Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Metallide tehnoloogia, materjalid eksam 2015 - sarnased materjalid

tera, metall, malm, sulam, süsinik, keevitus, kõvadus, laast, plasti, soojus, frees, lõikur, malmid, elektrood, valand, plastid, valandi, ultraheli, plastse, laastuöödeldav, aatom, plastsus, rauas, alumiiniumeimik, sulamideimiku, süsinikusisaldusermotöötlus, abrasiiv, metallurgia, räbu, operatsioon, deformatsioon, kärnõmbetugevus
thumbnail
5
docx

Metallide Tehnoloogia II Eksami Spikker

Elektrometallurgia; 7. Lahutustasand; 8. Alumine- ja ülemine 4. Pulbermetallurgia vormipool 2) Kõrgahi 3) Koorikvalu Täidise moodustavad rauamaak, koks ja räbusti. Koorikvorm ­ 8...12 mm paksuse seinaga vorm, 1. Täidisseade 2. Suue 3. Kaevus 4. Mõhk mis valmistatakse kuumutatud metallmudeli abil. 5. Turi 6. Kolle 7. Malm 8. Räbu Vormimaterjalid: liiv, polümeervaik (6...7%). Kõrgahjuprotsessid: Tehnoloogia: 1. A. Kütusepõlemine (1800- 2000) 1. mudelplaadi kuumutamine 200...250 °C - 2. Rauaredutseerimine (1000- 1400) otsene punkrile kinnitamine, redutseerimine 2. mudelplaadi katmine, 3. Raua rikastumine süsinikuga (400- 1000) 3. kooriku saamine,

Metalliõpetus
58 allalaadimist
thumbnail
7
docx

Metallide tehnoloogia

Terasel on 500...600°C. Külmsurvetöötlemisega kaasneb kalestumine (deformatsiooni aste on piiratud). Kuumsurvetöötlemine ­ survetöötlemine temperatuuridel, mis on üle Me-sulami rekristslliseerumistemperatuuri. Terasel on · Veealuseks keevitamiseks kasut elektroodkeevitust 37. MIG/MAG keevitus MIG/MAG keevitus (sulava elektroodiga kaarkevitamine kaitsegaasis) - MIG-keevitamine (kakevitamine inertgaasis nt. argoonis)

Materjaliõpetus
33 allalaadimist
thumbnail
58
pdf

Metallide Tehnoloogia 2. Referaat

metallvormi (kokilli) valu. 7. Kõrgahi 1. Ahjutäidis 2. Suue 3. Kaevas 4. Mõhk 5. Turi 6. Kolle 7. Malm 8. Räbu A Kütuse põlemine (1800 - 2000°C) B Otsene redutseerimine (1000 - 1400°C) Joonis 4. Kõrgahi C Kande redutseerimine (400 – 1000 °C) Kõrgahjuprotsess seisneb oksiidse rauamaagi redutseerimises koksi abil

Metalliõpetus
57 allalaadimist
thumbnail
86
pdf

Materjalid

sõnast materia, mis tähendabki ainet. Milline terasemark võtta, kui jalgratta esirattale oleks Materjalid, mis on pärit loodusest endast, on vaja treida uus võll? Kui kõrget temperatuuri kanna- looduslikud materjalid. Inimene kasutab neid, kui tab elektrimootori mähise isolatsioon? Mille poolest vaja, oma huvides, ent ta on loonud väga palju erineb malm terasest? materjale ka ise ­ selliste omadustega, nagu ühe või Mistahes materjali omadused olenevad teise asja jaoks on tarvis. Tehnikas kasutatavad kõigepealt tema koostisest, struktuurist ja saamis- materjalid ­ tehnomaterjalid ­ ongi enamikus nii- viisist. sugused materjalid. Materjaliõpetus, mis moodustab käesoleva

335 allalaadimist
thumbnail
52
pdf

Metallide Tehnoloogia 1 Referaat

Joonis 9. Väsimusteimi skeem pöörleva painde korral 9 6. Mittepurustavad katsed Metalltoodete mittepurustava kontrolli (MPK) meetodite ülesanneteks on: 1)defektide avastamine toodete pinnal või nende sisemuses (poorid, praod, räbulisandid jms.); 2)materjalide keemilise koostise ja struktuuri määramine; 3)füüsikaliste ja mehaaniliste omaduste mõõtmine (soojus- ja elektrijuhtivus, kõvadus jt.); 4)tehnoloogiliste protsesside pidev kontroll (toote pikkus, paksus, pinnakvaliteet jt.) 6.1. Brinelli kõvaduse katsed Kõvaduse määramisel Brinelli meetodil surutakse katsetavasse materjali karastatud teraskuul läbimõõduga (D) kuni 10 mm ja jõuga (F) kuni 29400 N (e. 3000 jõukilogrammi – kgf). Brinelli kõvadusarv määratakse kuulile toimiva jõu ja sfäärilise jälje pindala suhtena. Joonis 10. Brinelli kõvaduse määramise skeem 6.2. Rockwelli kõvaduse katsed

Metalliõpetus
46 allalaadimist
thumbnail
56
docx

Stenogramm eksamiks kokkuvõttev konspekt

allajahutusaste väike ja kristalliseerumine leiab aset tasakaalutemperatuurile lähedasel temperatuuril. Jahtumiskõveral iseloomulik horisontaalne lõik (jahtumine seiskub ja jahtumiskiirus on null, vaatamata sooja äravoolule jahtumisel) on tingitud kristalliseerumissoojuse eraldumisest. Jahtumiskiiruse kasvades suureneb ka allajahutusaste ja kristalliseerumine toimub tasakaalutemperatuurist märgatavalt madalamal temperatuuril. Mida puhtam on metall, seda enam on ta kalduv allajahutusele. Tavaliselt ei ületa allajahutusaste 10...30 °C. JOONIS Faasid ja mehaanilised segud Sulami faas - termodünaamilise sulamisüsteemi kõigi ühesuguse keemilise koostisega ja ühesuguste füüsikaliste omadustega osade kogum, mida süsteemi teistest osadest eraldab piirpind. Mehaaniline segu- mehaanilise segu korral koosneb sulam komponentide A ja B kristallidest. Kui niisuguses sulamis uurida komponentide A ja B kristallide omadusi üksikult, siis

Tehnomaterjalid
25 allalaadimist
thumbnail
7
docx

Metallide tehnoloogia kontrolltöö kordamiseks

muutvad pinged (surve-tõmbepinged), mis põhjustab pragude teket.(väsimuspiir). Mittepurustavad katsed Metalltoodete mittepurustava kontrolli (MPK) meeto- dite ülesanneteks on 1) defektide avastamine toodete pinnal või nende sisemuses (poorid, praod, räbulisandid jms.); 2) materjalide keemilise koostise ja struktuuri määramine; 3) füüsikaliste ja mehaaniliste omaduste mõõtmine (soojus- ja elektrijuhtivus, kõvadus jt.); 4) tehnoloogiliste protsesside pidev kontroll (toote pikkus, paksus, pinnakvaliteet jt.) Kõvaduskatsed Enamlevinud mooduseks on kõvaduse mõõtmine otsaku sissusurumise teel. Kõvaduse määramine Brinelli meetodil Kõvaduse määramisel Brinelli meetodil surutakse katsetavasse materjali karastatud teraskuul läbi- mõõduga (D) kuni 10 mm ja jõuga (F) kuni 29400 N (e. 3000 jõukilogrammi ­ kgf). Brinelli kõvadusarv määratakse kuulile toimiva jõu ja sfäärilise

Materjalitehnika
37 allalaadimist
thumbnail
44
docx

Tehnomaterjalide stenogramm

..-150 °C. T50 - temperatuur, mille puhul purunemispildis on vähemalt 50% kiulist pinda. T90 - temperatuur, mille puhul vähemalt 90% purunemispinnast on kiulise struktuuriga. Kõvadusnäitajad Kõvadus on materjali võime vastu panna kohalikule plastsele deformatsioonile, kui tema pinda tungib suurema kõvadusega keha. Materjalide põhilised kõvadusarvu määramise meetodid:  Brinell – surutakse uuritava materjali pinda kõvasulamkuul. Brinelli kõvadus määratakse kuulile toimiva jõu ja tekkiva sfäärilise jälje pindala suhtena. Kõvaduse väärtusele järgneb tähis HBW, selle järel aga katsetingimused (kuuli läbimõõt, koormus ja koormamise kestus).  Rockwell - määratakse materjali kõvadus otsaku (kõvasulam/teraskuuli või teemantkoonuse, mille tipunurk on 120°), materjali sissesurumise teel. Katsetamisel surutakse otsak materjalisse eeljõuga ja fikseeritakse asend

tehnomaterjalid
37 allalaadimist
thumbnail
19
rtf

Exami piletite vastused

põhimetalli omadustele. Kuna paljud ehituskonstruktsioonid töötavad tihti madalatel temperatuuridel ja dünaamilistel koor- mustel, siis üheks tähtsamaks omaduste näitajaks on külmahapruslävi. Ehitusterastena kasutatakse: · tavasüsinikteraseid, · mangaanteraseid, · peenterateraseid, · parendatud teraseid, · boorteraseid. 5) Masinaehitusterased ja nende omadused. Kasutamine. Tsementiiditavate terastena kasutatakse madalsüsinikteraseid (0,1...0,25%C), mille kõvadus peale tava- karastust on väike. Peale tsementiitimist (pinnakihi rikastamist süsinikuga, C-sisaldus viiakse ca 1%-ni), karastamist ja madalnoolutamist on nende pinnakõvadus 58...62 HRC, südamiku kõvadus aga 30...42HRC. Tsementiiditavate teraste südamik peab olema heade mehaaniliste omadustega, eriti tähtis on kõrge voolavuspiir, mille tagab eelkõige peeneteraline struktuur. Ka pinnakihis on oluline peeneteraline

176 allalaadimist
thumbnail
32
docx

Mõisted

meetodite abil saavutatakse üha erinevamaid oma- 0,06%. Malmid sisaldavad võrreldes terastega duste kombinatsioone. Selle teeb võimalikuks eel- rohkem fosforit (0,1...0,2%), mis parandab malmide kõige raua polümorfism. valuomadusi, eelkõige vedelvoolavust. Süsinik Tabel 1.8. Tavalisandid terastes C-sisalduse suurenedes kasvab terase kõvadus, tõmbetugevus ja voolavuspiir ning vastupanu väsi- Lisand Sisaldus Mõju terases muspurunemisele; vähenevad aga plastsus- ning %, kuni sitkusnäitajad. Si 0,5 Viiakse terasesse Süsinik avaldab mõju ka terase külmahap- valmistusprotsessis ruslävele, soodustades terase haprumist madalatel

70 allalaadimist
thumbnail
10
docx

Konstruktsioonimaterjalide eksamiks kordamisküsimused

Survevalu Keevitamine, termolõikamine, jootmine 30. Mida mõistetakse "keevitatavuse" all? See on terase ja värvilismetallide enamlevinud ja tähtsaim liitmismeetod. 31. Millised terased, kas madal-, kesk- või kõrgsüsinikterased, on sobivaimad keeviskonstruktsioonide (mastid, laevakered, autokered jne.) keevitamiseks? Kõrgsüsinikterased 32. Milline elektrikaarkeevitamise meetod leiab kõige enam kasutamist kergoksüdeerivate metallide (Ti, Al, roostevaba teras) keevitamisel? TIG keevitus 33. Millest lähtub keevitaja keevituselektroodi diameeteri valikul käsitsi kaarkeevitamisel kaetud elektroodidega? Elektroodi läbimõõt valitakse materjali paksuse, õmbluse servakuju ja õmbluse ruumilise asendi järgi. 34. Kuidas kaitstakse keevitusvanni väliskeskkonnaga reageerimise eest kaarkeevitamise erinevate meetodite puhul? MAG keevituse puhul kasutatakse kaitsegaasina nt süsihappegaasi, TIG keevituse puhul kaitstakse keevisvanni inertgaasiga (enamasti argooniga), 35

Konstruktsiooni materjalid ja...
607 allalaadimist
thumbnail
20
docx

Materjaliõpetuse eksami kordamisküsimuste vastused.

Erinevad faasid on üksteisest eraldatud piirpinnaga, erinevatel faasidel on erinevad omadused, näiteks teistsugune tihedus, kristallistruktuur või värvus. On olemas homogeenseid ja heterogeenseid sulamisüsteeme, mis koosnevad vastavalt ühest ja kahest faasist. Sageli käsitletakse faase kui aine erinevaid olekuid (vedel, tahke, gaasiline, plasma). Tegelikult hõlmab faas nii aine olekut kui ka oleku sees toimuvaid struktuurimuutusi. Kui näiteks sulam läheb vedelast olekust tahkesse, siis muutub ka selle faas. Aga ühes agregaatolekus olev aine võib olla mitmes teineteisest erinevas faasis. Näiteks grafiit ja teemant on sama aine erinevad faasid - keemiline koostis on identne, aga aine struktuur on erinev. Protsessi, kus aine läheb ühest faasist teise, nimetatakse faasisiirdeks, mille tunnuseks on aine omaduste oluline muutus. Soojushulka, mis neeldub või eraldub aine massiühiku kohta, nimetatakse siirdesoojuseks

Materjaliõpetus
194 allalaadimist
thumbnail
10
docx

Tehnomaterjalid-Eksam

1. Materjalide kasutamine inimajaloo vältel, selle muutumise põhjused.- a. 10000BC kasutati eelkõige klaasi,keraamikat ning puitu,nahka. Esmene metall oli kuld . See on pehme ja hea töödelda,samuti leidus seda looduses.Edasi suurenes ka hõbeda,pronksi ja raua kasutus. Metallide kasutamine on järjest suurema protsendi võtnud ning selle hiigelaeg oli 1940-1980, sellel ajal kastuati keraamikat ja plaste väga vähe. Alates 20.sajandi teisest poolest hakkas vähenema metalli kasutus ja väheneb tänapäevalgi.Metalle asendavad aina rohkem

Materjaliõpetus
17 allalaadimist
thumbnail
30
docx

TEHNOMATERJALIDE EKSAM

3. Metallide ja sulamite füüsikalised omadused. Tihedus - on homogeense aine mass ruumalaühiku kohta. Ühik: kg/m³. ●Kergmetallid ρ<5000 kg/m³ ●Raskmetallid ρ>10 000 kg/m³ ●Keskmetallid ρ=5000...10 000 kg/m³ Sulamistemperatuur - temperatuur, mil materjal läheb üle tardunud olekust vedelasse. ●Kergsulavad metallid Ts<327 °C ●Rasksulavad metallid Ts>1539 °C ●Kesksulavad metallid Ts=327...1539 °C Kõvadus - materjali võime vastu panna kohalikule plastsele deformatsioonile, kui tema pinda tungib suurema kõvadusega keha. Kõvadust määratakse otsaku toime järgi materjali pinnasse. Otsak on vähedeformeeruvast materjalist kuuli, koonuse või püramiidi kujuga. Brinelli, Rockwelli ja Vickersi kõvadus. Elastus – ehk elastsusmoodul, iseloomustab suhtelise risti- ja pikideformatsioonide suhet tõmbel (survel). 4. Metallide ja sulamite mehaanilised omadused.

tehnomaterjalid
48 allalaadimist
thumbnail
47
docx

Tehnomaterjalide eksami materjal

elektronkontsentratsioon. Karbiidi, nitriidid ja boriidid ­ ülemineku grupi metallid (Fe, Mn, Cr, Mo, W jt) moodustavad väikese aatomi raadiusega mittemetallidega (C, N, B, H) sisendusfaasidena tuntud keemilisi ühendeid, kusjuures metalli ja mittemetalli aatomi raadiuste erinevus on suur (RM/RX 1,7 või RX/RM 0,59). Sisendusfaaside komponentide aatomite arvu suhe on lihtne täisarvkordne ja selliste keemiliste ühendite valemiteks on M4X, M2X, MX, MX2 jne (kus M on metall ja X on mittemetall) ja nende kristallvõred on sarnased sisendustardlahuste kristallvõredega (tavaliselt esinevad võretüübid K8, K12 või H12). Sisendusfaase süsinikuga nim. karbiidideks, lämmastikuga nitriidideks, booriga boriidideks jne. Tuntuimaks sisendusfaasiks rauasüsiniku- sulameis on Fe3C (raudkarbiid), kus raua ja süsiniku aatomite suhe (baasaatomite suhe) on 0,60. Kui rauale on omane kuupvõre (K8 või K12), süsinikule

Tehnomaterjalid
450 allalaadimist
thumbnail
11
pdf

KMT Kordamine

1. Malmi tootmine Malmiks nim. raudsüsiniksulamit, milles süsiniku hulk on üle 2,14%. Malm toodetakse kõrgahjudes rauamaagist raua taandamisega, taandamine toimub kivisöekoksi põlemisel tekkivate gaasidega. Kõrgahjus toodetakse: toormalm (läheb terase sulatamiseks), valumalm (sulatatakse ümber et saada valandeid) ja ferrosulamid (suure Mn või Si sisaldusega rauasulamid, mida valumalmide ümbersulatamisel) Koostise järgi: Legeerimata malm(raudsüsiniksulamid) ja eriomadustega legeermalm (koostisesse lisatud täiendavaid

Konstruktsioonimaterjalide...
58 allalaadimist
thumbnail
12
docx

Tehnikas kasutatavad materjalid

1) Tehnikas kasutatavad materjalid: Metallid: 10000eKr Kasutati kulda, sest see oli looduses vabalt kätte saadav. 5000eKr avastati vask, esimene sulam mis avastati oli pronks (phst Kõik vase sulamid). Kristuse sünni ajal avastati raud. Malm alvastati 16 saj, siis algas metallide võidukäik. Hiljem õpiti valmistama teraseid. 20saj keskpaigas oli metallide olulisus tipus.(1,2 MS). Metallide kasutus väheneb, nende asemel luuakse teisi materjale.(liigume kasutuse poolest tagasi kiviaega, metalle hakkavad asendama keraamilised materjalid.) plastid (polümeerid): 10000 eKr Kasutati Puitu, nahka, erinevaid looduslike kiude. Tänapäeval plastid, 19saj võetakse kasutusele kumm(looduslik). 20 saj

Tehnomaterjalid
21 allalaadimist
thumbnail
22
doc

Tehnomaterjalid eksam

Eksamiküsimused aines „Tehnomaterjalid“ 1. Millised on materjalide füüsikalised omadused?  Tihedus  Sulamistemperatuur  Soojuspaisumine  Soojusjuhtivus  Elektrijuhtivus  Magnetilisus 2. Millised on materjalide mehaanilised omadused?  Tugevus  Kõvadus  Sitkus  Plastsus 3. Millised on materjalide tehnoloogilised omadused?  Valatavus  Survetöödeldavus  Sepistatavus  Termotöödeldavus  Keevitatavus  Joodetavus 4. Millised on materjalide talitlusomadused?  Korrosioonikindlus  Kulumiskindlus  Pinnaomadused  Tulekindlus  Soojuspüsivus  Ohutus  Keskkonnasõbralikkus 5

tehnomaterjalid
119 allalaadimist
thumbnail
7
docx

Tehnomaterjalid II KT

lisandub neile austeniit. Ferriit (F) (ferrite)- süsiniku tardlahus a-rauas, mis moodustub süsiniku aatomite paigutumisel -raua ruumkesendatud kuupvõre tühikutesse (eelkõige tahkudel olevatesse). Temperatuuril 727 °C lahustub a-rauas kuni 0,02% C (massi%), toatemperatuuril aga kuni 0,01%. Temperatuuridel 0...911 °C esineb -ferriit, 1392...1539 °C-ferriit. Ferriiti iseloomustab: ruumkesendatud kuupvõre (K8), väike tugevus ja kõvadus, suur plastsus. - ferriidi puhul on süsiniku lahustuvus -rauas väga väike: temperatuuril 727 C 0,02%, toatemperatuuril 0,01%. Ferriit on sitke ja hästi deformeeritav nii külmalt kui kuumalt, tema kõvadus toatemperatuuril on 60...90 HB. Kuni 768 °C-ni on ferriit ferromagnetiline. - ferriidi puhul on maksimaalne süsiniku lahustuvus 0,1%. Ta ei esine süsinikterase struktuuris sellistel temperatuuridel, millel terast termotöödeldakse või kasutatakse, seetõttu pakub tema

Tehnomaterjalid
135 allalaadimist
thumbnail
8
pdf

Tehnomaterjali kontrolltöö kordamisküsimused

tahkkesendatud(K12), põhitahkkesendatud.Allotroopia on nähtus, mis seisneb selles, et sama keemiline element võib esineda mitme erineva lihtainena. Neid elemendi erinevaid vorme nimetatakse allotroopideks. Polümorfism ehk mitmekujulisus on esinemine mitmel eri kujul. Isomorfism moodustavad koos homomorfismiga üldmõiste, mis iseloomustab vastavust objektide struktuuride vahel. 3. Metallide ja sulamite füüsikalised omadused. Tihedus. Sulamistemperatuur. Kõvadus. Elastus. Hea elektri- ja soojusjuhtivus, plastilisus ja hea sepistatavus, metalne läige ja enamasti hallikas värvus. Tihedus(kergmetallid ja raskmetallid), sulamistemp.(nt. Hg -39o C, W aga 3400o C).Kõvadus(kõige kõvem on Cr ja pehmed on leelismetallid). Elastsus(raud, vask ja elavhõbe). 4. Metallide ja sulamite mehaanilised omadused. Staatilisel kormamisel määratavad omadused: tõmbeteim, surveteim. Dünaamilisel koormamisel määratavad omadused: löökpaindeteim

tehnomaterjalid
29 allalaadimist
thumbnail
8
docx

Materjalide aatomstruktuur. Metallid - Kontrolltöö kordamisküsimused

Anisotroopseteks nimetatakse materjale, mille omadused on eri suundades erisugused. Isotroopsel on eri suundades samasugused. 12. Mida nimetatakse polümorfismiks? Sõltuvalt temperatuurist on enam kui üks kristallivõre tüüp. Materjalide omadused 1. Kuidas grupeeritakse materjalide omadusi? Füüsikalised, Mehaanilised, Keemilised, Talitlus, Majanduslikd ja Esteetilised. 2. Nimetage metallide mehaanilised omadused. Seletage nad lahti. Tugevus, kõvadus, sitkus, plastsus, elastsus. 3. Nimetage metallide füüsikalised omadused. Seletage nad lahti. Värvus, tihedus, sulamistemperatuur, soojuspaisumine, soojusjuhtivus, elektrijuhtivus, magnetism. 4. Nimetage metallide tehnoloogilised omadused. Seletage nad lahti. Valatavus, survetöödeldavus, lõiketöödeldavus, termotöödeldavus, keevitatavus, joodetavus, liimitavus. 5. Nimetage metallide talituslikud omadused. Seletage nad lahti.

Materjaliõpetus
10 allalaadimist
thumbnail
52
odt

Materjaliõpetus

1. -2. MALMID, STRUKTUUR, TOOTMINE, LIIGITUS Malm toodetakse kõrgahjudes rauamaagist raua taandamisega. Taandamine toimub kivisöekoksi põlemisel tekkivate gaasidega. Vedelas rauas lahustub 3,5-4% C, samuti Mn, Si ja kahjulike lisandeina ka S ja P. Kõrgahjus toodetakse: 1) toormalmi, mis läheb terase sulatamisel (kuni 90% kogutoodangust); 2) valumalme, mis sulatatakse ümber, et saada valandeid (valatud esemeid) 3) ferrosulameid – suure Mn või Si sisaldusega rauasulameid, mida kasutatakse

Materjaliõpetus
37 allalaadimist
thumbnail
14
doc

Metallurgia-kõrgahju tehnoloogia

Sissejuhatav loeng Konstruktsioonimaterjalid on materjalid, millest valmistatakse ehitiste ja seadmete koormust vastuvõtvaid osi. Vanimateks Inimkonna kasutuses olevateks konstruktsioonimaterjalideks olid kivid ja puit. Kivisid kasutati küttekollete ehitamiseks, puitu aga eluasemete ehitamiseks. Savi hakati kasutama kivide sidumiseks. Edasi võeti kasutusele metallid vask ja tina, millede kokku sulatamisel saadi komponentidest tugevam sulam pronks. Seda kasutati mitmesuguste töö- ja sõjariistade valmistamiseks. Oskusega saada kõrgemaid temperatuure, kaasnes raua kasutusele võtmine umbes 3000 aastat tagasi. Rauda esineb looduses ainult mitmesuguste maakidena: magnetiit, punane rauamaak, pruun rauamaak, raudpagu. Eestis esineb neid soo- ja järvemaakidena. Võrusoo maagi näidist näeb loengul. Teadaolevalt on Eestis rauda sulatatud Harju maakonnas Jüril. Kuid rauamaaki esineb palju ka Alutagusel

171 allalaadimist
thumbnail
6
doc

Materjalitehnika konspekt

äravoolule jahtumisel. See on tingitud kristalliseerumissoojuse eraldumisest. 4.2. Loetlege faasid Fe-C-sulameis, tooge nende määratlused. · Tardlahus ferriit (F) Fe(C) - süsiniku tardlahus -rauas (K8), C-sisaldus kuni 0,02% temp.-l 727 kraadi, temp. vahemik 0...911 kraadi. Sitke ja hästi deformeeritav nii kuumalt kui ka külmalt. Kõvadus toatemperatuuril 60-90 HB · Tardlahus austeniit (A) Fe(C) - süsiniku tardlahus -rauas (K12), C-sisaldus kuni 2,14% temp.-l 1147 kraadi, 0,8% temperatuuril 727. Sitke ja hästi deformeeritav nii kuumalt kui ka külmalt, mittemagneetiline. Toatemperatuuril laguneb A -> F+T= Perliit · Keemiline ühend tsementiit (T) Fe3C - C-sisaldus kuni 6,67% . Habras ja väga kõva 820HB. Väga püsiv madalatel temperatuuridel · Vedelfaas L 4

Materjalitehnika
189 allalaadimist
thumbnail
32
doc

Metallurgia-kõrgahju tehnoloogia

Metallid reageerides klooriga muutuvad kloriidideks, sellisel kujul nad eraldatakse ja seejärel töödeldakse puhtaks metalliks. Nii toodetakse titaani, tantaali, tina jne. 2. Hüdro metallurgia põhineb maakide töötlemisel niisuguste kemikaalide lahustega (hapete, leeliste), mis maagis oleva metalliga reageerides viivad selle ioonidena lahusesse. Lahuse järgneval töötlemisel eraldatakse metall sellest lihtainena. 3. Vanimaks ja kõige levinumaks metallurgiaharuks on püro metallurgia (püro tähendab ladina keeles leeki). Siin sulatatakse metall maagist välja kõrge temperatuuriga. See kõrge temperatuuriga leek saadakse kütuste põletamisel. Nii toodetakse rauda ja tema sulameid, vaske jne. Nagu me eelnevast teame, esineb raud rauamaakides oksiidina. Sellest tuleb raud välja redutseerida

Tehnoloogia
9 allalaadimist
thumbnail
10
doc

Materjaliõpetuse küsimuste vastused

METALLIDE JA SULAMITE SISEEHITUS 1. Milliste põhiomaduste (4) tundmine on vajalik materjalide valikul ja kasutamisel? Füüsikalised omadused: Värv, Tihedus (mass mahu ühikus), Sulamis temperatuur °C, Soojus juhtivus, Soojus paisumine, Soojus kahanemine, Soojus mahtuvus, Metallide magneetilised omadused. Magnetetilised omadused: magneetilisevälja tugevus (A/m), voo tihedus (T), Magneetiline läbitavus µ (H) Keemilised omadused: Metallil on suur puudus, võime oksüdeerida, kas kokkupuutes O2-ga, H2O, hapete või leelistega. Metallid selle tagajärjel hävivad. Korrosioon: Meterioloolistes tingimustes (roostetamine)., Keemiline korosioon agresiivses keskonnas, Elektrolüütiline korosioon, kus kaks kontaktis olevat

137 allalaadimist
thumbnail
15
pdf

Tootmistehnika Eksam

deformeerimine toimub jark-järgult, piiratud mahus ­ rotatsioonstantsimine, radiaalstantsimine, rõngvaltsimine, rotatsioonvenitamine. Vormstantsimine võimaldab üldiselt valmistada keerukama kujuga tooteid kui sepistamine. Deformeerimistemperatuurist sõltuvalt eristatakse kuum- ja külmvormstantsimist. Suurimat kasumist leiab kuumvormstantsimine. 4. Külmvormpressimine ja külmjamendamine. Külmvormpressimisel e. Väljasuruval külmstantsimisel asetatakse toorik matriitsi õõnde, kust metall pressitatakse templiga peenemasse õõnde. Eristatakse otse- e. Pärivormpressimist, vastuvormpressimist ning kombineeritud vormpressimist. Otsevastupressimisel toorikumetalli voolamise suund ühtib templi liikumise suunaga. Vastuvormpressimisel on liikumised vastassuunalised. Kombineeritus vormpressimisel voolab osa metalli templi liikumise suunas, osa vastu. Külmvormpressimise peamiseks eeliseks teiste külmvormstantsimisprotsessidega, näiteks külmjamendamisega võrreldes on suurte

Tootmistehnika alused
99 allalaadimist
thumbnail
12
doc

Metallide tihetusestt ja mu selline jutt

Materjali õpetus Malm Malmideks nimetatakse terastega võrreldes suurema süsinikusisaldusega (üle 2,14%) rauasüsinikusulameid. Malmid liigitatakse süsiniku oleku järgi kahte gruppi: 1) malmid, kus kogu süsinik on seotud olekus tsementiidis (Fe3C). Need on seotud süsinikuga malmid e. valgemalmid; 2) malmid, kus kogu süsinik või suurem osa sellest on vabas olekus grafiidina. Need malmid on tuntud grafiitmalmidena (tuntumad neist on hallmalmid). Suure süsinikusisalduse tõttu on malmi struktuuris kõva ja habras eutektikum ­ ledeburiit (valgemalmis) või süsinik grafiidina (libleja, keraja või pesajana). Nii ledeburiit kui ka grafiit teevad malmi hapraks, mistõttu ei saa ühtki malmiliiki survetöödelda ­ sepistada, valtsida jne. Seepärast kasutatakse malmi valusulamina.

36 allalaadimist
thumbnail
8
pdf

Terased

Terased Terastes on rauda vähemat 50%. Kui igasugu muid elemente on rohkem ja rauda juba alla 50%, siis me ei räägi enam terasest. Terased on metalsetest materjalidest põhimaterjal ehk umbes 90 protsenti konstruktsioonimaterjalidest. Teras on raua-süsiniku sulam süsinikusisaldusega kuni 2,14%. Süsinik ei ole lisand terases, vaid teeb rauast terase. Eutektoidteras C-sisaldusega 0,8 % ja struktuur 100%-liselt perliit (ferriidi-tsementiidi segu). Alaeutektoidterased C-sisaldusega kuni 0,8%, struktuuriga ferriit-perliit. Terased hakkavad C- sisaldusest 0,05%. Alla selle ei ole teras, vaid puhas raud. Sest väiksema C-sisaldusega ei kasutata. Üleeutektoidsed terased ­ C-sisaldus üle 0,8% kuni 2,14%. struktuur perliit-tsementiit

Tehnomaterjalid
55 allalaadimist
thumbnail
6
sxw

Eksami küsimused ja vastused

Pilet nr. 1 1.Materjalide struktuur ja omadused Materjalide põhiliseks struktuuri ­ ühikuks on aatomi , mis koosneb positiivselt laetud tuumast ja seda ümbritsevast elektroonkattest. Materjali vastupanu deformeerimisel ja purununemisele iseloomustavad materjalide mehhaanilised omadused : tugevus , kõvadus , plastsus ja sitkus. 2.Mis on teras , mis malm ? Teras on sulam, mille põhikomponent on raud ning mis muude elementide (väävel, fosfor jne ) kõrval sisaldab kuni 2,14 % süsinikku. Kui rauasulam mis on üle 2,14% süsinikku nimetatakse seda malmiks. Malmil ja terasel on oluline erinevus : teras on võimalik plastselt deformeeruda, kuid malmill jääkdeormatsioone ei esine, kuna malm puruneb. 3.Plastide üldised omadused. Plastid ehk plastmassid on looduslikud või tänapäeval peamiselt sünteetilised polümeermaterjalid, töödeldavad

Luksepp
35 allalaadimist
thumbnail
14
doc

KAT31_Termotöötluse materjal ja kuesimused

nimetatakse, lõõmutusega võib need defektid parandada. Nagu näeb I liigi lõõmutuse tulemus ei sõltu faasimuutustest (isegi siis kui nemad metallis tekivad), lihtsalt kuumutuse teel aktiveeritatakse aatomite liikuvus, see vähendab sisepinged, parandab kristallstruktuuri defektid, ühtlustab keemiline koostis, terade kuju ja suurust; peale aeglast jahutamist selline metall saab stabiilse struktuuri ja termodünaamilise seisu. II liigi lõõmutus on seotud sulameis tekivatest faasimuutustest, need võivad olla polümorfsed muutused, faaside omavaheline lahustuvus jne. Kuumutamine peab olema temperatuurini, mis ületab faasimuutuse temperatuuri, jahutus maksimaalselt aeglane. Tihti selline TT viis nimetatakse faasi ümberkristalliseerimiseks. Nagu I liigi lõõmutuse pärast ka II liigi lõõmutus annab metalli, mis on

Tehnomaterjalid
161 allalaadimist
thumbnail
3
docx

Metallide tehnoloogia, materjalid esimese KT kordamisküsimused vastustega

profiilmaterjalina (nurkteras, latt, armatuur jne). On hästi keevitatavad. S185. Masinaehitusterased jagunevad: 1. Tsementiiditavad terased (C10E) Hammasrattad 2. Parendatavad terased (C30E) Võllid 3. Vedruterased (55Cr3) Keerdvedrud ja lehtvedrud 4. Kuullaagriterased (-) Kuullaagrid 5. Automaaditerased (10S20) Võllid 6. Tavalised masinaehitusterased (E295) Masinaehitud detailid 5. Malmide liigitus, nende põhiomadused, tähistus. Hall- / liblegrafiitmalmi süsinik on liblelise grafiidi kujul. Hea vibratsioonisummutavus ja vastupanu väsimusele, hea valatavus. GJL ­ 150. Keragrafiitmalm on tunduvalt tugevam ja sitkem kui hallmalm, vastupanu dünaamilisele koormusele ja väga hea valatavus. GJS 400 ­ 15. Tempermalmi murdepind on hele või tume, väga suure kõvadusega ja kulumiskindlusega, raskelt lõiketöödeldav. GJMW ­ 350-4. 6. Vase- ja alumiiniumsulamite liigitus. Nende sulamite põhiomadused, põhikoostis, kasutusalad

Metallide...
23 allalaadimist
thumbnail
4
pdf

Lõiketöötlemine

Töötlemisel on oluline, et tekkiv metallilaast eemalduks kergesti lõikekohast ega segaks lõikeprotsessi. See on seotud tekkiva laastu kujuga, mida mõjutab nii töödeldav materjal kui lõiketingimused. Plastsete metallide lõikamisel on laastu tekkel määrava tähtsusega plastsed deformatsioonid, habrastel (näiteks malm) need peaaegu puuduvad. Plastsete metallide lõikamisele on iseloomulik voolav laast, mis keerdub spiraali. Habraste metallide lõikamisel ei teki üldse korrapärast laastu, vaid tükikestena eralduv murdelaast. 1 Koostas: Reppy 21.11.2012 4. Terikute omadused: a. Kiirlõiketeras on kõrge volframi- ja vanaadiumisisaldusega tööriistateras.

Materjaliõpetus
125 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun