Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Põhivara füüsikas - sarnased materjalid

mise, elekt, ioon, sioon, liikumis, elektro, duse, pöör, füüsi, soojus, kese, elektron, gaas, kuli, pöörd, tempera, rist, vektor, miste, aatom, mole, kvant, suse, dust, vastastik, molekul, võnku, võima, induktsioon, gravi, universum, gravitatsioon, fermi, tatud, reaal, spinn, entroopia, boson, inerts, kvantarv, mikro, lainepikkus, kvark
thumbnail
31
rtf

Põhivara aines Füüsikaline maailmapilt

Massi SI-ühikuks on kilogramm (1 kg). Ruumalaühiku kohta tulevat massi nimetatakse tiheduseks = m/V. Mass 9 iseloomustab keha, tihedus aga ainet, millest see keha koosneb. Newtoni II seadus väidab, et keha kiirendus on võrdeline jõuga, a = F / m (või F = m a). Jõud on see põhjus, mis muudab keha liikumisolekut. Ehk kasutades impulsi mõistet: Keha impulsi muutu- mise kiirus on võrdne kehale mõjuva jõuga. F = dp / dt (N II s. üldkuju). Jõud põhjustab impulsi muutumise. Jõu SI-ühikuks on üks njuuton (1 N). Üks njuuton on jõud, mis annab kehale massiga 1 kg kiirenduse 1 m/s2. 1 N = 1 kg . 1 m/s2. Newtoni III seadus väidab, et kaks keha mõjutavad alati teineteist suuruselt võrdsete kuid vastandlikult suunatud jõududega, F12 = - F21 . Mõju ja vastumõju on võrdsed.

Füüsika
35 allalaadimist
thumbnail
28
doc

põhivara aines füüsikaline maailmapilt

Põhivara aines Füüsikaline maailmapilt Maailm on kõik see, mis on olemas ning ümbritseb konkreetset inimest (indiviidi). Indiviidi põhiproblee- miks on tunnetada oma suhet maailmaga ­ omada adekvaatset infot maailma kohta ehk maailma- pilti. Selle info mastaabihorisondi rõhutamisel kasutatakse maailmaga samatähenduslikku mõistet universum. Maailma käsitleva info mitmekesisuse rõhutamisel kasutatakse maailma kohta mõistet loodus. Religioosses käsitluses kasutatakse samatähenduslikku mõistet ­ (Jumala poolt) loodu. Inimene koosneb ümbritseva reaalsuse (mateeria) objektidest (aine ja välja osakestest) ning infost nende objektide paigutuse ning vastastikmõju viiside kohta. Selle info põhiliike nimetatakse religioossetes tekstides hingeks ja vaimuks. Hing on inimeses sisalduva info see osa, mis on omane kõigile indiviididele (laiemas tähenduses ­ kõigile elusolenditele). Hinge olem

Füüsika
212 allalaadimist
thumbnail
5
docx

Füüsika Mõisted

Nendeks on suurused, mida on võimalik hõlpsasti mõõta, näiteks ainekoguse mass, rõhk, ruumala, temperatuur. Termodünaamika I printsiip väidab, et süsteemile juurdeantav soojushulk kulub süsteemi siseenergia suurendamiseks ja mehaaniliseks tööks, mida tehakse välisjõudude vastu: Q = U + A, kus Q on juurdeantav soojushulk, U siseenergia suurenemine ja A välisjõudude vastu tehtud töö (paisumise töö). Kuna soojus ja töö on ekvivalentsed energiaga, võib ka öelda, et energia ei teki ega kao, vaid läheb ühest liigist teise. Sellist sõnastust tuntakse energia jäävuse seadusena. Termodünaamika II printsiip väidab, et soojusülekanne ei saa iseenesest toimuda külmemalt kehalt soojemale. Kasutatakse ka teistsuguseid sõnastusi, näiteks: suletud süsteem püüab üle minna korrastatud olekust korrastamata olekusse. Täielikult korrastamata olekus on süsteemi osad termodünaamilises tasakaalus.

Füüsika
72 allalaadimist
thumbnail
24
docx

MEHAANIKA JA MOLEKULAARFÜÜSIKA

Vedeliku pindpinevustegur näitab, kui suur pindpinevusjõud mõjub selles vedelikus pinna katkirebimisjoone ühikulise pikkuse kohta = Fp / l . Pindpinevusteguri ühikuks on njuuton meetri kohta (1 N/m). Pindpinevustegurit võib esitada ka vedeliku pinnaenergia ning selle pinna pindala suhtena: = Up / S. Soojusjuhtivuse põhiseadus: soojusvoo tihedus on võrdeline temperatuuri gradiendiga, jQ = - K (dT/dx). Mida rohkem temperatuur mingis suunas muutub (mida suurem on dT/dx), seda rohkem soojus selles suunas levib. Soojusvoo tihedus jQ = Q / (t S) näitab, kui suur soojushulk Q läbib ühikulise ajavahemiku jooksul soojuse levikusuunaga x ristuvat ühikulist pinda. Temperatuuri gradient dT/dx näitab, kui palju muutub temperatuur liikumisel vaadeldavas suunas x ühikulise pikkuse võrra. Võrdetegur K iseloomustab soojuse levikut vaadeldavas aines ja teda nimetatakse aine soojusjuhtivusteguriks. Soojusjuhtivusteguri SI- ühikuks on üks vatt meetri ja kelvini kohta 1 W/(m K).

Aineehitus
6 allalaadimist
thumbnail
13
doc

Füüsika valemid mõisted

1 K), kusjuures 1 °C = 1 K. Skaalade erinevus seisneb nullpunkti valikus: 0 °C = 273 K. Termodünaamika esimene printsiip väidab, et süsteemile juurdeantav soojushulk kulub süsteemi siseenergia suurendamiseks ja mehaaniliseks tööks, mida tehakse 10 välisjõudude vastu: Q = U + A, kus Q on juurdeantav soojushulk, U siseenergia suurenemine ja A välisjõudude vastu tehtud töö (paisumise töö). Kuna soojus ja töö on ekvivalentsed energiaga, võib ka öelda, et energia ei teki ega kao, vaid läheb ühest liigist teise. Sellist sõnastust tuntakse energia jäävuse seadusena. Termodünaamika on soojusfüüsika osa, mis kasutab nähtuste kirjeldamiseks makroparameetreid, milleks on füüsikalised suurused, mida kasutatakse ainekoguse kui terviku soojusliku oleku kirjeldamisel. Nendeks on suurused, mida on võimalik hõlpsasti mõõta, näiteks ainekoguse mass, rõhk, ruumala, temperatuur.

Füüsika
50 allalaadimist
thumbnail
12
doc

MEHAANIKA JA MOLEKULAARFÜÜSIKA, PÕHIMÕISTED NING SEADUSED

Vedeliku pindpinevustegur näitab, kui suur pindpinevusjõud mõjub selles vedelikus pinna katkirebimisjoone ühikulise pikkuse kohta = Fp / l . Pindpinevusteguri ühikuks on njuuton meetri kohta (1 N/m). Pindpinevustegurit võib esitada ka vedeliku pinnaenergia ning selle pinna pindala suhtena: = Up / S. Soojusjuhtivuse põhiseadus: soojusvoo tihedus on võrdeline temperatuuri gradiendiga, jQ = - K (dT/dx). Mida rohkem temperatuur mingis suunas muutub (mida suurem on dT/dx), seda rohkem soojus selles suunas levib. Soojusvoo tihedus jQ = Q / ( t S) näitab, kui suur soojushulk Q läbib ühikulise ajavahemiku jooksul soojuse levikusuunaga x ristuvat ühikulist pinda. Temperatuuri gradient dT/dx näitab, kui palju muutub temperatuur liikumisel vaadeldavas suunas x ühikulise pikkuse võrra. Võrdetegur K iseloomustab soojuse levikut vaadeldavas aines ja teda nimetatakse aine soojusjuhtivusteguriks. Soojusjuhtivusteguri SI-ühikuks on üks vatt meetri ja kelvini kohta 1 W/(m K).

Füüsika
152 allalaadimist
thumbnail
66
docx

Füüsika I konspekt

valemist: η=(Q1-Q2)/Q1*100% Soojusmasina tsükkel: Töötavale kehale, milleks on tavaliselt gaas, antakse soojendist soojushulk Q1. Gaas teeb paisudes mehaanilist tööd A. Pideva töö tegemiseks peab töötava keha olek taastuma teatava aja – tsükli – jooksul, milleks tuleb soojendist saadud soojushulgast anda osa Q2 jahutile. Jahutiks on üldjuhul ümbritsev keskkond. Tsükli lõpus on gaas jälle algolekus ja siseenergia muut 0. SOOJUSPUMBA EFEKTIIVSUS: Tavaliselt levib soojus kõrgema temperatuuriga kehadelt madalama temperatuuriga kehadele. Soojuspumbad on aga võimelised soojuse liikumise suunda muutma vastupidiseks, kasutades selleks suhteliselt väikest energiakogust. Soojuspumpi on võimalik kasutada ka jahutamiseks. Sel juhul kantakse soojus jahutatavast keskkonnast kõrgema temperatuuriga keskkonnale 11. ENTROOPIA JA TÕENÄOSUS. NERNSTI TEOREEM Entroopia: mida korrastatum süsteem on, seda väiksem on entroopia ja

Füüsika
72 allalaadimist
thumbnail
11
doc

Füüsika konspekt

Bohri postulaadid: 1) aatom omab kindla energiaga statsionaarseid ehk ajas muutumatuid olekuid. 2) aatom kiirgab või neelab valguskvandi vaid siirdel (üleminekul) ühest statsionaarsest olekust teise. Peakvantarvuks nimetatakse kvantarvu n, mis Bohri mudeli korral määrab aatomi energia, elektronorbiidi raadiuse ja elektroni kiiruse. Energianivoo on peakvantarvule vastav energia. Aatom asub põhiolekus, kus energia on vähim. Valguse kiirgumine ­ elektron läheb üle madalamale energiatasemele (tuumale lähemale), siis kiirgub footon. Valguse neeldumine ­ elektron läheb üle kõrgemale energiatasemele (tuumast kaugemale), siis neeldub footon. Energiatasemed tahkistes ­ Tahkistes muunduvad valentselektronide energiatasemed naaberaatomite elektronidega toimuva vastastikmõju käigus mitme elektronvoldi laiusteks energiatsoonideks. Lubatud energiatsoonid on üksteisest lahutatud keelutsoonidega.

Füüsika
200 allalaadimist
thumbnail
21
doc

Kordmisküsimused eksamiks

Soojushulk on siseenergia hulk, mille keha saab või annab ära soojusülekandel, kuid temperatuur on lihtsalt füüsikaline suurus iseloomustamaks süsteemi soojusliku tasakaalu olekut. 166. Mis on I liiki perpetuum mobile? I liiki perpetuum mobile ehk igiliikur on see (objekt, organism, ..), mis mitte millegi arvelt teeb tööd 167. Mis on II liiki perpetuum mobile? mobile on masin, mille ainsaks tulemuseks on soojuse muutmine tööks (kogu soojus läheb tööks). 168. Formuleerige termodünaamika I seadus. Termodünaamika esimene ehk energia jäävuse seadus koosneb neljast osast: isoleeritud systeemi energia on muutumatu suurus · looduses ei teki ega kao energiat. · ta v6ib ainult muunduda yhest liigist teise · esimest liiki perpetuum mobile on v6imatu · systeemi siseenergia muut v6rdub vahetatava soojushulga ja systeemi töö summaga

Füüsika
167 allalaadimist
thumbnail
29
doc

Füüsika kokkuvõttev konspekt

1.1.1.Inertsiaalne taustsüsteem Dünaamika võrrandid ei muutu üleminekul Ist inertsiaalsest taustsüsteemist teisesse,see Taustsüsteem, mis seisab paigal või liigub tähendab,et nad on invariantsed sirgjooneliselt a=0. Taustsüsteemiks koordinaatide teisenduste suhtes. nimetatakse taustkehaga seotud 1.1.2.Ühtlane sirgliikumine koordinaatsüsteemi ja ajaloendamismeetodit ehk kella. Seega taustsüsteem koosneb 1) nim liikumist, kus 1.Ühtlaseks sirgliikumiseks taustkehast, 2) selle koordinaadistikust, 3) keha sooritab mistahes võrdsetes aja mõõtmisviisist. ajavahemikes võrdsed nihked. Sellise liikumise puhul on hetkkiirus võrdne *Trajektoor on keha kui punktmassi liikumistee.

Füüsika
405 allalaadimist
thumbnail
11
doc

Füüsika eksam

suhteline niiskuse all mõistetakse vastaval temperatuuril õhus oleva veeauru tiheduse suhet küllastunud veeauru tihedusega samal temperatuuril. R=p/px px ­ antud temperatuurile vastava küllastunud auru mass 47. Termodünaamika I printsiip Süsteemile juurdeantav soojushulk kulub süsteemi siseenergia suurendamiseks ja mehaaniliseks tööks, mida tehakse välisjõudude vastu: Q=U+A; Q - gaasile juurdeantav soojushulk, U - gaasi sisenergia muut ja A ­gaasi kokkusurumisel tehtud töö.Kuna soojus ja töö on ekvivalentsed energiaga, võib ka öelda, et energia ei teki ega kao, vaid läheb ühest liigist teise. 48. Soojushulk( ) ja erisoojuse liigid- iseloomustab soojusülekandel üleantavat energiahulka Q = CdT=cmdT. , kus c on aine erisoojus, m keha mass ja Dt keha temperatuuri muut. c-erisoojus, -sulamis või tahkestumissoojus r-aurustumis- või kondenseerimissoojus 49. Gaasi töö ruumala muutumisel A=Fx Rõhk kolvile p=F/s F=pS Ruumala suurenemine V=xs x=V/S A=Fx=pS(V/S)=pV 1

Füüsika
393 allalaadimist
thumbnail
12
doc

Kogu 2008. aasta 12. klassi eksamimaterjal

muunduks siseenergiaks), on mehaaniline energia jääv. Näiteks keha vabal langemisel Maa raskusjõu väljas muundub potentsiaalne energia kineetiliseks, kuid nende summa jääb muutumatuks: mv²/2+mgh=Const Mehaanilise energia jäävuse seadus- Energia jäävuse seadus on saadud katsete üldistusena. Tehes avatud süsteemi kallal tööd on energia muutus järgmine: A=W(meh)+W(soojus) +W(sise). Töö muutub süsteemi mehhaaniliseks, soojus ja siseenergiaks. Kinnise süsteemi koguenergia ei saa muutuda. Energia ei saa tekkida ega kaduda. Ta võib muunduda ühest liigist teise või kanduda ühelt kehalt teisele. F- jõud, m ­ keha mass, a ­ kiirendus, k ­ jäikustegur, l ­ nihke suurus deformatsioonil, µ - hõõrdetegur, F(N) ­ rõhumisjõud, G- gravitatsioonikonstant, r- kaugus graviteeruvate kehade vahel, p- impulss, v- keha kiirus, g-vabalangemise kiirendus, h ­ kõrgus, A ­ töö

Füüsika
460 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

100% Q1 = 600 J Q -? Akas - ? 3. kursus ELEKTROMAGNETISM Elektriväli Elektrilaeng on mitme tähendusega mõiste. Keha elektrilaeng q näitab keha osalemise intensiivsust elektromagnetilises vastastikmõjus. Huvitav on massi ja laengu vahekord: mass võib ilma laenguta olemas olla, aga laeng ilma massita ehk laengukandjata mitte kunagi. Elektron kannab negatiivset laengut, prooton positiivset. Keha kui terviku laeng sõltubki nende arvulisest suhtest, sest qe = q p . [ q ]SI =1C (kulon). Elektroni ja prootoni laengut qe = q p = e =1,6 10 -19 C nimetatakse elementaarlaenguks. Keha elektrilaeng saab olla ainult täisarvkordne elementaarlaengust. Elektrilaengu jäävuse seadus: elektriliselt isoleeritud süsteemi kogulaeng on jääv suurus.

Füüsika
1329 allalaadimist
thumbnail
18
doc

Füüsika riigieksami konspekt

100% Q1 = 600 J Q -? Akas - ? 3. kursus ELEKTROMAGNETISM Elektriväli Elektrilaeng on mitme tähendusega mõiste. Keha elektrilaeng q näitab keha osalemise intensiivsust elektromagnetilises vastastikmõjus. Huvitav on massi ja laengu vahekord: mass võib ilma laenguta olemas olla, aga laeng ilma massita ehk laengukandjata mitte kunagi. Elektron kannab negatiivset laengut, prooton positiivset. Keha kui terviku laeng sõltubki nende arvulisest suhtest, sest qe = q p . [ q ]SI =1C (kulon). Elektroni ja prootoni laengut qe = q p = e =1,6 10 -19 C nimetatakse elementaarlaenguks. Keha elektrilaeng saab olla ainult täisarvkordne elementaarlaengust. Elektrilaengu jäävuse seadus: elektriliselt isoleeritud süsteemi kogulaeng on jääv suurus.

Füüsika
45 allalaadimist
thumbnail
46
docx

Füüsikalised suurused ja nende etalonid

2. Entroopia (+ valem) Entroopia (S) on korrapäratuse mõõt ja veel üks olekuparameeter. Mida suurem entroopia, seda kaootilisem on osakeste liikumine. S=klnP 3. Soojusmasin ja selle kasutegur Soojusmasin ka termodünaamiline mootor on masin, mis muudab soojusenergia mehaaniliseks tööks. Soojusmasina kasutegur näitab, kui palju kogu tööst muudab soojusmasin kasulikuks tööks. Selle käigus võrreldakse kütuse põlemise käigus vabanenud soojust ja kasulikku tööd. “Kahjulik” soojus on see, mis tuleb anda masinale mehaanilise töö saamiseks. 4. Ringprotsess (+ joonis) Ringprotsess on termodünaamiline protsess, mille lõppolek langeb ühte algolekuga. Üleminek ühest olekust teise võib toimuda erinevaid teid pidi, ja igale teele vastab erinev "töö", st. erineva kuju ja pindalaga kõverjooneline trapets. 14 ELEKTROMAGNETISM 15.ELEKTROSTAATIKA 1

Füüsika
36 allalaadimist
thumbnail
7
doc

Keskkooli füüsika

antakse soojushulk, Isobaariline protsess: p = 0 A = pV U = Q - pV Q < 0 süsteem annab ära soojushulga Termodünaa- Soojus ei saa iseenesest üle kanduda külmemalt kehalt soojemale. Teisiti öeldes, pole võimalik mika II printsiip protsess, mille ainsaks tulemuseks on soojendilt saadud soojushulga muundumine tööks. Soojusmasin on masin, kus siseenergia muundub mehaaniliseks energiaks. Soojusmasina A Q1 - Q2 T - T2 A ­ masina poolt tehtud töö, Q1, Q2 ­ soojendilt saadud kasutegur = = m = 1

Füüsika
829 allalaadimist
thumbnail
7
doc

Füüsika valemid

antakse soojushulk, Isobaariline protsess: p = 0 A = pV U = Q - pV Q < 0 süsteem annab ära soojushulga Termodünaa- Soojus ei saa iseenesest üle kanduda külmemalt kehalt soojemale. Teisiti öeldes, pole võimalik mika II printsiip protsess, mille ainsaks tulemuseks on soojendilt saadud soojushulga muundumine tööks. Soojusmasin on masin, kus siseenergia muundub mehaaniliseks energiaks. Soojusmasina A Q1 - Q2 T - T2 A ­ masina poolt tehtud töö, Q1, Q2 ­ soojendilt saadud kasutegur = = m = 1

Füüsika
151 allalaadimist
thumbnail
18
doc

Elekter

5. Elektrodünaamika 5.1. Sissejuhatus elektriõpetusse Elektri- ja magnetnähtused on looduses esineva ühtse elektromagnetilise vastastik- mõju avaldumisvormid. See on inimese jaoks tähtsaim vastastikmõju. Peaaegu kõik jõud, millega inimene oma igapäevaelus kokku puutub (nt. elastsusjõud, hõõrdejõud, elusorganismide lihasjõud) on elektromagnetilise päritoluga (erandiks on vaid kehale mõjuv raskusjõud. Aatomeid, molekule ja tahket ainet hoiavad samuti koos elektrijõud. Elektromagnetilise vastastikmõju kaks tähtsaimat tehnilist rakendust on elektroener- geetika ning elektriline side- ja infotehnika. Elektroenergeetika tegeleb elektriener- gia saamisega (soojuse, valgusenergia, mehaanilise energia või aatomituumade seose- energia arvelt), elektrienergia ülekandega ning muundamisega inimesele vajalikuks energialiigiks. Elektrienergia on mugavaks vahelüliks loodusest ammutatava ning inimtegevuses kasutatava energia vahel. Elektromagnetiline side- ja infotehnika hõlm

Elektroonika
27 allalaadimist
thumbnail
109
doc

Füüsikaline maailmapilt

süsteemis, kus ei toimu ka aine vahetust ümbritseva keskkonnaga (näiteks suletud termospudel). Suletud süsteemis kehtib termodünaamika esimene printsiip: süsteemile juurdeantav soojushulk kulub süsteemi siseenergia suurendamiseks ja mehaaniliseks tööks , mida tehakse välisjõudude vastu: Q = U + A, kus Q on juurdeantav soojushulk, U siseenergia suurenemine ja A välisjõudude vastu tehtud töö (paisumise töö). Kuna soojus ja töö on ekvivalentsed energiaga, võib ka öelda, et energia ei teki ega kao, vaid läheb ühest liigist teise. Sellist sõnastust tuntakse energia jäävuse seadusena. 4.4. Termodünaamika II printsiip Termodünaamikas käsitletakse kahesuguseid protsesse: ühed on pööratavad, teised mittepööratavad. Pööratavaks protsessiks nimetatakse niisugust protsessi, mis saab kulgeda ka vastupidises järjekorras, nii et süsteem läbib kõik olekud mis pärisuunaski, ainult

Füüsikaline maailmapilt
72 allalaadimist
thumbnail
31
doc

Füüsika eksam.

siseenergia. Järelikult termodünaamika esimesest seadusest Q A. 31.Adiapaatiline protsess.Termodünaamika teine seadus. Adiabaatiliseks protsessiks nimetatakse niisugust protsessi, mille käigus ei toimu vaadeldava termodünaamilise süsteemi soojusvahetust keskkonnaga, Q 0 . Järelikult teeb gaas tööd ainuüksi oma siseenergia arvel. Termodünaamika II printsiip: soojust ei ole kunagi võimalik muuta täielikult tööks. 1. Clausiuse järgi: Soojus ei saa minna külmemalt kehalt soojemale, ilma et välisjõud seejuures tööd teeks. Soojus ei saa iseenesest minna külmemalt kehalt soojemale. 2. Thomsoni järgi: Ei ole võimalik luua perioodiliselt töötavat soojusmasinat, mille tööga ei kaasneks muutusi ümbritsevates kehades. Selline masin (II liiki perpetuum mobile) on võimatu (Ostwald). TD II printsiipi nimetatakse ka entroopia kasvu seaduseks. Teda võib

Füüsika
845 allalaadimist
thumbnail
23
doc

Füüsika arvestus 2011 teooria

Kasutegur: η=(Q - Q')/Q (Q- soojendilt saadud soojushulk ja Q`- jahutile antud soojushulk) Max kas.t.: ή=(T-T')/T (T- soojendi temperatuur T' - jahuti temperatuur) Kasutegur ei saa olla kunagi 100% , sest T' ei saa olla 0K, kuna sellist temperatuuri võimatu saavutada. Soojusmasina kasutegur näitab, kui palju kogu tööst muudab soojusmasin kasulikuks tööks. Selle käigus võrreldakse kütuse põlemise käigus vabanenud soojust ja kasulikku tööd. “Kahjulik” soojus on see, mis tuleb anda masinale mehaanilise töö saamiseks. Kasuteguri arvutamiseks on valem: h =Q1-Q2/Q1*100 % kus Q1 on tsüklis soojendilt saadud soojushulk ja Q2 on jahutile antud soojushulk. Selge on see, et kasutegur on väiksem kui 100 %. Reaalsete soojusmasinate kasutegurid jäävad tugevasti alla 100%. Ideaalse soojusmasina tsükli järgi saaks kasutegureid viia küllaltki kõrgele. Kui kasutada jahutina välistemperatuuri 300 K ja soojendina gaasi

Füüsika täiendusõpe
18 allalaadimist
thumbnail
42
docx

TTÜ Eesti Mereakadeemia FÜÜSIKA EKSAM

Paralleelühenduse (ehk rööpühenduse) korral on pinged elementidel samad. Ja kogu ahela vool on üksikute elementide voolude summa. Paralleelühenduse korral liituvad juhtivused. Elektrivälja olemasolu tähendab jõu tekkimise võimalikkust. Analoogiliselt väljendab termin elektrivälja energia seda, et laetud keha võib elektriväljas omada energiat. 7.Alalisvoolu töö ja võimsus. A=IUt; N=IU; N=A/t Joule'i-Lenzi seadus on füüsikaseadus: elektrivoolu toimel juhis eraldunud soojus võrdub voolutugevuse ruudu, juhi takistuse ja aja korrutisega. Q = I²Rt = IUt = U²t / R Peaaegu kõik elektrisoojendusseadmed töötavad Joule'i-Lenzi seaduse põhimõttel. Sama valemi järgi leitakse ka soojuskadusid elektriülekandeliinides. Alalisvoolu töö A= kus A – alalisvoolu poolt tehtav töö (J), I – voolutugevus (A), pinge (V), Δt – ajavahemik mille jooksul tööd tehakse (s) Alalisvoolu võimsus N=

Füüsika
37 allalaadimist
thumbnail
13
doc

Mehhaaniline liikumine

Isoprotsessid: 1. Isotermilse protsessi käigus ei muutu gaasi temperatuur. pV = const 2. Isobaarilise protsessi käigus ei muutu gaasi rõhk. V/T = const 3. isohoorilise protsessi käigus ei muutu gaasi ruumala. p/T = const Konstantne parameeter gaasi olekuvõrrandis taandub. Termodünaamika I seadus ­ süsteemis siseenergia muut on võrdne välisjõudude töö ja süsteemile antud soojushulga summaga. U = A + Q Termodünaamika II seadus ­ soojus ei saa iseenesest kanduda külmalt kehalt soojemale kehale. Soojusmasin ­ on masin, kus siseenergia muundub mehaaniliseks energiaks. Soojusmasina kasutegur ­ näitab, kui suure osa juurdeantavast soojusenergiast Q 1 muudab masin kasulikuks tööks Akas. Q -Q A = 1 2 100% = kas 100% Q1 Q1 Aine agregaatolekuid on kolm: gaasiline, vedel ja tahke. Agregaatoleku muutumised on sulamine, tahkestumine, aurustumine, kondenseerumine, sublimeerumine, härmastumine.

Füüsika
98 allalaadimist
thumbnail
5
docx

Füüsika eksamikordamine

annab ära q2 jahutile. Lõpuks surub välisjõud ainet ka adiabaatselt kokku, taastades siseenergia ning tõstes temperatuuri esialgsele tasemele. Carnot' tsükli kasutegur =(T1T2)/T1, kus T1 ja T2 on vastavalt soojendi ja jahuti temperatuurid. 26)Termodünaamika II seadus.Entroopia Entroopia kasvuga kaasneb süsteemi siseenergia kasv, süsteemi paisumine viib aga siseenergia kahanemisele. dU=TdSpdV Kogu soojust pole kunagi võimalik muuta täielikult tööks. Clausius: Soojus ei saa iseeneslikult minna külmemalt kehalt soojemale. Thomson: Välisjõudude puudumisel võib mis tahes süsteemi entroopia ainult kasvada (piirjuhul olla konstantne). Entroopia S on termodünaamiline olekufunktsioon, mis kirjeldab energia pöördumatut hajumist soojusnähtustel. Entroopia nulltase on meelevaldne, oluline on vaid muutus. Entroopia diferentsiaalne muutus avaldub kujul dS=dq/T (J/K). Entroopia on süsteemi korrastamatuse mõõt

Füüsika
487 allalaadimist
thumbnail
8
doc

Elektromagnetism ja optika

ELEKTROMAGNETISM ELEKTRIVÄLI Elektrilaeng ­ füüsikaline suurus, mis näitab, kuivõrd keha osaleb elektromagnetilises vastastikmõjus. Valem: q=It Ühik: Üks kulon 1C=1A1s Laengu kolm tähendust: 1. keha omadus osaleda elektromagnetilises mõjus 2. füüs. suurus selle omaduse kirjeldamiseks 3. aineosakeste kogum, millel on laeng kui omadus Laengu jäävuse seadus väidab, et elektriliselt isoleeritud süsteemi kogulaeng on jääv surus. Punktlaengud ­ laetud keha, mille mõõtmed on tühiselt väikesed võrreldes nende vahekaugusega. Coulomb'i seadus ­ kaks punktlaengut mõjutavad teineteist jõuga, mis on võrdeline nende laengute korrutisega ja pöördvõrdeline laengutevahelise kauguse ruuduga. q1 q2 F ­ jõud (ühik: 1N) 9 F = k 2 k- võrdetegur (k=910 Nm2/C2) r r ­ laengutevahelinekaugus (ühik: 1m) q ­ laeng (ühik: 1C) Elek

Füüsika
207 allalaadimist
thumbnail
10
docx

FÜÜSIKA LÕPUEKSAM GÜMNAASIUMIS (2015)

Isokoorne protsess on protsess, kus ruumala on konstantne. Sellel protsessil on temperatuur ja rõhk võrdelises seoses. Isotermiline protsess on protsess, kus temperatuur on konstantne. Sellel protsessil on ruumala ja rõhk pöördvõrdelises seoses. Termodünaamika I seadus: Süsteemile. juurdeantav soojushulk läheb süsteemi siseenergia suurendamiseks ja välisjõudude vastu tehtavaks tööks. Termodünaamika II seadus määrab protsesside kulgemise suunda. Näiteks soojus ei saa minna ise külmemalt kehalt kuumemale. Soojusmasin on seade, mis muundab soojusenergiat mehaaniliseks tööks või vastupidi. Soojusmasina kasutegur näitab, kui suure osa masinale antavast soojusenergiast muundab masin kasulikus tööks. h=Q1 - Q2/Q1 100% Aine agregaatolek on ühe ja sama aine olekuvorm: tahke, vedel ja gaasiline. Aine agregaatoleku muutumine on aine üleminek ühest agregaatolekust teise. ELEKTROMAGNETISM

Füüsika
25 allalaadimist
thumbnail
34
docx

Füüsika eksami konspekt

Füsa eksami konspekt 1, Liikumise kirjeldamine Taustsüsteem on mingi kehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. Kohavektor on vektor, mille alguspunkt ühtib koordinaatide alguspunktiga. Trajektoor on keha või ainepunkti teekond liikumisel ruumis või tasandil. Trajektoori saab korrektselt kasutada ainult punktmassi korral. Kiirus on vektoriaalne suurus, mis võrdub nihke ja selle sooritamiseks kulunud ajavahemiku suhtega (kiirusvektor on igas trajektoori punktis suunatud mööda trajektoori puutujat selles punktis). Kiirendus on kiiruse muutus ajaühikus. (Kiirendusvektor lahutub kiirenevalt liikuva keha trajektoori igas punktis trajektoori puutuja sihiliseks tangentsiaalkiirenduseks ning sellega risti olevaks normaalkiirenduseks ehk tsentrifugaalkiirenduseks) 2,* Ühtlaselt muutuv sirgjooneline liikumine. a=consT =>kolmikvalem, Keha liigub sirgjoonelisel trajektooril, kusjuures tema kiirendus on nii suunalt kui suuruselt muutumatu ning samasihilise kiirusega

Füüsika
46 allalaadimist
thumbnail
9
odt

Füüsika kokkuvõtlik materjal

pöördvõrdeline keha massiga. a = F/m · Newtoni III seadus: Jõud tekivad kahe keha vastastikmõjul alati paarikaupa. Need kummalegi kehale mõjuvad jõud on absoluutväärtuselt võrdsed ja vastassuunalised. F1 =- F2 · Mehaanilist tööd tehakse siis, kui kehale mõjub jõud ja kui keha selle jõu mõjul ka liigub. Jaguneb positiivseks ja negatiivseks. Positiivne töö ­ jõu suund ühtib liikumis suunaga. Negatiivne töö ­ jõu suund on vastupidine liikumissuunaga. A = F * s = F * s *cos · Mehaaniline energia on keha võime teha tööd. Energiat on kahte liiki: potentsiaalne (Ep) ja kineetiline (Ek). Tähis E (J) Potentsiaale energia on asendienergia. Ep= mgh Kineetiline energia on liikumisenergia. Ek= mv2 /2 · Võimsus on töö tegemise kiirus. , milles N ­ võimsus (W) A ­ töö (J) t ­ töö tegemise aeg (s)

Füüsika
85 allalaadimist
thumbnail
9
doc

Füüsika kordamine

Füüsika koolieksam. Päikesesüsteem , koosneb Päikesest ning sellega seotud objektidest ja nähtustest, sealhulgas planeet Maa, millel me elame. Tegemist on kõige paremini tuntud näitega planeedisüsteemist, mis üldjuhul koosneb ühest või mitmest tähest ning nendega gravitatsiooniliselt seotud ainest (planeedid, meteoorkehad, tolm, gaas). (+ eraldi lehtedelt vaadata) Valguse peegeldumine, Langemisnurk (a) on nurk pinna ristsirge ja langeva kiire vahel. Peegeldumisnurk (b) on nurk pinna ristsirge ja peegeldunud kiire vahel. Langemisnurk on alati võrdne peegeldumisnurgaga. Fookuseks ehk tulipunktiks nimetatakse punkti, kus koondub nõguspeeglile langev paralleelne valgusvihk. Valguse murdumiseks nimetatakse valguse suuna muutumist kahe erineva keskkonna piirpinnal. Optiliselt hõredamast keskkonnast üleminekul optiliselt tihedamasse keskkonda murdub valgus pinna ristsirge poole. Optiliselt tihedamast keskkonnast üleminekul optil

Füüsika
62 allalaadimist
thumbnail
16
doc

Kordamisküsimused

Väga aeglase voolu korral kõige väiksemates veresoontes suureneb viskoossus kümmekordseks. sellest tingitud verekiirus väheneb vere seisakuni. Piirkiirus on see, kui veri seiskub (?) Vere setet mõõdetakse vereviskoossuse abil, sest pataloogia korral suureneb viskoossus 22,9mPa. Just seda näitab settimine. 76. Termodünaamika 1 seadus. Termodünaamika 2 seadus 1.TD seadus on energia jäävuse seadus. keha siseenergia muutus võrdub kehale lisandunud soojus miinus keha poolt tehtav töö. Termodünaamikas vaadeldavat kehade kogumit nim. süsteemiks. Iga süsteem võib olla eri olekutes. Olekut iseloomustatakse parameetritega. Kui süsteemi parameetrid ajas ei muutu siis süsteem on termodünaamilises tasakaalus. Süsteemi siseenergia muut on võrdne välisjõudude töö ja süsteemile antud soojushulga summaga. kõige lihtsam termodünaamilise süsteemi kirjeldamiseks on gaas. Ideaalse gaasi olekuvõrrand on pV/T= const. 1. seadus

Füüsika
143 allalaadimist
thumbnail
30
docx

Füüsika eksam vastustega: liikumine

A=pΔV Δu=Q-A adiabaatiline Q=0 Δu=-A Siseenergiaks nim keha molekulide kin. ja pot. energia summat, keha võime teha tööd sisemiste protsesside arvelt. Gaasi siseenergia muutub tööd tehes, soojendamisel või jahutamisel. 32.Erisoojus jääval rõhul ja jääval ruumalal. Erisoojus Ce on soojushulk, mis kulub, et tõsta ühikulise massiga keha soojust ühe kraadi võrra. (J/kg*K) Kui gaasi soojendada jääval ruumalal, siis ei tee ta tööd ning kogu soojus läheb keha siseenergia suurenemisele. Kui gaasi jääval rõhul soojendada, siis gaas paisub, tehes pos. tööd. Järelikult on sel juhul gaasi temp-i tõstmiseks tarvis rohekm soojust kui soojendamisel jääva ruumala korral (osa soojust kulub gaasi paisumistööks). Erisoojus jääval rõhul on suurem erisoojusest jääval ruumala universaalse gaasikonstandi võrra. Cp=Cv+R 33.Adiabaatiline protsess ja adiabaadi võrrand.

Füüsika
47 allalaadimist
thumbnail
414
pdf

TTÜ üldfüüsika konspekt

1. Punktmassi kinemaatika. 1.1 Kulgliikumine 1.2 Vaba langemine 1.3 Kõverjooneline liikumine 1.4a Horisontaalselt visatud keha liikumine 1.4b Kaldu horisondiga visatud keha liikumine. 2. Pöördliikumine 2.1 Ühtlase pöördliikumisega seotud mõisted 2.2 Kiirendus ühtlasel pöördliikumisel 2.3 Mitteühtlane pöördliikumine. Nurkkiirendus 2.4 Pöördenurga, nurkkiiruse ja nurkkiirenduse vektorid. 3. Punktmassi dünaamika 3.1. Inerts. Newtoni I seadus. Mass. Tihedus. 3.2 Jõu mõiste. Newtoni II ja III seadus 3.3 Inertsijõud 4. Jõudude liigid 4.1 Gravitatsioonijõud 4.1a Esimene kosmiline kiirus. 4.2 Hõõrdejõud 4.2a Keha kaldpinnal püsimise tingimus. 4.2b Liikumine kurvidel 4.3 Elastsusjõud 4.3a Keha kaal 5 JÄÄVUSSEADUSED 5.1 Impulss 5.1a Impulsi jäävuse seadus. 5.1b Masskeskme liikumise teoreem 5.1c Reaktiivliikumine (iseseisvalt) 5.2 Töö, võimsus, kasutegur 5.3 Energia, selle liigid 5.3 Energia

Füüsika
178 allalaadimist
thumbnail
10
doc

Gümnaasiumi füüsika laiendatud ainekava

Gümnaasiumi füüsika laiendatud ainekava 10. KLASS MEHAANIKA Sissejuhatus gümnaasiumi füüsikasse Inimese elukeskkond ­ sotsiaalne ja looduslik. Füüsika koht teiste loodusteaduste hulgas. Loodusteaduslik meetod. Loodusteaduslik ja täppisteaduslik käsitlus. Füüsikalised objektid ja füüsikalised suurused. Mõõtmine. Mõõtühikute areng. SI ­ mõõtühikute süsteem. Mõõtemääramatus. Juhuslik jaotus, standardhälve. Mudelid füüsikas. Mudelite kasutamine reaalsuses. Mehaanika kui füüsikaliste mudelite alus. (koos sissejuhatusega 75h) Üldmõisted: keha, punktmass, liikumine. Kehade vastastikmõju. Vastastikmõju liigid. Aine ja väli. Ruumi mõõtmelisus. Taustsüsteem. Liikumisvormid füüsikas: kulgliikumine, pöördliikumine, võnkumine, laine. Mehaanika põhiülesanne. Liikumist kirjeldavad suurused: teepikkus, nihe, kiirus, aeg. Vektor ja vektoriaalsed suurused. Vektorite liitmine. Vektori lahutamine komponentideks. Liikumise suhtelisus. Kulgliikumise lihtsaim

Füüsika
40 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun