Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Rakenduselekroonika - sarnased materjalid

sisend, välju, väljund, võimendi, signaal, lülitus, kondensaator, võimendus, transi, kollektor, diood, sisendis, transistor, impulsid, moonutus, võrd, alalis, reziim, toitepinge, generaator, väljundis, induktiiv, võimendustegur, pingelang, alaldi, poolperiood, impulss, mahtuvus, pingest, sisendpinge, trafo, harmoon, kvarts, võimendid, reziimi
thumbnail
33
docx

Elektriajamid

EA06 Rakenduselektroonika Uudo Usai Võimendid 10.02.09 Võimendi on seade, mille abil toimub signaali amplituudi suurendamine sel määral, et signaalist piisaks võimendi väljundisse ühendatud tarbijale. See juures võimendamise käigus ei tohi signaal moonutuda. Võimendusprotsess toimub alati toiteallikate energia arvel, nii et võime vaadelda võimendit kui reguraatorit, mis juhib toiteallikate energijat tarbijatesse kooskõlas sisendsignaali muutustega. Võimendi sisendsignaaliks võib olla ükskõik milline elektriline signaal, milline on kasutamiseks liiga väikse amplituudiga. Näiteks mikrofon (1- 3mV), maki helipea (50-100mV), termopaar (10-40mV), elektrokeemilised andurid, pH meeter (100mV)

Rakenduselektroonika
81 allalaadimist
thumbnail
42
doc

Rakenduselektroonika konspekt

sagedus vahemikus. Sagedusest f1 kuni sageduseni f2. Kusjuures see võimendatav ribalaius võib sõltuvalt kasutusalast olla erinev ja ka võimendatavate sageduste väärtus võib samuti olla erinev sõltuvalt kasutusvaldkonnast. Näiteks katla leegi signaal on sageduspiirkonnas 10 kuni 40 hertzi ja sellise riba võimendus asub leegi regulaatoris. Eriti kitsa ribaga võimendeid kasutatakse raadio tehnikas vastuvõtja häälestamiseks soovitavale jaamale st. need võimendid peavad olema ümber häälestatavad. Tavalised valitakse selektiivseteks võimenditeks ja kui nad baseeruvad häälestatavatel võnkeringidel, siis ka resonants võimenditeks. 1.1.4. Lairiba võimendi

Elektrotehnika
148 allalaadimist
thumbnail
2
doc

Rakendus elektroonika(3)spikk

Impulss tehnika alused Impulss tehnikaks nimetatakse seda elektroonika osa, mis tegeleb impulsiliste saame 0tasemelise piiramise ülalt. Kui aga meil on dioodiga järjestiku pingeallikas, siis ei avane diood signaalide genereerimise, formeerimise ja võimendamisega. Impulsilisi signalle kasutatakse digitaal mitte väikeselisel positiivsel pingel vaid alles siis kui sisend pinge saab pingeallika pingest tehnikas, ning ka signaalide edastamisel, kui sinuselist signaali iseloomustatakse kolme parameetriga, positiivsemaks. Seega määrab kasutatav pingeallikas piiramis nivoo. Täpsemalt tuleb arvestada ka need on :Amplituud, Sagedus, Algfaas. Siis impulsiliste signaalide korral on vajalikke parameetreid dioodi päripinge langu, sest diood ei avane mitte 0sel pingel, vaid siis kui pinge on ületanud 0,5V. märksa rohkem

Rakenduselektroonika
38 allalaadimist
thumbnail
2
doc

Rakendus elektroonika(2)spikk

võimenduselemendid, mida võib kasutada väga mitmeti, sõltuvalt lisatud elementidest. Operatsioon takistus. Väljundtakistuse vähenemine on seda tugevam, mida tugevam on kasutatav tagasiside. võimendil on kaks väljundit, üks väljund ja teda toidetakse kahe polaarse sümeetrilise pingega (+, - maa Inventeerivvõimendi: suhtes). Plussiga tähistatud sisendit loetakse mitte inventeerivaks sisendiks ja sinna antav signaal tekkitab väljundis samafaasilise signaali. ­ tähistatud sisendit loetakse inventeerivaks sisendiks ja sinna antud signaal tekitab väljundis vastasfaasilise signaali. Op võimendi on alalispinge võimendi, seetähendab tema võimendus sageduse alumine piir on 0. see omadus tingib omakorda võimendi sees otsese sidestuse kasutamise ja vajaduse sümeetrilise toitepinge järele. Op võimendi võimendus tegur on väga suur vähemalt 20 000- 1 000 000 korda

Rakenduselektroonika
41 allalaadimist
thumbnail
32
doc

Rakenduselektroonika

suurendamine võimalikult väikeste signaali kuju moonutustega. E ­ + Usis Võimendi Uvälj Joon.1.1 Võimendil on alati kaks sisend-, kaks väljundklemmi ja temaga peab olema ühendatud alati energiaallikaks olev alalispinge allikas (joon.1.1). Sisendklemmidega ühendatakse signaaliallikas mille signaal vajab võimendamist. Väljundklemmidega aga ühendatakse see tarbija, millele antakse võimendatud signaal, milleks võib olla kas valjuhääldi, mingi relee mähis, mingi täiturmehhanismi juhtmähis jne. Nimetatud objektid on elektriliselt vaadeldavad takistustena ja seepärast me räägime üldistatult võimendi koormustakistusest. Võimendusprotsess toimub alati toiteallika energia arvel ja sellest seisukohast võiks

Elektriahelad ja elektroonika...
44 allalaadimist
thumbnail
1
doc

Rakendus elektroonika(1)spikk

Juhul kui saadud ülemisest sagedus piirist ei piisa tuleb võtta elementidest. Operatsioon võimendil on kaks sisendit,üksväljund ja teda toidetakse kahe kasutusele suurema transiitsagedusega Op võimendi. Op võimendite rakendusi: Oma polaarse sümeetrilise pingega (+,-maa suhtes).Plussiga tähistatud sisendit loetakse mitte nimetuse on Op võimendi saanud esmasest kasutus valdkonnast. Sest tema abil on inventeerivaks sisendiks ja sinna antav signaal tekkitab väljundis samafaasilise signaali. võimalik teostada elektriliselt matemaatilisi operatsioone, see tähendab liitmist, ­ tähistatud sisendit loetakse inventeerivaks sisendiks ja sinna antud signaal tekitab lahutamist, difenseerimist, integreerimist. Sumeeriva lülituse baas lülituseks on väljundis vastasfaasilise signaali. Op võimendi on alalispinge võimendi, seetähendab inventeeriv lüliti. Automaatikas on vaja aga sageli liita erineva tähtsusega signaale.

Rakenduselektroonika
32 allalaadimist
thumbnail
81
doc

Elektroonika aluste õppematerjal

......................................................................................................................................................24 4. TRANSISTORID Bipolar JunctioTransistor (BJT).......................................................................................................28 4.1.Transistori ehitus.................................................................................................................................................... 28 4.2 Võimendi sisend ja väljundtakistus......................................................................................................................... 28 4.3. Transistori tööpõhimõte..........................................................................................................................................29 4.4. Transistori kolm lülitust. .........................................................................................................................................30 4

Elektroonika alused
377 allalaadimist
thumbnail
59
pdf

Analoogelektroonika lülitused

Elektroonika alused. Teema 3 ­ Pooljuhtseadised 2 Lairibavõimendite alaliigid on videovõimendid (kasutatakse telerites, ostsillograafides) ning impulsivõimendid mitmesuguse kuju ja sagedusega perioodiliste impulsside võimendamiseks. Lairibavõimenditeks võib lugeda ka alalisvooluvõimendeid, sest neil on suhe fü / fa lõpmata suur Alalispingevõimendit, mille sisendis on diferentsaste (diferentsiaalaste) nimetatakse diferentsvõimendiks (diferentsiaalvõimendiks). Diferentsastme nagu ka diferentsvõimendi väljundsignaal on võrdeline tema kahel sisendil valitsevate potentsiaalide erinevusega (diferentspingega). Operatsioonvõimenditeks nimetatakse kõrgekvaliteedilisi alalispingevõimendeid, milliseid algselt konstrueeriti analoogarvutite ja automaatjuhtimissüsteemide jaoks,

Elektroonika alused
76 allalaadimist
thumbnail
114
doc

Elektroonika alused

Tööpunkt valitakse siis pärisuuna tunnusjoone järsult tõusval osal.. Kõrgema stabiliseerimispinge saamiseks ühendatakse neid kaks või kolm ühte korpusesse järjestikku. Selliseid seadiseid nimetatakse stabistorideks. Nende stabiliseerimispinge on väiksem kui stabilitronidel ja ka stabiliseeriv toime on väiksem. 2.5. Mahtuvusdioodid (Capacitance Diode) Mahtuvusdiood ehk varikap on ränidiood, mille puhul kasutatakse P-N-siirde mahtuvuse sõltuvust vastupingest. Diood toimib sel juhul elektriliselt tüüritava muutkondensaatorina, mille elektroodidevahelise dielektriku - siirde tõkkekihi paksus suureneb vastupinge suurenemisel. Põhiliselt kasutatakse mahtuvusdioodi raadiotehnikas võnkeringide häälestamiseks soovitud sagedusele, kus nad on välja tõrjunud varem laialdaselt kasutatud pöördkondensaatorid. Mahtuvusdioodi tüüpiline mahtuvuse sõltuvus pingest on toodud joonisel 2.3. 15 JOONIS 2.3.

Elektriahelad ja elektroonika...
144 allalaadimist
thumbnail
32
docx

Elektroonika piletid

Pilet 1. 1. Valgusdioodid Valgusdiood on pn-siirdega diood, mis muudab elektrienergiat optiliseks kiirguseks tavaliselt spektri nähtavas või infrapunases osas. Teatud ainete kristallis moodustatud pn-siirde päripingestamisel (pluss p-kihil) injekteeruvad augud n-kihti ning elektronid vastassuunas. Need injekteerunud augud ja elektronid rekombineeruvad pn-siirdes ja selle läheduses vastasmärgiliste laengukandjatega ning osa vabanevast energiast eraldub kiirgusena. Kuna p-kiht on kõigest mõne mikromeetri paksune, siis väljub kiirgus kristallist

Elektroonika
76 allalaadimist
thumbnail
17
docx

Elektroonika alused Konspekt

Kondensaator C = Q/P ; [F] 1 - dielektrik 2 - metall plaat S­ U ­ Pinge d- Film Capacitor (Kile kondendsaator) Isolatsiooni kile paksus 2-20 mikromeetrit, Parameeter Polüester Polükarbonaat Polüstüeer Mahtuvus 100pF - 22nF 100pF - 68µF 10pF ­ 0,5µF Sagedus 1MHz 1MHz 10MHz Tolerants ±5-20% ±5-10% ±1-5%

Elektroonika alused
53 allalaadimist
thumbnail
23
doc

Elektroonika alused (konspekt)

sagedus võib olla 20 KHz kuni 100 KHz. Alaldusdioodid on suure võimsuselised dioodid. Nende lubatavad pärivoolud on poolest amprist kuni tuhande amprini, lubatavad vastupinged kuni 3 KV. Dioode valmistatakse nii üksikelementidena kui ka komplektidena, mingiks kindlaks kasutuseks. Nii näiteks on levinud: a. Dioodsillad, kus ühises korpuses paikneb neli dioodi (joonis 1) b. Diood sambad, kus suurema vastupinge saamiseks on järjestikku ühte kesta ühendatud terve rida dioode (joonis 2) Alaldusdioodide omadusi iseloomustatakse järgmiste parameetritega (joonis 3): 1.) Suurim lubatav pärivool, see on pärivool kesk väärtus, mis võib dioodi läbida, ilma tema riknemiseta 2.) Suurim lubatav vastupinge, see on lubatava vastupinge hetk väärtus. Selle ületamisel võib tekkida dioodis läbilöök. 3

Elektroonika
235 allalaadimist
thumbnail
197
pdf

Elektroonika

................................................................................... 195 2 1.Elektroonika ajaloost Elektroonika osad 3 4 Elektroonika ajaloost XIX sajandi lõpp ­ XX sajandi algus Alaldid, Cu O, Se, ... Raadio leiutamine. Säde, koherer, Morse A.Popov - 1889.a; vastuvõtja - 1895.a G.Markoni - 1897.a - patent. 1904.a. - elektronlamp, - diood - J.Fleming - alaldi, - detektor. Voolu juhib ühes suunas. Dioodi ehitus: Kui anoodil on + potentsiaal, siis tekib elektronide liikumine katoodist - anoodile. 1907.a. - Li de Forest - elektronvaakumtriood. 5 6 Elektroonikas: potentsiaal on pinge mingi väljavalitud ühise elektroodi (juhtme) suhtes. Võre potentsiaal on negatiivne - selleks, et ei tekiks võrevoolu.

Elektroonika ja IT
74 allalaadimist
thumbnail
6
doc

Füüsika harjutusi eksamiks

Kõigil juhtudel peaksite eksamil teadma ka tööpõhimõtet ja vastavaid skeeme (dioodil, Zener dioodil, RC,RL ja RCL ahelatel). Signaali käigu skitseerimise all on mõeldud seda, et peaks joonistama signaali kuju (näiteks siinuselise signaali mõne perioodiga) ja juurde kirjutama sageduse või perioodi ning amplituudi. 1. Skitseerige signaali käik RC madalpääsfiltris 16,7 kΩ takistiga ja 120 nF kondensaatoriga, kui siinuseline signaal on 10 V amplituudiga ja sagedus on 7,96 Hz, 137,8 Hz või 967 Hz. Milline on 7,96 Hz ja 796 Hz signaali korral ahelat läbiva voolu amplituud? (ω0 = 500 s-1 e. 79,6 Hz ja signaal väljundis on vastavalt Uv = 0,995Us, 0,5Us ja 0,0995Us ehk ligikaudu sama, 2 korda väiksem või 0,1 esialgsest signaalist. Voolu amplituud on 0,06 ja 0,6 mA) 2. Skitseerige antud skeemi korral Thevenini ja Nortoni ekvivalentskeemid ja tuletage neid iseloomustavad parameetrid

Füüsika
7 allalaadimist
thumbnail
9
docx

Elektroonika vastused

4V 45. Mitu iooni on dipoolis? 2 46. Kuidas nimetatakse kristalli piirkonda p-tüüpi ja n-tüüpi osade vahel? pn-siire 47. Millist nähtust nimetatakse laviiniefektiks? Reversivne ülepinge 48. Kuidas nimetatakse pinget, mille juures tekib laviiniefekt? Läbilöögipinge 49. Millist nähtust nimetatakse Zeneri efektiks? Reversivne ülepinge 50. Kuidas nimetatakse pinget, mille juures tekib Zeneri efekt? Zeneri pingeks 5.2.1. Küsimused dioodidest ja türistoridest 1. Mis liiki seadis on diood? Mitte linearne 2. Kuidas on mittejuhtiv diood eelpingestatud? Vastu pingestatud 3. Mis liiki takistus on dioodil? Põhitakistus 4. Kas on see hea, kui dioodi pingelang on väike? Jah 5. Kuidas on diood eelpingestatud, kui dioodi vool on suur? Otse pigestatud 6. Millist pinget nimetatakse dioodi põlvepingeks? 7. Milline on dioodi lekkevool võrreldes pärivooluga? Lekkevool väiksem pärivooluga 8. Milline näeb välja dioodi karakteristik ülalpool põlve? Peaaegu vertikalne 9

Elektriahelad ja elektroonika...
112 allalaadimist
thumbnail
32
doc

Skeemitehnika konspekt

E UC UR  IL  R   R  E UC IL 1 + E R R IT 2 Alghetkel on laadimisvool IL suurim, sest kondensaator on tühi ja tema sisetakistus on väga väike. Seejärel hakkab laadimisvool vähenema, sest UC hakkab 4 Skeemitehnika. SS-98. suurenema ja püüab jõuda toiteallika pingeni E. Kuna UC polaarsus on vastupidine E suunaga, siis E ja UC vahe väheneb pidevalt. Pinge takistil R on võrdeline laadimisvooluga: U R  I L  R . U C

Telekommunikatsionni alused
45 allalaadimist
thumbnail
12
doc

Võimendi projekt

Transistorvõimendite Kh ei ületa keskmistel sagedustel 1%. Teatud lülitustehniliste võtetega on saavutatav palju parem tulemus, kus Kh = 0,01%. Talitussagedusala alumise ja ülemise piiri alas harmooniliste tegur teataval määral suureneb. Signaaliallika ja võimendi baasi karakteristikud ei ole alati täpselt teada ja seetõttu loetakse, et nende harmooniliste tegurid liituvad geomeetriliselt. Kui näiteks võimendisse, mille Kh1 = 1% anda signaal magnetofonist, mille Kh2 = 2%, siis võimendi väljundsignaali Kh = ruutjuur (Kh1 ruudus + Kh2 ruudus). Sagedustunnusjoon Määrab alumise ja ülemise piirsageduse, millel sagedusmoonutus jääb etteantud piiridesse. Tehniliselt ei valmista raskusi teha võimendi sagedusalaga mõnest Hz-st kuni 100 kHz-ni, kuid valdava enamiku heliallikate sagedused koos ülemtoonidega mahuvad sagedusalasse 40...14 000 Hz. Seetõttu võimendi oluliselt laiem talitussagedusala ei paranda kuigivõrd heli

Elektriaparaadid
46 allalaadimist
thumbnail
42
doc

Raadiovastuvõtuseadmed

juhtimine VV sisendlülitusse. 2. VV sisendlülitused ehk sisendvooluringid Nende ülesanne on sidestada VV antenn VV esimese astmega nii, et antennist kanduks sisendile võimalikult suur osa soovitava sagedusega KS- energiast. Samal ajal peab sisendlülitus............ 3. Detektor ehk demodulaator Eraldab moduleeritud või manipuleeritud raadiosageduslikust kandevsagedusest ülekantav infot sisaldav kasulik signaal. Nt: raadioringhäälinguks helisignaal, TV-signaali puhul nii pildi. Kui ka helisignaal, milleks kasutatakse kahte eraldi detektorit. Detektori tööpõhimõtte lülitus sõltub moduleerimise liigist (AM, FM, SSB, IM). *Ainult antennist ja detektorist koosnev vastuvõtja toimib täielikult antennist saadava KS-energia arvel, mistõttu tundlikkus ja tarbijale ülekantav väljundvõimsus on väga väikesed, sõltudes oluliselt:

Raadiovastuvõtuseadmed
49 allalaadimist
thumbnail
46
doc

Elektroonika Alused

Kondekast ja takistist koosnev madalpääsfilter. Skeem, ülekandeteguri tuletuskäik, sagedustunnusjoone graafik. Kondekst ja takistist koosnev kõrgpääsfilter, skeem, ülekandeteguri tuletuskäik, sagedustunnusjooned. Sagedustunnusjoone esitus logaritmilises skaalas, detsibell. Selline filter kannab üle madalad sagedused ja kõrvaldab kõrged sagedused. Kõrgetel sagedustel lühistatakse kondensaator. Kondensaatori takistus on seda suurem, mida madalama sagedusega on vool. Kui on tegemist alalisvooluga, siis vool läbi takisti ja RK ( kondensaatori takistus) on suur. Kui aga kõrgsagedusvool, siis enamik voolu läbi kondensaatori ja RK on suur, et vool suudaks kondensaatori plaate korralikult laadida. 1 j X(täpp)C = =- jC C (täpp) tähistab tuletist aja järgi. Ohmi seadus: v(täpp)s = vK + vC , kus vK = I*R ja vC = -j/C

Elektroonika alused
149 allalaadimist
thumbnail
3
doc

Elektroonika eksamiks

laengukandjate rekombinatsiooni tõttu. Vooluläbimisel pn- siiret, osa elektrone muudavad 1. JOONIS123 Neljakihiline struktuur, energiat, vahetavad orbiite, vabaneb energiat ning vabanev energia kiiratakse valgusena. n: kolm siiret, (nagu 2 transsi pnp ja npn, infrapunane. Algul vaid peen valgus praegu olemas kollane, sinine, roheline. Pinge umbes 2V. kus pnp kollektor =npn baas ja npn valmistatakse (gallium arseeniid fosfiid). Kasutatakse optronites (valgusallik+valguse vastuvõtja). kol=pnp baas), sisemine pos tagasiside, Dioodoptron kiireim 10-8s. Inertsivaba ja saab ise valida spektri. neg pinge puhul blokeerub. K-|p|n|p|n|-A. 2. Võimendus astme põhiparameetrid: Ku=Uvalj/Usis, Ki=Ivalj/Isis, KP=Pvalj/Psis=Ku*Ki. Vahend voolu sisse-välja lülitamiseks,

Elektroonika
512 allalaadimist
thumbnail
240
pdf

Elektriajamite elektroonsed susteemid

..........................237 Komponentide tootjad ...........................................................................................................237 Aineregister................................................................................................................. 238 5 Tähised Sümbolid A võimendi q töötsükkel B andur R takistus kondensaator r raadius D digitaalseade S lipistus G generaator s operaator L reaktor, drossel T periood, ajakonstant M mootor t aeg R takisti U pinge S lüliti v kiirus T trafo X reaktiivtakistus VD diood x,y tasandi teljed

Elektrivarustus
90 allalaadimist
thumbnail
3
doc

Elektroonika alused kordamisküsimused

Mis on alfa? 29.Ühise emitteriga võimendusastme skeem, töötamise põhimõte ja omadused. Mis on Beeta? 30. Emitterjärgija skeem, töötamise põhimõte ja omadused. 31. Vaakumdioodi töötamise põhimõte ja tingmärk. Võrdlemine pooljuhtdioodiga 32. Vaakum-fotoelement. Ehitus ja tööpõhimõte 33.Elektronkordisti ja fotoleketronide kordisti ehitus ja töötamise põhimõte. 34. Thevenini teoreem. Sõnastus ja seletus. 35.Mis on võimendusastme sisend ja väljundtakistus? Seletus thevenini teoreemi abil. 36.Kuidas lülitada mõõduriistu võimendi omaduste mõõtmiseks? Joonestage skeemid. 37.Arvutada pingejaguri sisend ja väljundtakistus. 38.Arvutada Zener-dioodiga pingestabilisaator. 39.Ühise emitteriga pingevõimenduastme lihtsustatud arvutus. 40. Kuidas saaks transistorastme tööpunkti fikseerida? Kaks skeemi, nende omadused. 41. A-klassi võimsusvõimendusastme skeem ja omadused. 42. B-klassi SAMA TEEMA.^^^ 43

Elektroonika
136 allalaadimist
thumbnail
5
doc

Spikker elektroonika eksamiks

Metall-Oksiid-Pooljuht transistor. n ja p-kanaliga. 9.Pooljuhtdiood. Harilikult ühe pn-siirde või metall-pooljuhtkontaktiga ja kahe väljaviiguga pooljuhtseadis elektriliste suuruste muundamiseks. On töökindlad, kiiretoimelised, väikesed ja kerged ning tarbivad vähe võimsust. Kasut. Vahelduvvoolu alandamiseks, sageduse muundamiseks jne. 10.Dioodloogika. Võimendust teha ei saa, suuri pingeid sisse lasta pole ka mõtet. Dioodloogika realiseerib fakti, et elektrooniline seadeldis nimega diood juhib voolu ühes suunas ja sellele ühele suunale vastupidises suunas ta voolu ei juhi. Selles suhtes käitub diood nagu elektrooniline lüliti. Dioodloogika kasutab dioode, et teostada loogilisi AND ja OR funktsioone. Dioodloogikalülitused on väga lihtsad ja nad pole üldse kallid ning spetsiifilistes siutatsioonides saab neid väga efektiivselt kasutada. Sellegipoolest ei saa neid eriti laialt kasutada, kuna nad kipuvad digitaalset signaali kiiresti ära rikkuma

Elektroonika
464 allalaadimist
thumbnail
30
pdf

Teema 5, Elektro- ja süsteemtehnika põhimõisted I.osa

Niikaua kui kordaja on sama nii R1 kui R2 jaoks, jääb attenuaatori sumbumustegur samaks. Elektroonika alused. Teema 5 ­ Mõned elektrotehnika ja süsteemitehnika põhimõisted. Passiivsed resistiivsed vooluahelad. SDER 3. loeng 10.02.2011 19 (19) Arvutusnäide [2] Z0 -attenuaator on ette nähtud koormamiseks mõlemast suunast impedantsiga Z0. Sellised attenuaatorid on sümmeetrilised. Isegi kui nende sisend ja väljund on tähistatud, on sisend ja väljund omavahel vahetatavad. Kuna vaadeldavate attenuaatorite impedants on nii sisendil kui väljundil sama, siis on nende sumbumustegur detsibellides sama suur nii pinge kui võimenduse jaoks. Elektroonika alused. Teema 5 ­ Mõned elektrotehnika ja süsteemitehnika põhimõisted. Passiivsed resistiivsed vooluahelad. SDER 3. loeng 10.02.2011 20 (20)

Elektroonika alused
61 allalaadimist
thumbnail
32
doc

Elektroonika

emitteriga trans baasi ahelas asendab DTL-s dioode, kui kas või üks em maas, siis baasi vool maha 3NAND. TTL aeglane: 10ns ümberlülitus. TTLS-kiirem. T1 asemel mitu BT-i mis võivad küllastuda, so hakata aeglaselt ümber lülituma 12pdf 3. kiireim ja lihtne, kallis sest head komparaatorid kallid ja vaja palju, 3 järgu jaoks vaja 7-t. 2kordse integreerimisega. 14pdf 4. suured voolud madalad pinged. Mähkida sekundaarmähis kahe traadiga korraga. Sekund- mähisel keskelt väljavõte. Diood üleval/all, alumine ühendatud ülemise ette. Tarbija ülemise mähise peal. Ud=0.9U2. q1=0.67=1/m2-1, m-pulsatsioonide arv alaldatava pinge perioodide peal. 10pdf 5. ÜK-lülitus. Trans üles, lin. elem. alla. Takisti pingelang=väljund Usis>~Uvalj. Pinge järgi võimendust pole, voolu järgi küll. Tänu suurele sisendtakile kas puhvrina. Sign arvutusel Emitterist läbi RE maha. Rsis on suur=h11e+(1+h21e)RE~ 5pdf Pilet 11. 1. alaldava siirde tekkimise tingimus 2

Elektroonika
57 allalaadimist
thumbnail
32
docx

Elektroonika aluste eksami küsimused ja vastused

12. Kolmnurksignaal, saehammassignaal. 13. Logaritmilise skaala kasutamine signaalide amplituudide võrdlemisel. 14. Pulsi laiuse modulatsiooni (PWM) olemus. Sagedusmodulatsioon. Siinussignaali ja saehammassignaali kasutamine PWM (pulse width modulation) diskreetsignaali genereerimiseks. Kasutatakse sagedusmuundurites asünkroonmootorite juhtimiseks. D-klassi võimendid.Inverterid. Amplituudmodulatsioon. 15. Mis on filter? Pääsuala, tõkkeala. Filter on lülitus teatava tunnusega signaalide eraldamiseks mitmesuguste signaalide segust. Tunnuseks, mille järgi signaale eristatakse, on sagedus. Mis on pääsuala? Sagedusvahemik, kus kõik signaalid pääsevad nõrgenemata filtrist läbi. Filter avaldab väikest sumbuvust. Mis on tõkkeala? Sagedusvahemik, kus filter tõkestab täielikult kõik signaalid, mis ületavad piirsagedust. 16. Kui suurt signaali nõrgenemist lubatakse pääsuala piirsagedusel e. lõikesagedusel? Seda ma, kahjuks, ei tea 17

Elektriahelad ja elektroonika...
67 allalaadimist
thumbnail
10
doc

Mõõtmised

tuleneb dioodi volt-amperkarakteristikust Seetõttu ei saa sellist detektorit kasutada väikeste pingete (kuni 1V) mõõtmisel Ka siis kui sisendsignaal sisaldab alalis-komponenti võib mõõtetulemus olla vale Alaliskomponendi mõju kõrvaldamiseks saab kasutada tippväärtuse detektori veidi keerulisemat lülitust 2 Eelmisel joonisel kujutatud lülituses kondensaator Ck tõkestab sisendsignaali alaliskomponendi Kasutatakse ka tippväärtuse detektorit, mis sisaldab endas praktiliselt kahte detektorit: ühte positiivsete ja teist negatiivsete tippväärtuste mõõtmiseks Mõlemad toodud tippväärtuse detektorid mõõdavad pinge täisulatust, mitte ühe-poolset tippväärtust Silumisfiltri ajakonstant t = RC peab olema märgatavalt suurem vahelduvsignaali suurimast perioodist T

Telekommunikatsionni alused
18 allalaadimist
thumbnail
6
pdf

Transistorid

jne. Bipolaartranse juhitakse VOOLUGA, väljatranse aga PINGEGA. Siit tuleb suur erinevus kasutamise seisukohast - nõrka (vähe koormust kannatav allikas, mitte väikese pingega!), ntx. manetofoni või grammofoni helipea signaali on sellise transiga paha võimendada sest ta koormab signaaliallika ära. Väljatransistori puhul seda ohtu ei ole. Bipolaartransil on tavaliselt 3 otsa: - baas ehk juhtelektrood, - emmitter, - kollektor. On ka eritransistore, milledel mõni jalg puudub (ma mõtlen ikka terveid eksemlare ;) või on mõni mitmekordselt. Ntx. nn ühesiirdetransid, milledel on 2 baasi ja kollektor puudub. Väljatranside ja bipolaartranside head omadused on kokku võetud nn IGBT (injected gate bipolar transistor) transides. Nad on juhitavad kui väljatransid (hea: suur sisendtakistus), koormuse poolelt aga käituvad kui bipolaartransid. Rakendatakse ntx. fotoaparaatides välgu lülitamise juures.

Elektrimaterjalid
27 allalaadimist
thumbnail
20
docx

IMPULSS – STABILISAATORIGA TOITEPLOKK

Tavaliselt kontrollib lülitit pulsilaiusmodulaator, lüliti püsib kauem suletud olekus kuna koormus tarbib rohkem voolu ja pinge tahab langeda, sageli kasutatakse kindla sagedusega ostsillaatorit lüliti juhtimiseks [2]. Joonis 2. Lüliti, pooli, dioodi ja sisendi voolud [2] Voolu lainekuju diagrammil on näha, et pooli vool on dioodi ja sisendi voolude summa. Vool liigub kas läbi lüliti või dioodi. Kondensaator paigaldatakse väljundisse, et pinge kõikumisi siluda, eriti lüliti avamise ja sulgumise üleminekutel [2]. Joonis 3. Pingeregulaatori plokkskeem [3] Joonisel on impulss-stabilisaatori plokkskeem. Koormusel olev pinge läheb läbi tagasiside ahela mikroskeemi ja läbi operatsioonivõimendi komparaatorisse. Kui 52 kHz ostsillatori pinge langeb alla mitte-inverteeriva sisendi pinge, siis lastakse läbi kõrgeim läbilastav

Elektroonika
35 allalaadimist
thumbnail
158
pdf

Elektriajami juhtimine

Tallinna Polütehnikum Energeetika õppesuund Rein Kask ELEKTRIAJAMITE JUHTIMINE Õppevahend TPT energeetika õppesuuna õpilastele Tallinn, 2007 Saateks Erialaainete õpikute ja muude õppevahendite krooniline puudus on juba palju aastaid raskendanud kutsehariduskoolide õpilastel omandada erialaseid teadmisi. Käesolev kirjatöö püüab mingilgi määral leevendada seda olukorda Tallinna Polütehnikumi energeetika õppesuuna õpilastele sellise õppeaine kui ,,Elektriajamite juhtimine" õppimisel. Elektriajamid on üheks põhiliseks elektritarvitite liigiks ja neid kasutatakse laialdaselt kõikides eluvaldkondades. On selge, et tulevased elektriala spetsialistid peavad neid hästi tundma ja oskama neid ka juhtida. Elektriajamite juhtimine ongi valdkonnaks, mida käsitleb käesolev õppevahend. Selle koostamisel on autor lähtunud põhimõttest selgitada probleeme nii põhjalikult kui vajalik ja nii napilt kui võimalik ­ siit ka õppe-

Elektriaparaadid
86 allalaadimist
thumbnail
54
pdf

praktiline elektroonika 1-2: Analoogskeemid

Praktiline elektroonika I Analoogskeemid Veljo Sinivee [email protected] Kondensaatorid · Kondensaator on nagu veeanum ­ kogub elektrone.Erinevalt veepurgist on tühjas kondes alati elektrone · Juhib vahelduvvoolu, alalispingele lõpmatu takistus (v.a. laadimisel). Miks? · Polaarsed, mittepolaarsed ja unipolaarsed konded · Max. pinge, töötemperatuur, ehitusest tulenevad omadused (induktiivsus, lekkevool jne). · Ühik ­ Farad (Maa mahtuvus ca 700 nF). Skeemil sümbol C · Kasutatakse pinge silumiseks toiteallikates (vihmaveetünn) ; viidete tekitamiseks; filtrites;

Elektriahelad ja elektroonika...
51 allalaadimist
thumbnail
46
pdf

Teema 3, Pooljuhtseadmed

(ühise baasiga lülituse staatilist vooluülekandetegurit) ning väiketähega a vahelduvvoolu ülekandetegurit. Kuna A » a, siis tihti ei tehta tekstides nende vahel vahet. Transistori võimendusefekt põhineb asjaolul, et tänu baasi üliväikesele paksusmõõtmele põhjustab juba väike vool baasi ja emitteri vahel märksa suurema voolu emitterilt kollektorile. Mida vähem laengukandjaid baasikihis rekombineerub (hävib), seda suurem on transistori võimendus. Sellepärast ei saa transistori koostada kahest dioodist, sest kahe katoodi või anoodi vahel oleks elektronide jaoks liiga pikk tee, kus kõik laengukandjad rekombineeruksid, jõudmata läbida kollektorsiiret. Joonisel on näidatud emitteri- ja kollektorivoolude füüsikaline voolusuund (elektronide liikumise

Elektroonika alused
100 allalaadimist
thumbnail
11
doc

Elektroonika kordamisküsimused

...................................................................................................................1 1.1.Elektroonika ajaloo põhietapid.............................................................................1 1.2.Mis on elektronlamp.............................................................................................2 1.3.Elektronkiiretoru.................................................................................................. 2 1.4.Mis on võimendi...................................................................................................2 1.5.Analoog ­ ja digitaalelektroonika erinevus..........................................................3 1.6.Elektroonika passiivkomponendid....................................................................... 3 1.7.Dioodi ehitus ja funktsioneerimine...................................................................... 4 1.8.Stabilitron ja selle kasutamine..........................

Elektroonika
403 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun