Hulkliikme tegurdamine 1) ühisteguri sulgude ette toomine 8y2 4y = 4y (2y 1) 2 5 4 18u v 27uv = 9uv4 (2uv 3) x2 2x = x (x + 2) 2) valemite abil a2 b2 = (a + b) (a b) a2 ± 2ab + b2 = (a ± b)2 a3 ± b3 = (a ± b) (a2 ab + b2) 4a2 9b2 = (2a + 3b) (2a 3b) 4m2 20mn + 25n2 = (2m 5n)2 27x3 + 8 = (3x + 2) (9x2 6x + 4) 3) rühmitamisvõte ay + az + by + bz = a (y + z) + b (y + z) = = (y + z) (a + b) x3 3x2 3x + 9 = x2 (x 3) 3 (x 3) = = (x 3) (x2 3) 4) erinevate võtete kombineerimine NB! Kõigepealt toome võimaluse korral ühisteguri sulgude ette, seejärel vaatame, kas saab tegurdada veel mõne teise võttega. 5x2 + 10x + 5 = 5 (x2 + 2x + 1) = = 5 (x + 1)2 m3n mn3 = mn (m2 n2) = = mn (m + n) (m n...
TEHTED ALGEBRALISTE MURDUDEGA TEGURDAMINE - esita hulkliige korrutisena I ühise teguri sulu ette toomine 2a + 6abc = 2a(1 + 3bc) NB! ,, -1" ette: a -1 = - (-a + 1)= -(1 a); -a 1= - (a + 1); a + 1= - (-a 1) II valemid: 1. a 2 b 2 = (a b)(a + b) 2. a 2 + 2ab + b 2 = (a + b) 2 = (-a - b) 2 3. a 2 2ab + b 2 = (a b) 2 = (b - a) 2 III rühmitamine IV ruutkolmliikme tegurdamine st. lahenda vastav ruutvõrrand ax 2 + bx + c = 0 b b 2 4ac lahendivalemiga x1; 2 2a ja pane lahendid vastandarvudena sulgudesse - ax 2 + bx + c = a( x - x1 )(x - x 2 ) V kui muud ei saa, pane hulkliikmele lihtsalt sulud ümber (kui on + või märke) 2 a = ( 2 a) TAANDAMINE- murru lugeja ja nimetaja jagamine ühiste teguritega. Nendeks võivad olla üksikud täisarvud, üksiku...
g ( x) x a x a x a lim [ f ( x) - g ( x)] = lim f ( x) - lim g ( x) x a x a x a lim [ f ( x) g ( x)] = lim f ( x) lim g ( x) x a x a x a lim f ( x) lim f ( x ) = xa lim , kui g ( x) 0 x a g ( x) lim x a g ( x) xa lim [C f ( x)] = C lim f ( x) x a x a x lim 1 1 + = e ; x R x x lim sin x =1 x 0 x x lim r r 1 + = e x x lim tan x =1 x 0 x lim Kui funktsioon y = f(x) on pidev kohal x=a, s...
peatükk 1. Tegurdamine - - Tegurdamine Avaldise muutmine korrutiseks. 1.Teguri toomine sulgude ette. 2. Valemite kasutamine. ( (a+b2) = a2 + 2ab +b2 / (a + b)((a b) = a2 - b2 3. Ruutkolmliikme tegurdamine. ( ax2 +bx+c = a(x-x1)(x-x2) ) 4. Rühmitamisvõte. - Avaldise teisendamine tähendab avaldise võimalikult lihtsa või meile sobiva kuju andmine. - Võrdust, mille poolteks on võrdsed avaldised nim. samasuseks. Näide: 2. Arvulise murru taandamine - Taandamine-murru lugeja ja nimetaja jagamine ühe ja sama nullist erineva avaldisega * tegurdatakse murru lugeja ja nimetaja; * taandatakse arvulised tegurid * taandatakse muutujat sisaldavad võrdsed tegurid. Näide: 3. Korrutamine ja jagamine Korrutamine- algebraliste murdude korrutis võrdub murruga, mille lugejaks on antud murdude lugejate korrutis ja nimetajaks...
Valemid a1 = a (ab)n = an bn a0 = 1 a n =an (an)m = anm an . am = an+m a-n = an an an-m am 1) ax2+bx=0 = x(ax+b) = x1=0 ja x2= -b Taandamata Ruutvõrrand 2) ax +bx+c=0 = x1,2= -b + b2-4ac = a(x-x1)(x-x2) 2 Taandatud Ruutvõrrand 3) x +px+q = x1,2= -p + p2-q = (x-x1)(x-x2) 2 Viete i teoreem x1+x2=-p X1 . x2= q Tegurdamine 2 2 (a+b)(a-b) = a -b 2 Ax +bx = x(ax+b) (a+b)2 = (a+b) . (a+b) = a2+2ab+b2 Ax2+bx+c = a(x-x1)(x-x2) (a-b)2 = (a-b) . (a-b) = a2-2ab+b2 A3+b3 = (a+b)...
TEHTED ALGEBRALISTE MURDUDEGA TEGURDAMINE - esita hulkliige korrutisena I ühise teguri sulu ette toomine 2a + 6abc = 2a(1 + 3bc) NB! „ -1” ette: a -1 = - (-a + 1)= -(1 – a); -a – 1= - (a + 1); a + 1= - (-a – 1) II valemid: 1. a 2 – b 2 = (a – b)(a + b) 2. a 2 + 2ab + b 2 = (a + b) 2 = (-a - b) 2 3. a 2 – 2ab + b 2 = (a – b) 2 = (b - a) 2 III rühmitamine IV ruutkolmliikme tegurdamine st. lahenda vastav ruutvõrrand ax 2 + bx + c = 0 b b 2 4ac lahendivalemiga x1; 2 2a ja pane lahendid vastandarvudena sulgudesse - ax 2 + bx + c = a( x - x1 )(x - x 2 ) V kui muud ei saa, pane hulkliikmele lihtsalt sulud ümber (kui on + või – märke) 2 – a = ( 2 – a) TAANDAMINE- murru lugeja ja nimetaja jagamine ühiste teguritega. Nendeks võivad olla üksikud...
osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ...........................................................................................5 Täisarvude hulk Z...
-klassis õpitud; 2) õppida tundma ruutfunktsioone ja joonestama nende graafikuid; 3) õppida lahendama ruutvõrrandit ning nende abil tekstülesandeid; 4) õppida selgeks tegurdamise erinevad võtted. Õppesisu: Õpitulemuse Jrk kontrollimise Kuupäev Ulatuslikum teema Olulisemad alateemad Põhimõisted Kasutatavad meetodid Õppekirjandus ja muu õppematerjal nr...
Võrrandid 1. Teemad Arvuhulgad N, Z, Q ja R, nende omadused. Reaalarvude piirkonnad arvteljel. Reaalarvu absoluutväärtus. Protsentülesanded. Astme mõiste üldistamine: täisarvulise ja ratsionaalarvulise astendajaga aste. N- es juur. Tehted astmete ja juurtega. Ratsionaal- ja irratsionaalavaldiste lihtsustamine. Irratsionaalsusest vabanemine. Lineaar-, ruut-, murd- ja juurvõrrandid. Võrrandite koostamine. Lihtsamate tekstülesannete lahendamine. 2. Tarkuseterad 2.1 Arvuhulgad Loendamisel kasutatavad arvud Arv 0 Kas 0N? Naturaalarvud N Järjestatav, vähim arv 1, lõpmatu Liitmine, korrutamine Jäägiga jagamine, algarv, SÜT, VÜK Nat. arvude vastandarvud Täisarvud Z...
1Mis on hulkliige? Hulkliikmeks nimetatakse üksliikmete summat. 1Mis on tegurdamine ? Tegurdamiseks nimetatakse avaldise teisendamist korrutiseks. 1Nimeta tegurdamise võtted 1)Teguri sulgudest välja toomine 2)Korrutise abivalemite kasutamine 3)Rühmitamisvõtte kasutamine 4)Ruutkaksliikme tegurdamine 1Mis on teoreem? Teoreem on lause, mida on vaja tõestada teada olevate tõdede põhjal. 1Mis on teoreemi eeldus? Teoreemi eeldus ütleb, mis on antud või teada. 1Mis on teoreemi väide? Teoreemi väide ütleb, mida saab eeldusest järeldada, ehk mida on vaja tõestada. 1Mis on kolmnurga kesklõik? Tee selgitav joonis. Sõnasta teoreem kolmnurga kesklõigust. Kolmnurga kesklõiguks nimetatakse lõiku, mis ühendab haarade keskpunkte ja on paralleelne kolmanda küljega. Teoreem: Kolmnurga kesklõik on paralleelne kolmnurga ühe küljega ja võrdub pool...
ptk) Mis on hulkliige? Hulkliikmeks nimetatake üksikliikmete summat. Kordajad 3 Hulkliikme liikmed Hulkliikmete liitmine ja lahutamine (5a-6b+7)+(2a-9b-5)=5a-6b+7+2a-9b-5 =3a+3b+12 Kui sulgude ees on + märk , siis tuleb sulgude avamisel jätta sulgude sees olnud liikmete märgid endiseks. Kui sulgude ees on märk, siis tuleb sulgude avamisel muuta sulgude sees olnud liikmete märgid vastupidiseks. Hulkliikmete korrutamine üksikliikmega 1,5 3( 1) Ava sulud ( ) 2) Koondatakse.( Sarnased liidetavad, astendajad ei muutu) Hulkliikmete jagamine üksliikmetega 1) Teguri toomine sulgudest välja Hulkliikme teisendamist korruiseks nimetatakse hulkliikmete tegurdamiseks. 6 6 Tuues miinusmärgi ette muudame sulgudes märgid vastupidiseks. Kaksliikmete korrutamine (a+b)(c+d)=ac+ad+bc+bd Võimalisel ka koondatakse (6a-3)(2a+3)-(3a-4)(2a+1)= Rühmitamisvõte Ruutude vahe valem (a+b)(a-b)=...
Negatiivsete arvudega teostatavate tehete a n an eeskirjad 5. = b bn 1. a + (-b) = -b + (-a) = -(a + b) 2. a + b = b + (-a) = b a , kui b a Abivalemid ja tegurdamine 3. a + b = b + (-a) = - (a b), kui b ( a + b) 2 = a 2 + 2ab + b 2 a ( a - b) 2 ( a + b) 3 = a 2 - 2ab + b 2 = a 3 + 3a 2 b + 3ab 2 + b 3 4. a + a = a + (-a) = 0 ( a - b) 3 = a 3 - 3a 2 b + 3ab 2 - b 3 5. a(-b) = -b(-a) = ab...
ptk Hulkliikmed 8.klass Õpitulemused Näited 1.Hulkliige - üksliikmete summa üksliikmed: ; ; ; 2.Hulkliikme liikmed ja kordajad - korrastatud hulkliige liikmed: üksliikmed, mille liitmisel hulkliige moodustub liikmed on ; -2 ; kordaja: iga liikme ees olen arv kordajad on 1; -2; 1 3.Korrastatud hulkliige - järjestada hulkliikme liikmed muutujate astendajate summa kahanemise järjekorras, võrdsete astendajate summa puhul lähtuda tähestikust, liikmed normaalkujulised, võimalusel koondada 4.Kaksliige - hulkliige, milles on kaks mittesarnast liiget 5.Kolmliige - hulkliige, milles on kolm mitte- sarnast liiget 6.Hulkliikmete liitmine - kui sulgude ees on plussmärk, siis tuleb sulgude avamisel jätta sulgude sees olnud liikmete märgid endiseks, s.t. ühe hulkliikme liikmed kirjutatakse teise järel samade märkidega...
Põhikooli matemaatika abi Tasapinnalised kujundid Ruut Diagonaal: Pindala: S = a2 Ümbermõõt: P = 4·a Ruudu kõik küljed on võrdsed ja nurgad täisnurgad. Ristkülik Diagonaal: Pindala: S = a · b Ümbermõõt: P = 2(a + b) Ristkülikuks nimetatakse rööpkülikut, mille kõik nurgad on täisnurgad. Romb + = 180º Pindala: S = a · h Ümbermõõt: P = 4·a Rööpkülik + = 180º Pindala: S = a · h Ümbermõõt: P = 2(a + b) Rööpkülikuks nimetatakse nelinurka, mille vastasküljed on paralleelsed. Kolmnurk + + = 180º Pindala: Ümbermõõt: P = a + b + c Võrdkülgne kolmnurk Kõrgus: Pindala: Ümbermõõt: P = 3 · a Täisnurkne kolmnurk Pyt...
Harilike murdude liitmine a c ad + bc + = b d bd 2. Harilike murdude lahutamine a c ad - bc - = b d bd 3. Harilike murdude korrutamine a c ac = b d bd 4. Harilike murdude jagamine a c ad : = b d bc 5. Astmete korrutamine...
YMM3731 Matemaatilne analu¨ us ¨ I Gert Tamberg Matemaatikainstituut Tallinna Tehnikaulikool ¨ gtamberg@staff.ttu.ee http://www.ttu.ee/gert-tamberg ¨ G. Tamberg (TTU) YMM3731 Matemaatilne analu¨ us ¨ I 1 / 25 ~ Oppeaine sisu ~ Oppeaine jaotub kahte ossa: 1 Diferentsiaalarvutus (loengud 1-9) 2 Integraalarvutus (loengud 10-16) ~ Oppeaine ~ lopphinne pannakse valja¨ viiepallisusteemis. ¨ Tudengil on ~ voimalik saada oma hinne katte ¨ semestri jooksul sooritatud kontrollto¨ ode ¨ ~ pohjal. Selleks tuleb kirjutada...
= a · a · ... · a a1 = a a0 = 1 P= 4a S= a · h + = 180º n tegurit romb Aritmeetiline ruutjuur rööpkülik P= 2(a+b) S= a · h + = 180º Tehted astmetega kolmnurk P= a+b+c + + = 180 Korrutamise ja tegurdamise valemid võrdkülgne kolmnurk P= 3a...
165 OSA 6 – tähtsad funktsioonid ... 263 võrrand . ............................................ 168 polünoom . ......................................... 266 Erinevat tüüpi võrrandid .............................. 170 Omadused ...................................................267 Võrrandisüsteem ......................................... 172 Miks osutuvad polünoomid Mobiilioperaatori valimine ........................... 174 nõnda oluliseks? ........................................ 268 võrrandi teisendamine ja Nullkohad ja mugavale kujule tegurdamine ............................................. 269 lahendamine . ................................... 176 Kuidas peita kolmekesi ühist varandust? ...... 271 Võrrandi teisendamisest üldisemalt ............. 176 Ruutfunktsioon ja tema lahendivalem ......... 272 Väike võrrandijutt ........................................ 179 Veel võrrandi lahendamisest ........................180 eksponentsiaalfunktsioon . ............... 280 Eksponentsiaalfunktsioon ja astendamine ...281 võrrand ja geomeetria ...................... 184 Eksponentsiaalfunktsiooni omadused .........282 Võrrandi ja...
1.5. Kõige viimaseks kirjutatakse alati vabaliige. 1.6. Hulkliige, mis on kahe üksliikme summa nimetatakse kaksliikmeks. 1.7. Hulkliige, mis on kolme üksliikme summa nimetatakse kolmliikmeks. 2. Hulkliikmete liitmine ja lahutamine 2.1. Kõigepealt tuleb avada sulud ja seejärel koondada sarnased liikmed. 2.2. Kehtivad reeglid: 2.2.1. - märk sulu ees... 2.2.2. Sulu ees oleva arvuga tuleb... 3. Hulkliikme korrutamine üksliikmega 3.1. Sulu ees või järel oleva üksliikmega tuleb sulus kõik korrutada, kui võimalik siis koondada ja vastus korrastada. 4. Hulkliikme jagamine üksliikmega 4.1. Hulkliikme jagamisel üksliikmega tuleb selle hulkliikme iga liige jagada antud üksliikmega. 4.2. Kui liikmete vahel on + või -, siis taandada ei tohi. 5. Tegurdamine 5.1. Tegurdamiseks nimetatakse avaldise kirjutamist korrutisena. 5.2. avaldis=millega saab jagada(SÜT) jagamise vastus 5.3. Tegurdamine tähendab ühise teguri sulgude ette toomist. 6. Kaksliikmete korrutamine 6.1. Esimese kaksliikme iga liikme korrutan teise kaksliikme iga liikmega. Kui võimalik, siis koondan 7. Kahe üksliikme summa ja vahe korrutis 7.1. Korrutamise abivalem (a+b)(a-b)=a2-b2 1) Ühes sulus +, teises -. 2) Sulgudes võrdsed liikmed. 3) Vastuse liikmete järjekord – sulu põhjal. 4) Vastuses liikmete vahel -. 5) Vastuses liikmete ruudud. 8. Kaksliikme ruut 8.1. Korrutamise abivalemid (a±b)2= 2 2 =a +2ab+b =a2-2ab+b2 1) Esimene liige...
Ruut ⎜ ⎟ =a x n = = −1 b−a b−a ⎝a⎠ a1a2 a>0 a<0 P=4a; S= a2 d =a 2 a a Ruutvõrrand Ruutkolmliikme tegurdamine Ristkülik 2 a ax 2 + bx = 0 ⇒ x(ax + b) = 0 ⇒ x1 = 0, x2 = − ba ax +bx+c=a(x-x1)(x-x2) P = 2 (a + b) x2+px+q=(x-x1)(x-x2) b S = ab ax 2 + b = 0 ⇒ x1,2 = ± − ba Tehted ratsionaalarvudega -a+(-b) = - (a+b) Ruutfunktsioon a d = a2 + b2...