Uued mõisted ja valemid 1. Hulkliikmed 5 6 1.1. 6x2y ; - a3bc5 ; 1,6xyz - üksliikmed 1 9 1.2. 3,5x2y3z ; 2 3 -2,7 x y z ; x2y3z - sarnased üksiilmed 5 6 1.3. 6 x2y- a3bc5+1,6xyz -hulkliige (üksliikmete summa) Hulkliikme kordajad 1.4. Korrastatud hulkliige ehk normaalkujuline hulkliige on hulkliige,kus liikmed on asetatud astmenäitajate summa kahanevasse järjekorda. 1.5. Kõige viimaseks kirjutatakse alati vabaliige. 1.6. Hulkliige, mis on kahe üksliikme summa nimetatakse kaksliikmeks. 1.7. Hulkliige, mis on kolme üksliikme summa nimetatakse kolmliikmeks. 2. Hulkliikmete liitmine ja lahutamine 2.1. Kõigepealt tuleb avada sulud ja seejärel k
HULKLIIKMED(2.ptk) Mis on hulkliige? Hulkliikmeks nimetatake üksikliikmete summat. Kordajad 3 Hulkliikme liikmed Hulkliikmete liitmine ja lahutamine (5a-6b+7)+(2a-9b-5)=5a-6b+7+2a-9b-5 =3a+3b+12 Kui sulgude ees on + märk , siis tuleb sulgude avamisel jätta sulgude sees olnud liikmete märgid endiseks. Kui sulgude ees on märk, siis tuleb sulgude avamisel muuta sulgude sees olnud liikmete märgid vastupidiseks. Hulkliikmete korrutamine üksikliikmega 1,5 3( 1) Ava sulud ( ) 2) Koondatakse.( Sarnased liidetavad, astendajad ei muutu) Hulkliikmete jagamine üksliikmetega 1) Teguri toomine sulgudest välja Hulkliikme teisendamist korruiseks nimetatakse hulkliikmete tegurdamiseks. 6 6 Tuues miinusmärgi ette muudame sulgudes märgid vastupidiseks. Kaksliikmete korrutamine (a+b)(c+d)=ac+ad+bc+bd Võimalisel ka koondatakse (6a-3)(2a+3)-(3a-4)(2a+1)= Rühmitamisvõte Ruutude vahe valem (a+b)(a-b)= Kahe üksliikme sum
1) Võrdsete alustega astme korrutamine. *Võrdsete alustega astme korrutamisel astendajad liidetakse. am x an = a m+n 2)Võrdsete alustega astme jagamine. *Võrdsete alustega astmete jagamisel astendajad lahutatakse. am : an = a m-n 3) Korrutise astendamine. *Korrutise astendamisel võib astendada iga tegur eraldi ja siis saadud tulemus korrutada. ( a x b )m am x bm 4) Jagatise astendamine. *Jagatise astendamisel võib astendada eraldi jagatava ja jagaja ja seejärel jagada üks tulemus teisega. ( a x b ) m am : bm 5) Astme astendamine, *Astme astendamisel astendajad korrutatakse. ( a m ) n = a mxn 6) Hulkliikme korrutamine üksliikmega. *Hulkliikme korrutamisel üksliikmega tuleb hulkliige iga liige läbi korrutada selle üksliikmega. ( a + b + c ) x d = ad + bd + cd 7) Hulkliikme jagamine üksliikmega. *Hulkliikme jagamisel üksliikmega tuleb hulkliikme iga liige läbi jagada selle üksliikmega. ( a + b + c ) : d = a+b+c = a:d + b:d + c:d d 8) Hulkliikme ko
Tehetest ligikaudsete arvudega Ligikaudsete arvudega korrutises ja jagatises tuleb säilitada nii mitu tüvenumbrit, kui mitu on neid vähima tüvenumbrite arvuga komponendis. Ligikaudsete arvude summa ja vahe tuleb ümardada kõigi komponentide ühise madalaima järguni. Näide: 2,40+18,879=21,279 ehk 21,28 Hulkliige Üksliikmete summat nimetatakse hulkliikmeks. Üksliikmeid, mille liitmisel hulkliige moodustub, nimetatakse hulkliikme liikmeteks ja nende kordajaid- hulkliikme kordajateks. Näide: 4c -3c+8c-c = Hulkliikmete liitmine ja lahutamine Kui sulgude ees on pluusmärk, siis tuleb sulgude avamisel jätta sulgude sees olnud liikmete märgid endiseks; kui sulgude ees on miinusmärk, siis tuleb sulgude avamisel muuta sulgude sees olnud liikmete märgid vastupidiseks. Näide: (2x-5)-(x-7)+(15-9x)-(6x-3)= 2x-5-x+7+15-9x-6x+3=-14x+20=20-14x Hulkliikm
Matemaatika eksam 1. Tehted astmetega Sama alusega astmete korrutamiseks tuleb astmed liita. Sama alusega astmete jagamiseks tuleb astmed lahutada. Korrutise astendamiseks tuleb astendada kõik tegurid ja tulemused korrutada. Jagatuse astendamiseks tuleb astendada kõik tegurid ja tulemused jagada. Astme astendamiseks tuleb astmed korrutada. 2. Arvu standardkuju Arvu standardkuju on korrutis, mis koosneb ühe ja kümne vahel olevast tegusrist ja kümne mingist astmest. Näited. 7250 = 7,25 ∙ 10³; arvu tüvi on 7,25 ja arvu järk 10. 4000 = 4 ∙ 10³ 3. Korrutise ja jagatise astendamine, astme astendamine Mis tahes aluse nullis aste on 1. Negatiivse astendajaga aste on võrdne absoluutväärtuselt sama suure positiivse arvu astendajaga astme pöördväärtusega. Astme astendamiseks tuleb astmed korrutada. Sama alusega astmete korrutamiseks tuleb astmed liita. Sama alusega astmete jagamiseks tuleb astmed lahutada. Korrutise astendamiseks
1)Võrdsete alustega astmete korrutamine: Võrdsete alustega astmete korrutamisel astendajad liidetakse. 2)Võrdsete alustega astmete jagamine: Võrdsete alustega astmete jagamisel astendajad lahutatakse. 3)Astme astendamine: Astme astendamisel astendajad korrutatakse. 4)Korrutise astendamine: Korrutise astendamisel võib astendada eraldi iga tegur ja tulemused korrutada. 5)Jagatise astendamine: Jagatise astendamisel võib enne astendada jagatav ja jagaja ning seejärel jagada esimene tulemus teisega. 6)Hulkliikme korrutamine üksliikmega: Hulkliikme korrutamisel üksliikmega tuleb hulkliikme iga liige korrutada selle üksliikmega (võimalisel koondame) a(b+c)=ab+ac 7)Hulkliikme jagamine üksliikmega: Hulkliike jagamisel üksliikmega tuleb hulkliikme iga liige jagada selle üksliikmega. 8)Hulkliikme korrutamine hulkliikmega: Hulkliikme korrutamisel hulkliikmega tuleb ühe hulkliikme iga liige läbi korrutada teise hulkliikme iga liikmega. (a+b)(c+d)=ac+ad+bc+bd 9)Ruutude vahe:
1)Võrdsete alustega astmete korrutamine: Võrdsete alustega astmete korrutamisel astendajad liidetakse. 2)Võrdsete alustega astmete jagamine: Võrdsete alustega astmete jagamisel astendajad lahutatakse. 3)Astme astendamine: Astme astendamisel astendajad korrutatakse. 4)Korrutise astendamine: Korrutise astendamisel võib astendada eraldi iga tegur ja tulemused korrutada. 5)Jagatise astendamine: Jagatise astendamisel võib enne astendada jagatav ja jagaja ning seejärel jagada esimene tulemus teisega. 6)Hulkliikme korrutamine üksliikmega: Hulkliikme korrutamisel üksliikmega tuleb hulkliikme iga liige korrutada selle üksliikmega (võimalisel koondame) a(b+c)=ab+ac 7)Hulkliikme jagamine üksliikmega: Hulkliike jagamisel üksliikmega tuleb hulkliikme iga liige jagada selle üksliikmega. 8)Hulkliikme korrutamine hulkliikmega: Hulkliikme korrutamisel hulkliikmega tuleb ühe hulkliikme iga liige läbi korrutada teise hulkliikme iga liikmega. (a+b)(c+d)=ac+ad+bc+bd 9)Ruutude vahe:
Uued mõisted · Hulkliikmeks nimetatakse üksliikmete summat · Kahe liikme summa ja samade liikmete vahe korrutis võrdub nende liikmete ruutude vahega · Kahe liikme summa ruut võrdub esimese liikme ruut pluss kahekordne esimese ja teise liikme korrutis pluss teise liikme ruut · Kahe üksliikme vahe ruut võrdub esimese liikme ruuduga miinus kahekordne esimese ja teise liikme korrutis pluss teise liikme ruut · Kahe hulkliikme korrutamisel tuleb ühe hulkliikme iga liige korrutada teise hulkliikme iga liikmega, tulemused koondada · Kahe üksliikme summa ja nende üksliikmete vahe mittetäieliku ruudu korrutis võrdub nende üksliikmete kuupide summaga · Kahe üksliikme vahe ja nende üksliikmete summa mittetäieliku ruudu korrutis võrdub nende üksliikmete kuupide vahega · Kahe üksliikme summa kuup võrdub esimene liige kuubis pluss kolmekordne esimese liikme ruudu ja teise liikme korrutis pluss kolmekordne esimese liikme ja tei
Kõik kommentaarid