Geomeetriline optika Geomeetrilise optika põhiseadused Geomeetriline optika on optika osa, kus valguslaine asemel kasutatakse valguskiire mõistet. Valguskiireks nimetatakse joont ruumis, mis näitab valgusenergia levimise suunda. Geomeetrilist optikat nimetatakse ka kiirteoptikaks. Geomeetrilise optika põhiseadused on: Valguse sirgjoonelise levimise seadus: ühtlases keskkonnas levib valgus sirgjooneliselt. Kiirte sõltumatuse seadus: kiired ei mõjuta lõikumisel üksteise liikumist. Valguse peegeldumise seadus: langemisnurk ja peegeldumisnurk on võrdsed. Valguse murdumise seadus: langemisnurga ja murdumisnurga siinuste suhe on jääv suurus. Kiirte pööratavuse printsiip: kiir läbib süsteemi päri- ja vastassuunas ühte teed mööda. Ühtlases keskkonnas levib valgus sirgjooneliselt
hajuvateks. Koondava läätse korral nietatakse fookuseks punkti, kus lõikuvad läätsele langevad optilise peateljega paralleelsed kiired pärast murdumist. Hajutavas läätses hajuvad optilise peateljega paralleelsed kiired pärast läätse läbimist nii, nagu oleksid nad väljunud ühest punktist. Seda punkti nimetatakse hajutava läätse näivaks ehk ebafookuseks. Läätse iseloomustamisel ning tema kasutamisel nii optilistes riistades kui ka üksikult on oluline teada fookuse kaugust läätsest. Saab näidata, et õhukese läätse korral (õhukeseks nimetatakse läätse, mille paksus võrreldes piirpindade kõverusraadiustega r1 ja r2 on tühine) on fookuskaugus f arvutatav valemist: 1 1 1 f = (n-1) + , r1 r 2 kus n on läätse aine murdumisnäitaja keskkonna suhtes, kus lääts asub
Läätsed valmistatakse tavalisest klaasist. Läätse, mille paksus on teda piiravate sfääriliste pindade raadiusest tunduvalt väiksem nim. Õhukeseks läätseks. Läätsi, mis on keskelt paksemad, kui äärelt, nim. Kumerläätseks ja läätsi, mille ääred on paksemad, kui keskkoht nim. Nõgusläätsedeks. Läätse sfääriliste pindade keskpunkte 01 ja 02 läbivat sirget nim. Läätse optiliseks peateljeks. Läätsel on kaks peafookust, mis paiknevad teiselpool läätse. Fookuse kaugust läätses optilisest keskpunktist nim. Läätse fookuskauguseks. Kõik peafookust läbinud kiired on pärast läätse läbimist optilise peateljega paralleelsed. Kõik nõgusläätse optilise peateljega paralleelsed kiired kalduvad pärast läätse läbimist optilisest peateljest eemale. Sellepärast nim. Nõgusläätsi hajutavateks läätsedeks. Kuid läätse läbinud hajuvate kiirte pikendused lõikuvad teisel pool läätse ühes punktis F. Seda punkti nim
Mida väiksem on valguse kiirus keskkonnas, seda optiliselt tihedamaks loetakse keskkonda. Valguse levimise suuna muutumist kahe keskkonna piirpinnal nimetatakse valguse murdumiseks. Valguse murdumise iseloomustamiseks kasutatakse lisaks langeva kiire ja langemisnurga mõistetele murdunud kiire ja murdumisnurga mõisteid. Murdumisnurgaks nimetatakse nurka murdunud kiire ja pinna ristsirge vahel. Murdumisnurka tähistatakse kreeka tähestiku väiketähega gamma. Valguse levimisel optilisest tihedamast keskkonnast hõredamasse murdub valguskiir pinna ristsirgest eemale ja vastupidi. Optiliselt ühtlases keskkonnas levib valgus sirgjooneliselt. Valguse täielikuks peegeldumiseks nimetatakse peegeldumist kahe läbipaistva keskkonna piirpinnalt, kui sellega ei kaasne murdumist. Täielik peegeldumine esineb valguse levimisel optiliselt tihedamast keskkonnast hõredama keskkonna piirpinnale
1. Optika on füüsika osa, mis tegeleb valgusega seotud nähtuste uurimisega. 2. Valguse dualistlik iseloom seisneb selles, et valguse puhul avalduvad nii korpuskulaarsed kui lainelised omadused. 3. Geomeetriline optika ehk kiirteoptika on optika osa, kus valguse levimist kirjeldatakse valguskiirte abil, milleks on ristsirged valguse lainepinnale (pinnanormaalid). 4. Punktvalgusallikaks nim. niisugust valgusallikat, mille mõõtmed on väiksed võrreldes kaugusega vaatluskohast. 5. Valguse sirgjoonelise levimise seadus: Optiliselt ühtlases kk-s levib valgus ühest punktist teise kõige lühemat teed mööda. 10. Valgusvooks nim. ajaühikus mingit pinda läbiva valgusenergia hulka, mida hinnatakse nägemisaistingu põhjal. Tähis
Optika füüsika haru mis käsitleb valgust ning valguse ja aine vastastikust toimet. 3 seadust: 1. valguse sirgjooneline levimine 2. v peegeldumisseadus 3. v murdumisseadus. 2 teooriat: Newton- valgus on igas suunas levivate osakeste voog (neeldumisel, kiirgamisel). Huygens- valgus on lainete voog. (levimisel). Valgusel on dualistlik (kahene) iseloom. Geomeetriline optika Uurib valguse levimist vaakumis ja keskkondades, peegeldumist ja murdumist keskkondade lahutuspindadel ning valguse interferentsija difratsiooni nähtusi. Valguse sound määratakse kiirtega. Valguskiir- geomeetriline mõiste, mis tähendab mitte peenikest valguskiirte kimpu vaid joont, mida mööda levib valgusenergia. Homogeenses (ühtlane) keskkonnas levib v sirgjooneliselt. See on kogemuslik fakt (katseline tõestus on vari). V iseloomustab 3 põhilist suurust: 1
1 D f Läätse optiline tugevus: (dpt) 1 1 1 f k a Läätse valem: f läätse fookuskaugus k - kujutise kaugus läätsest a - eseme kaugus läätsest D - läätse optiline tugevus Geomeetrilise optika põhiseadused on: Valguse sirgjoonelise levimise seadus: ühtlases keskk. levib valgus sirgjooneliselt. Kiirete sõltumatuse seadus: kiired ei mõjuta lõikumisel üksteise liikumist. Valguse peegeldumise seadus: langemisn. ja peegeldumisn. on võrdsed. Valguse murdumise seadus: langemisnurga ja murdumisnurga siinuste suhe on jääv suurus. Kiirte pööratavuse printsiip: kiir läbib süsteemi päri- ja
Kiiruse valem on . Valguse murdumine Valguse levimise suuna muutumist kahe optilise keskkonna piirpinnal nimetatakse valguse murdumiseks. Valguse murdumise iseloomustamiseks kasutatakse lisaks langeva kiire ja langemisnurga mõistele murdunud kiire ja murdumisnurga mõisteid. Valguskiirt, mis levib teise keskkonda nimetatakse murdunud kiireks. Murdumisnurgaks nimetatakse nurka murdunud kiire ja pinna ristsirge vahel ja seda tähistatakse kreeka väiketähega gamma: . Valguse levimisel optiliselt hõredamast keskkonnast optiliselt tihedamasse keskkonda murdub valguskiir pinna ristsirge poole. Valguse levimisel optiliselt tihedamast keskkonnast optiliselt hõredamasse keskkonda murdub valguskiir pinna ristsirgest eemale. Optiliselt ühtlases keskkonnas levib valguskiir sirgjooneliselt. Valguse levimisel õhust klaasi on murdumisnurk langemisnurgast väiksem. Kui valgus langeb pinnaga risti, siis valgus ei murdu,
ainetega kokkupuutel osakeste voona. Newton nim. valgusosakesi korpuskulaarideks, tänapäeval valguskvant ehk footoniteks. Jaguneb laine-ja kvantoptikaks. 2.Valguse kiirus On kõige suurem tühjuses ja see on C=300 000km/s. Esimesena püüdis valgusekiirust mõõta Galileo Galilei, kuid ei õnnestunud. Mida väiksem on valguse kiirus keskkonnas, seda optiliselt tihedamaks loetakse keskkonda. 3.Geomeetriline optika (valguskiir) Valguse levimise suuna kujutamiseks on kasutusele võetud valguskiire mõiste. Valguskiirt kujutatakse joone abil, millele on kantud nool valguse levimise suuna näitamiseks. 4.Valguse levimine keskkondades/ainetes Valguse levimiseks nim. valgusenergia kandumist ruumi. Valguse levimise suund on pööratav. Valguse levimise suuna muutumisel vastupidiseks jääb valguskiire tee samaks. Valguse levimisel kandub edasi energia. 5.Varjud (täis- ja poolvari)
(ei tohi erineda üle 10x) Seda nähtust on parem uurida difraktsioonvõre abil. Nt. klaasplaat, kuhu on tõmmatud kriipsud. ...-10 000 mm´le. Sellise võre abil saadakse väga häid spektreid. Spekter tekib sellepärast, et pikem laine paindub rohkem tõkke taha kui lühike. Neid spektreid kasutatakse ainete kindlakstegemisel, tähe pinnatemp. määramiseks, tähtede kauguse ja kiiruse määramiseks. Difraktsiooninähtus näitab, et valguse puhul on tegemist lainetusega. 5. Geomeetrilise optika mõisted. Valguse peegeldumise seadus ja kujutis tasapeeglis. Geomeetriline optika on optika osa, mis uurib valguskiirte liikumist. Selle aluseks on mitmed mõisted: valguspunkt- valgusallikas, mille mõõtmeid me ei arvesta. Valguskiir- joon, mis näitab valguse energia levimise suunda. Ka selle mõõtmeid me ei arvesta. Geomeetrilises optika üks oluline seadus: valguse peegeldumise seadus- langenud kiir, peegeldunud kiir ja
Geomeetriline optika Uurib kuidas valgus liigub erinevates keskkondades Valguskiir- näitab valgus energia levimise trajektoori Valguse levimine homogeenses keskkonnas - Füüsikalised omadused on kõikides ruumi punktides ühesugused. Valgus levib sirgjooneliselt. Täisvari on ruumiosa , kuhu valgusenergiat ei satu Poolvari Ruumi piirkond kuhu satub valgusallikas ainult osaliselt. Poolvarju piirkonnas on valgusallikas osaliselt nähtav Valguse peegeldumine ja selle seadus
raadiolaine(suur lainepikkus,väike sagedus) mikrolaine infrapuna nähtav valgus UV röntgenkiirgus gammakiirgus(väike lainepikkus,suur sagedus) 32. Elektromagnetlainete kasutamine. Raadio,röntgen,telefonides infrapuna,antennid 33. Valguse dualism, valguse laineliste ja kvantomaduste avaldumine- Valguse dualism- Valguse kahesugune iseloomustus. Laineline ja osakeste kiirgumine. Kvantomadused: laine c=*f kiirgus E=h*f 34. Geomeetrilise optika põhiseadused. valguskiired on üksteisest sõltumatud, valguskiired peegelduvad,ristjoon pinnaga valguse murdumise seadus, kiirte pööratuvuse seadus, valgus levib sirgjooneliselt ühtlasetes keskkondades 35. Kiirte käigu kujutamine valguse peegeldumisel ja murdumisel- Kiirte pööratavuse seadus- Päripidises suunas ja vastupidises suunas liikudes liigub kiir sama teed mööda. 36. Valguse murdumisseadus. Absoluutne ja suhteline murdumisnäitaja. sin =n sin
1. Mida nim optikaks? Optikaks nim füüsika osa, mis tegeleb valgusega seotud nähtuste uurimisega. 2. Milles seisneb valguse dualistlik iseloom? Valgusel avalduvad nii lainelised kui korpuskulaarsed omadused. Need lähenemised ei ole vastandlikud, vaid täiendavad teineteist. On olemas nähtusi, mida saab selgitada nii ühest kui teisest käsitlusest lähtuvalt. 3. Mida nim geomeetriliseks optikaks? Geomeetriline optika ehk kiirteoptika on optika osa, kus valguse levimist kirjeldatakse valguskiirte abil, milleks on ristsirged valguse lainepinnale. 4. Mida nim punktvalgusallikaks? Punktvalgusallikaks nim valgusallikat, mille mõõtmed on võrreldes valgusallika ja eseme kaugusega nii väikesed, et need võib antud tingimustes arvestamata jätta. 5. Sõnastada valguse sirgejoonelise levimise seadus. Ühtlases keskkonnas levib valgus sirgjooneliselt. 6. Selgitada valguskiirte sõltumatu levimise seaduspärasust. 7. Mida nim varjuks
suhe jääv suurus. 2. Murdumisnäitaja (n) näitab mitu korda on valguse kiirus antud keskkonnas väiksem kui vaakumis. 3. 4. Valguse üleminekul ühest keskkonnast teise muutub valguse kiirus, suund. 5. Murdumise valem: n = sinα / sinγ = v1 / v2 6. Lääts on kumerate või nõgusate pindadega läbipaistev keha. Jagunemine: kumerläätsed (koondavad valgust) ja nõgusläätsed (hajutavad valgust). 7. ← kiirte käik läätses. 8. Läätse valem: 1 / f = 1 / a + 1 / k 9. Läätse suurendus: S = k / a 10. Dispersioon on nähtus, mis näitab valguse lainepikkuse ja murdumisnäitaja seost. (Lisaks ↓) 1. Dioptria (ehk läätse optiline tugevus) valem: D = 1 / f (1/m dptr) 2. K / eseme kõrgus = kujutise kõrgus 3. F = a*k / a+k 4. Kui kujutisekaugus k on negatiivne, siis on tegemist näiva kujutisega, kui k on positiivne, siis on tegemist tõelise kujutisega.
1. Optika on füüsika osa, mis tegeleb valgusega seotud nähtuste uurimisega. 2. Valgusel on dualistlik iseloom st valguse puhul avalduvad nii leinelised kui kopuskulaaromadused. 3. Geomeetriline optika ehk kiirteoptika on optika osa , kus valguse levimist kirjeldatakse valguskiirte abil, milleks on ristsirged valguse lainepinnale (pinnanormaalid). 4. Punktvalgusallikaks nimetatakse valgusallikat või eseme piirkonda, mille mõõtmed on palju väiksemad kui kaugust vaatluskohani. 5. Valguse sirgjoonelise levimise seadus:ühtlases keskonnas levib valgus sirgjooneliselt. Ühtlae keskkond:laseb valgust läbi, on kõikjal phesuguse temperatuuriga,koosneb samast ainest. 7. Vari on ruumipiirkond, mida valgusallikas ei valgusta
1) kumerläätsed (kaksik kumerlääts, tasakumerlääts, nõguskumerlääts). Kumerläätsed koondavad valgust. Kõik kumerläätsed on servadest õhemad kui keskelt. 2) nõgusläätsed (kaksiknõguslääts, tasanõguslääts, kumernõguslääts). Nõgusläätsed on kõik keskelt õhemad kui servadest. Nõgusläätsed hajutavad valgust. Kiirte käik läätsedes 1) Valguskiir, mis langeb läätsele paralleelselt optilise peateljega, kulgeb pärast läätse läbimist läbi fookuse. 2) Valguskiir, mis langeb läätsele läbi fookuse, kulgeb pärast läätse läbimist paralleelselt optilise peateljega. 3) Kiir, mis langeb läbi läätse keskpunkti ja ei murdu. Läätse optiline tugevus Fookuse kaugust läätse keskpunktist nim. fookuskauguseks (f- fookuskaugus (m)). Kuna nõgusläätsedel on ebafookused, siis loetakse nende fookuskauguseid negatiivseks. Läätse optiliseks tugevuseks nim. tema fookuskauguse pöördväärtust. D=1/f ühik= dioptria(dptr).
Ultravalgus- valgus,mille lainepikkus on väiksem kui 380nm. väike läbitungimisvõime Röntgenkiirgus- lainepikkuste vahemikus 0,0110 nm. Gammakiirgus- kõige lühema lainepikkusega (suurusjärgus alla 10 pikomeetri) ja seega suurima sagedusega ning energiaga elektromagnetiline kiirgus. Maxwelli võrrandite süsteem elektomagnetlainete kirjeldamiseks Maxwelli võrrandeist järeldub matemaatiliselt keskkonnas valgusekiirusega leviva laine olemasolu. OPTIKA Geomeetrilise optika põhilised seadused 1) valguse sirgjoonelise levimise seadus: Ühtlases läbipaistvas keskkonnas levib valgus sirgjooneliselt. 2) Valguskiirte sõltumatu levimise seadus: Kui antud ruumipunktis kohtuvad kaks valgust, siis nad enamjaolt üksteist ei mõjuta. 3) Valguse peegeldumise seadus- Langev kiir, peegeldunud kiir ja pinnanormaal asuvad ühes tasandis. 4) Murdumisseadus: Kui esimeseks keskkonnaks on vaakum, siis on tegemist absoluutse murdumisnäitajaga
Valguse levimisel optiliselt hõredamast keskonnast optiliselt tihedamasse keskkonda murdub valguskiir pinna ristsirge poole. Valguse levimisel optiliselt tihedamast keskkonnast optiliselt hõredamasse keskkonda murdub valguskiir pinna ristsirgest eemale. Optiliselt ühtlases keskkonnas levib valgus sirgjooneliselt. Valguse murdumine: Prisma Valguse murdumine prismas: Valguse levimisel läbi prisma, muutub valgus prisma aluse poole. Lääts Läbipaistvast ainest keha, mis koondab või hajutab valgust nimetatakse läätseks. Läätsi liigitatakse kumer- ja nõgusläätsedeks. Kumerlääts: Nõguslääts: Läätse optiliseks peateljeks nimetatakse lääte kerapindade keskpunkte ühendavat sirget. Läätse optiliseks keskpunktiks O nimetatakse läätse keskel optilisel peateljel asuvat punkti. Kumerläätse fookuseks (F) nimetatakse punkti, kus pärast kumerläätse läbimist
- Valguse murdumine: valguse suuna muutumine valguse levimisel ühest optilisest keskkonnast teise. peegeldumisseadus - langemisnurk on sama suur kui peegeldumisnurk - Peegeldumine: laine suunamuutus kahe keskkonna lahutuspinnal, kus laine kas osaliselt või täielikult naaseb lähtekeskkonda. kumerlääts keskelt paksem, äärtest õhem, koondav, fookus 00:0201:28 Nõguslääts keskelt õhem, äärtest paksem, hajutav, ebafookus, k alati negatiivne Õhukese läätse valem D = 1a+ 1k= 1f D = 1a- 1k= 1f läätse iseloomustavad suurused - fookuskaugus: fookuspunkti ja läätse optilise keskpunkti vaheline kaugus - Optiline tugevus: (tähis 1dpt) 1 dioptria on sellise läätse optiline tugevus, mille fookuskaugus on 1 m. lääse abil kujutise kontstrueerimine
3. Mis on valguse murdumine? 4. Mida nim.antud keskkonna absoluutseks murdumisnäitajaks, selle füüsikaline sisu, milline keskkond on optiliselt tihedam, hõredam (valguse kiiruse ja abs. m. näitaja alusel)? 5. Mida nim. kahe keskkonna suhteliseks murdumisnäitajaks, seos valguse kiiruse, murdumisnäitaja ja lainepikkuse vahel? 6. Sõnasta valguse murdumisseadus, valem, tähised valemis? 7. Mida nim. läätseks? Läätse liigid. 8. Kumerlääts: kiirte käik, fookus, fookuskaugus. 9. Nõguslääts: kiirte käik, ebafookus, fookuskaugus. 10. Läätse valem, läätse optiline tugevus. 11. Mis on dispersioon? 12. Mida nim. spektriks? Spektrite liigid: pidev spekter, joonspekter. Nende omadused ja saamine. 13. Kiirguse liigid. (kiirguse tekkimise põhjus. Soojuskiirgus, kemoluminestsents, katoodluminestsents, elektroluminestsents, fotoluminestsents mõiste, ergastusenergia saamisviis, rakendusnäited.) 14. Mis on fluorestsents ja fosforetstsents? 1
TARTU ÜLIKOOL Tartu Ülikooli Täppisteaduste Kool Geomeetriline optika Koostanud Henn Voolaid ja Urmo Visk Tartu 2007 c 2007 Henn Voolaid, Urmo Visk c 2007 Tartu Ülikooli Teaduskool Geomeetriline optika 1 Sissejuhatus Geomeetriline optika ehk kiirteoptika on optika osa , kus valguse levimist kirjeldatakse valguskiirte abil, milleks on ristsirged valguse lainepinnale (pinnanormaalid). Võib ka öelda, et kiir on joon, mis näitab valgusenergia levimise suunda. Geomeetrilises optikas käsitletakse valgust sirgjooneliselt levivana, ükskõik kui väikestest avadest see läbi läheb. Teiste sõnadega, geo- meetrilises optikas loetakse valguse lainepikkus λ = 0 ja seetõttu pole vaja difraktsiooni või interferentsi arvestada. Geomeetrilise op-
31. Elektromagnetlainete liigitamine (EML skaala). raadiolaine(suur lainepikkus,väike sagedus) mikrolaine infrapuna nähtav valgus UV röntgenkiirgus gammakiirgus(väike lainepikkus,suur sagedus) 32. Elektromagnetlainete kasutamine. Raadio,röntgen,telefonides infrapuna,antennid 33. Valguse dualism, valguse laineliste ja kvantomaduste avaldumine- Valguse dualism- Valguse kahesugune iseloomustus. Laineline ja osakeste kiirgumine. Kvantomadused: laine c=*f kiirgus E=h*f 34. Geomeetrilise optika põhiseadused. valguskiired on üksteisest sõltumatud, valguskiired peegelduvad,ristjoon pinnaga valguse murdumise seadus, kiirte pööratuvuse seadus, valgus levib sirgjooneliselt ühtlastes keskkondades 35. Kiirte käigu kujutamine valguse peegeldumisel ja murdumisel- Kiirte pööratavuse seadus- Päripidises suunas ja vastupidises suunas liikudes liigub kiir sama teed mööda. 36. Valguse murdumisseadus. Absoluutne ja suhteline murdumisnäitaja. sin =n sin
Tööleht : Valguse ja aine vastastikmõju 1. Sõnasta geomeetrilise optika põhiseadused: Valguse sirgjooneline levimise seadus: ühtlases keskkonnas levib valgus sirgjooneliselt Kiirte sõltumatuse seadus : kiired ei mõjuta lõikumisel üksteise liikumist Valguse peegeldumise seadus: langemisnurk ja peegeldumisnurk on võrdsed Valguse murdumise seadus: langemisnurga ja murdumisnurga siinuste suhe on jääv suurus Kiirte pööratavuse printsiip: kiir läbib süsteemi pärija vastassuunas ühte teed mööda 2
Läätse keskel paikneb läätse optiline keskpunkt. Läätse optilist keskpunkti läbivat joont nim läätse optiliseks teljeks. Läätse fookusi läbivat joont nim optiliseks peateljeks. Punkti, kus koondub kumerläätse läbinud optilise peateljega paralleelne valgusvihk, nim läätse fookuseks. Läätse iseloomustatakse arvuliselt fookuskauguse ja optilise tugevuse abil. Fookuskauguseks nim läätse keskpunkti ja fookuse vahelist kaugust. Optiliseks tugevuseks nim fookuskauguse pöördväärtust. Optiline tugevus= 1/fookuskaugus D= 1/f Läätse optilise tugevuse ühik on dioptria (lühend 1dpt) Kujutis on optikaseadmega saadav esemega sarnane pilt. Fookustamine tähendab ekraani ja läätse sellise vastastikuse asendi leidmist, kus kujutise detailid on võimalikult selgepiirilised. Tõelist kujutist saab tekitada ekraanile.
3. KÜSIMUS: Sõnasta valguse murdumise seadus ning märgi joonisele langemis- ja murdumisnurk. Mis on langemis- ja murdumisnurk? (lk 28-29) VASTUS: Valguse levimisel optilisest hõredamast keskonnast optiliselt tihedamasse keskkonda murdub valguskiir pinna ristsirge poole (ja vastupidi). Langemisnurk [alfa] - nurk langenud kiire ja pinna ristsirge vahel. Murdumisnurk [gamma] - nurk murdunud kiire ja pinna ristsirge vahel. 4. KÜSIMUS: Mis on lääts? Mis on fookus ja fookuskaugus? (lk 34-35) VASTUS: Lääts läbipaistvast ainest keha, mis koondab või hajutab valgust. Fookus (F) punkt, kus pärast kumerläätse läbimist koondub läätsele langev optilise peateljega paralleelne valgusvihk. Fookuskaugus läätse keskpunkti ja läätse fookuse vaheline punkt. 5. KÜSIMUS: Kujutiste konstrueerimine kumer läätses: a) Ese asub kaugemal kui b) Ese on fookuse ja kahe c) Ese on läätse ja kahe
toimu aine muundumist. Näiteks: liikumine, sulamine, jäätumine 4. Milleks kasutatakse füüsikalisi suurusi? FÜÜSIKALINE SUURUS võetakse kasutusele nähtuse või keha omaduste täpseks iseloomustamiseks Füüsikalistel suurustel on tähised ja ühikud. Näiteks: Füüsikalised suurused on mass, kiirus, rõhk, teepikkus, jõud jne. 5. Mis on mõõtmine? MÕÕTMINE füüsikalise suuruse võrdlemine tema ühikuga 6. Mis on optika ehk valgusõpetus? OPTIKA füüsika osa, mis uurib valgusnähtuseid 7. Mis on valgusallikas? VALGUSALLIKAS keha, mis kiirgab valgust. Näiteks: päike, lambipirn, lõke, küünlaleek. *VALGUSKIIR valguse suuna kujutamiseks on võetud kasutusele valguskiire mõiste. *Ühetaolises (homogeenses) keskkonnas levib valgus sirgjooneliselt. 8. Miks näeme kehi? ME NÄEME KEHI, kui nendelt tulev valgus satub silma
Kumerläätsed on keskelt paksemad, äärtest õhemad, nõgusläätsedel on vastupidiselt. Läätse keskele märgitakse punkt O ja see tähistab läätse optilist keskpunkti. Läätse optilist keskpunkti läbivat joont nimetatakse läätse optiliseks peateljeks. Punkti kus koondub kumerläätse läbinud optilise peateljega paralleelne valgusvihk nim läätse fookuseks. Paralleelsed valguskiired lõikuvad alati fokaaltasandil. Nõgusläätse fookust nimetatakse ka ebafookuseks. Fookuskaugus on läätse keskpunkti ja fookuse vaheline kaugus. Optiliseks tugevuseks nim fookuskauguse pöördväärtust e D=1/f D-optiline tugevus (dioptria, dpt) f-fookuskaugus (m) Liitläätse D=D1+D2… Läätse tugevus on 1 dioptria, kui läätse fookuskaugus on 1m. Kujutis on optikaseadmega saadav esemesarnane pilt. Teravikustamine ehk fookustamine tähendab ekraani ja läätse sellise vastastikuse asendi leidmist, kus kujutise detailid on võimalikult selgepiirilised.
kaudu. Laine levimise kiirus on v=f* Eristatakse skaala jargi vasakul madalasageduslikud ja pikad, paemal korgesageduslikud ja luhikesed lained. EML omadused soltuvad nende lainepikkusest. Raadiolained on eml'dest koige pikemad. Luhemad lained levivad sirgjooneliselt ja ei levi tokete taha. EML peegelduvad juhtidelt tagasi ja raadiolainete levikuks on tingimata vajalik ionosfaari olemasolu. OPTIKA Geomeetrilise optika pohilised seadused ehk kiirteoptika a) homogeenses keskkonnas levib valgus sirgjooneliselt ja vaakumis kiirusega c=300 000 km/s b) uks valguskiir ei sega teiste levimist. Langev kiir peegeldub sama nurga alt tagasi, millega ta langeb. c) murdumisseadus kahe labipaistva keskkonna lahutuspinnal valguskiir murdub, langemis ja murdumisnurga siinus on jaav. sin/sin = n = v1/v2 Fotomeetria- optika haru, mis tegeleb valgusenergia mõõtmisega.
Nõgusläätsed on äärest paksemad ja keskelt õhemad. Kumerläätsed on äärest õhemad ja keskelt paksemad. Kujutletav joon, mis läbib läätse keskpunkti ja on risti läätsega nim. läätse optiliseks peateljeks. Punkti, kus optiline peatelg läbib läätse keskpunkti nim. optiliseks keskpunktiks. Punkti optilisel peateljel, kus lõikuvad temaga paralleelsed valguskiired nim. läätse fookuseks. Mida kumeram on lääts, seda väiksem on fookuskaugus (seda kiiremini valgus murdub). Kui kiiresti valgus läätses murdub iseloomustab läätse tugevus. D=1/f f=1/D D - Optiline tugevus f - Fookuskaugus (meetrites) Kujutised Kujutised tekivad kohas, kuhu koonduvad valguskiired või nende pikendused. Tõelise kujutise korral lõikuvad valguskiired ja teda saab tekitada ekraanile.
Nõgusläätsed on äärest paksemad ja keskelt õhemad. Kumerläätsed on äärest õhemad ja keskelt paksemad. Kujutletav joon, mis läbib läätse keskpunkti ja on risti läätsega nim. läätse optiliseks peateljeks. Punkti, kus optiline peatelg läbib läätse keskpunkti nim. optiliseks keskpunktiks. Punkti optilisel peateljel, kus lõikuvad temaga paralleelsed valguskiired nim. läätse fookuseks. Mida kumeram on lääts, seda väiksem on fookuskaugus (seda kiiremini valgus murdub). Kui kiiresti valgus läätses murdub iseloomustab läätse tugevus. D=1/f f=1/D D - Optiline tugevus f - Fookuskaugus (meetrites) Kujutised Kujutised tekivad kohas, kuhu koonduvad valguskiired või nende pikendused. Tõelise kujutise korral lõikuvad valguskiired ja teda saab tekitada ekraanile.
oluline ionosfääri olemasolu.Maxwelli võrrandite süsteem elektromagnetlainete kirjaldamiseks- elektromotoorjõud tähendab tööd, mida tegid mitteelektrilised (kõrval)jõud ühikulise laengu läbiviimisel kontuurist. Seda tööd võib kirja panna ringintegraalina - tsirkulatsioonina . Elektrivälja tugevuse tsirkulatsioon piki suletud kontuuri on võrdeline seda kontuuri läbiva magnetvoo muutumise kiirusega. Optika Geotmeetrilise optika põhiseadused-ehk kiirteoptika 1)homogeenses keskkonnas levib valgus sirgjooneliselt ja vaakumis kiirusega c=300 000km/s 2)üks valguskiir ei sega teiste levimist (peegeldumisseadus), et langev kiir peegeldub sama nurga alt tagasi kuidas langeb e peegeldumisnurk=langemisnurgaga 3)murdumiseadus-kahe läbipaistva keskkonna lahutuspinnal vaguskiir murdub , langemis-ja murdumisnurga siinus on jääv sina/sinb=n=v1/v2. fotomeetria- Fotomeetria on optika (valgustehnika) haru, mis tegeleb
01.2018, 18F47 . 12 15 omadused soltuvad nende lainepikkusest. Raadiolained on eml'dest koige pikemad. Luhemad lained levivad sirgjooneliselt ja ei levi tokete taha. EML peegelduvad juhtidelt tagasi ja raadiolainete levikuks on tingimata vajalik ionosfaari olemasolu. OPTIKA Geomeetrilise optika pohilised seadused ehk kiirteoptika a) homogeenses keskkonnas levib valgus sirgjooneliselt ja vaakumis kiirusega c=300 000 km/s b) uks valguskiir ei sega teiste levimist. Langev kiir peegeldub sama nurga alt tagasi, millega ta langeb. c) murdumisseadus kahe labipaistva keskkonna lahutuspinnal valguskiir murdub, langemis ja murdumisnurga siinus on jaav.
a eseme kaugus läätsest 1 1 1 k kujutise kaugus läätsest + = a k f f fookuskaugus 3. Lääts kahe sfäärilise pinnaga piiratud läbipaistvat keha. Õhuke lääts läätse paksus on võrreldes kõverusraadiusega kaduvväike. Kumerad läätsed koondavad (kaksikkumer, tasakumer, nõguskumer) ja nõgusad läätsed hajutavad (kumernõgus, tasanõgus, kaksiknõgus). Läätse fookus on selline punkt, kus koonduvad kõik valguskiired, pärast läätses murdumist, kui langevad läätsele paralleelselt optilise peateljega. 1)Kui ese asetseb läätse optilisel peateljel 2F kaugusel, on kujutis tõeline, pööratud ja sama suur. 2)Kui ese asetseb läätsest 4F kaugusel, optilisel peateljel on kujutis tõeline, pööratud, vähendatud. Mida kaugemale ese koondavast läätsest viia, seda väiksemaks muutub kujutis.