja pöörlemiskiiruse korrutist 3

Füüsika loodus- ja...
thumbnail
1
doc

Aerodünaamika

1.C Propelleri libisemine on positiivne kui propeller avaldab veojõudu ja negatiivne kui propeller pidurdab. 2.D Sirgelabalise propelleri korral seadenurk on sama kõigi propelleri elementide jaoks, iga elemendi jaoks on samm erinev 3.C Propelleri sammu muutmisex nimetataxe propelleri laba seadenurga muutmist. 4.A Lennuki liikumisel sirgelabalise propelleriga on propelleri osapoolsete elementide kohtumisnurgad suuremad kui tüvepoolsetel elementidel 5.C Propelleri kasulikuks võimsuseks nimetatakse propelleri poolt ajayhikus lennuki liigutamiseks tehtavat tööd. 6.A Püsisammuga prpelleri tõmme sõltub lennukiirusest järgnevalt paigalseisus tõmme maksimaalne, kiiruse kasvades tõmbe lineaarne vähenemine, tõmme 0 kiirusel kus propelleri geomeetriline samm on võrdne tegeliku sammuga. 7.A Püsisammuga propelleri kasutegur sõltub kiirusest järgnevalt kasutegur maksimaalne paigalseisus, kiiruse kasvades kasuteguri vähenemine, kasutegur 0 kiirusel kus tõmme võrdub nulliga 8.A P�

Füüsika loodus- ja...
thumbnail
4
docx

Aerodünaamika

õhurõhul, mis teadupärast mõjub ühtlaselt igas suunas. Seega on õhurõhu jaotuse näol tegemist skaalarväljaga, mis loomulikult vektorväli ei ole. Õige vastus on: õhurõhu jaotus atmosfääris. Mis suunas mõjub tõstejõud vertikaalselt laskuvale langevarjule? Vastavalt tõstejõu definitsioonile on tõstejõud selline aerodünaamilise kogujõu komponent, mis mõjub risti õhuvooluga. Kuna langevarjur laskub vertikaalselt, langevari on aga sümmeetriline , siis aerodünaamiline kogujõud omab vaid takistuse suunda (vastupinine õhuvoolule) ja õhuvooluga ristisuunaline komponent puudub, seega tõstejõudu pole. Õige vastus on: tõstejõudu pole. Reynoldsi arvu ühikuks on Kuna Reynoldsi arv on suhe, kus jagatud on kineetiline energia ja kineetilise energia muut, siis on selge, et sama ühikuga suuruste jagatis on dimensioonita ehk ilma ühikuta suurus. Õige vastus on: pole ühikut. II osa Millisel

Füüsika
thumbnail
1072
pdf

Logistika õpik

Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Ain Tulvi LOGISTIKA Õpik kutsekoolidele Tallinn 2013 Eesti Rahvusraamatukogu digitaalarhiiv DIGAR Käesolev õppematerjal on valminud „Riikliku struktuurivahendite kasutamise strateegia 2007- 2013” ja sellest tuleneva rakenduskava „Inimressursi arendamine” alusel prioriteetse suuna „Elukestev õpe” meetme „Kutseõppe sisuline kaasajastamine ning kvaliteedi kindlustamine” programmi „Kutsehariduse sisuline arendamine 2008-2013” raames

Logistika alused



Lisainfo

(peamiselt eksamiks)

Kommentaarid (2)

karina19 profiilipilt
karina19: Väga hea materjal
14:23 29-03-2014
JxxK profiilipilt
Jaak Aaso: Sobib
11:31 20-11-2015





Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun