FÜÜSIKAEKSAMI KÜSIMUSED Valemid 1. Ühtlane liikumine v=s/t [m/s] 10m/s=36km/h 2. Kiirendus a= Vt-Vo/t [m/s2] Vo-algkiirus 3. Teepikkus s=vt , s=Vo t +at2/2 [m] 4. Newtoni II seadus F=am a-kiirendus 5. Gravitatsiooniseadus F=G m1 m2/r2 G- 6,67#10 -11 6. Raskusjõud Fr=gm[N] g- 9,81 m/s 7. Kehakaal Q=gm+-am 8. Hõõrdejõud F hõõrde=Mfristi M-hõõrdetegur 9.Keha impulss e. Liikumishulk P=vm [m#Kg/s] 10. Mehaaniline töö A=FS [j] , A=Pt , P=ui 11. Võimsus N=a/t [w] 12.Potensiaalne energia Ep=mgh[j] mg-raskusjõud 13. Kineetiline energia Ek=mV2/2 [j] 14. Nurkkiirus w=fii/t [rad/s] 15. Joonkiirus ringliikumisel v=2 pii rn [m/s] n-pöörete arv 16.Võnkeperiood T=1/n [s] 17. Sagedus n=f=1/T [p/s] [Hz] 18. Rõhk P=F/s [Pa] 1 N/m2 = 1 Pa 19. Ideaalse gaasi olekuvõrrand 20. Isotermiline protsess P1V1/T1 = P2V2/T2 21. Isobaariline protsess T=absoluutne temp [gelvin] 22. Isohooriline protsess 23
Füüsika arvestus 2011 teooria 1.Elastsusjõud (Hooke`seadus) Elastsusjõud on keha kuju ja mõõtmete muutumisel ehk deformeerumisel tekkiv jõud. Elastsusjõud on vastassuunaline keha deformeeruva jõuga. Kui keha elastsusjõud muutub võrdseks raskusjõuga, siis seisab keha paigal. Fe=kΔl , kus Fe- elastsusjõud, k-keha jäikus ja l- teepikkus Hooke`seadus: Keha deformeerumisel tekkiv elastsusjõud on võrdeline keha pikenemisega ja tema suund on vastupidine deformeeritava keha osakeste nihke suunaga. F→e=-kx→ (k- keha jäikustegur ja x- osakeste nihe ) 2.Keha raskuskese. Punktmass Punktmass e. masspunkt on füüsikaline keha mudel, mille puhul mass loetakse koondatuks ühte ruumpunkti. Keha raskuskese ühtib massikeskmega.
korrutisega ja pöördvõrdeline nendevahelise kauguse ruuduga. Gravitatsiooniseadus m1 m2 F =G G gravitatsioonikonstant r2 Suletud süsteemi moodustavate kehade impulsside summa ei muutu nende Impulsi jäävuse vastastikmõju tulemusel. seadus p = const p = mv keha impulss Elastsusjõud on võrdeline pikenemisega. Hooke'i seadus Fe = kx k keha jäikus (1N/m), x keha deformatsioon e. pikenemine (1m) Toereaktsioon N = mg cos mg raskusjõud, kaldenurk Amontons'i-Coulomb'i Fh = µN Liugehõõrdejõud on võrdeline toereaktsiooniga. seadus hõõrdetegur, N toereaktsioon III. Töö ja energia
korrutisega ja pöördvõrdeline nendevahelise kauguse ruuduga. Gravitatsiooniseadus m1 m2 F =G G gravitatsioonikonstant r2 Suletud süsteemi moodustavate kehade impulsside summa ei muutu nende Impulsi jäävuse vastastikmõju tulemusel. seadus p = const p = mv keha impulss Elastsusjõud on võrdeline pikenemisega. Hooke'i seadus Fe = kx k keha jäikus (1N/m), x keha deformatsioon e. pikenemine (1m) Toereaktsioon N = mg cos mg raskusjõud, kaldenurk Amontons'i-Coulomb'i Fh = µN Liugehõõrdejõud on võrdeline toereaktsiooniga. seadus hõõrdetegur, N toereaktsioon III. Töö ja energia
Newtoni II seadus pöördliikumise kohta. Impulsimomendi tuletis aja järgi võrdub jõumomendiga: dL / dt = M . Ehk teisiti – jõumoment (jõu ja tema õla korrutis) on see põhjus, mis muudab keha impulsimomenti (pöörleva keha osadeimpulsside mõju pöörlemisele). 2.Hõõrdejõud- keha liikumist takistav jõud teise tahke keha või aine suhtes kokkupuutepinnal mõjuvate osakestevahelise jõu tõttu; F=mgμ (μ – hõõrdetegur); kaldpinnal hoiab keha paigal hõõrdejõud. Kuna see jõud takistab kehade liikuma hakkamist, nimetatakse seda jõudu seisuhõõrdejõuks. Seisuhõõrdejõud ehk staatiline hõõrdejõud on suunatud vastu sellele liikumisele, mis peaks tekkima ning on maksimaalne hetkel, kui kaks pinda hakkavad teineteise suhtes libisema (suurim seisuhõõrdejõud on võrdne selle jõu suurusega, mis keha paigalolekust välja viib). 3.Absoluutselt elastne põrge on selline, mille käigus kehade summaarne kineetiline energia ja impulss ei
SI mõõtühikute süsteem. Mõõtemääramatus. Juhuslik jaotus, standardhälve. Mudelid füüsikas. Mudelite kasutamine reaalsuses. Mehaanika kui füüsikaliste mudelite alus. (koos sissejuhatusega 75h) Üldmõisted: keha, punktmass, liikumine. Kehade vastastikmõju. Vastastikmõju liigid. Aine ja väli. Ruumi mõõtmelisus. Taustsüsteem. Liikumisvormid füüsikas: kulgliikumine, pöördliikumine, võnkumine, laine. Mehaanika põhiülesanne. Liikumist kirjeldavad suurused: teepikkus, nihe, kiirus, aeg. Vektor ja vektoriaalsed suurused. Vektorite liitmine. Vektori lahutamine komponentideks. Liikumise suhtelisus. Kulgliikumise lihtsaim mudel ühtlane sirgjooneline liikumine. Kiiruse, teepikkuse ja liikumisaja leidmine. Teepikkuse ja liikumisaja võrdelisus. Ühtlase liikumise graafiline kujutamine (st- ja vt-teljestikud). Liikumisvõrrand. Teepikkuse graafiline tõlgendus. Kulgliikumise keerukam mudel mitteühtlane sirgjooneline liikumine. Keskmine kiirus. Hetkkiirus
7. Ühtlaselt muutuv liikumine- konstantse kiirendusega liikumist nimetatakse ühtlaseks muutuvaks (kiirenevaks või aeglustuvaks) liikumiseks. a=const 8. Kiirendus- suurus mis iseloomustab keha kiiruse muutumist ajaühikus. a=v/t a<0aeglustuv, a=0 ühtlane, a>0kiirenev Raskuskiirendus: g=9,81 m/s2 Kesktõmbekiirendus (normaalkiirendus) väljendab ringliikumisel kiiruse suuna muutumist ajas. a n = v2/R = 2R -nurkkiirus Nurkkiirendus näitab, kui palju muutub keha nurkkiirus ajaühikus. = ( - 0) / t (rad/sek2) Kiiruse suuruse muutumist näitab tangentsiaalkiirendus. at = r 9. Pöörlemine on ringliikumisega sarnane liikumine, pöörlemisel on aga keskpunkt keha sees. Pöörlemise all mõistetakse jäiga, liikumise käigus mitte deformeeruva keha asendi muutus. = /t raadiuse pöördenurk t selle moodustamiseks kujunud ajavahemik = v/r (nurkkiirus) [rad/s] v= R (joonkiirus) [m/s] = t -nurkkiirus -pöördenurk = ot ± t2/2 10
Kiiruse muutumist iseloomustab kiirenduse mõiste. at = v-vo , milles vo -algkiirus (m/s) v -lõppkiirus (m/s) t -kiiruse muutumise aeg (s) a -kiirendus KEHA VASTASTIKMÕJU · Mass on kehale mõjuv jõud, massi ühik on (kg). · 1N on jõud, mis annab kehale massiga 1 kg kiirenduse 1 m/s. · Rõhk on pinnaühikule mõjuv jõud. · Raskusjõud on jõud, millega Maa tõmbab enda poole tema lähedal asuvaid kehi. Raskusjõud on gravitatsioonijõud. Fr = mg, milles Fr raskusjõud (N) m keha mass (kg) g - raskuskiirendus (m/s) · Elastusjõud tekib keha kuju muutumisel kehas, elastusjõud püüab keha esialgset kuju taastada. Fe = kl ,milles k jäikus (N/m) Fe elastusjõud (N)
a ×b =ab sin (Sin a <0) 3. Millal on kahe vektori skalaarkorrutis positiivne? kui on väiksem kui 90 kraadi (I ja IV veerand) 4. Millal on kahe vektori skalaarkorrutis negatiivne? kui on suurem kui 90 kraadi (II ja III veerand) 5. Millal on kahe vektori vektorkorrutis 0? Kui vektorid on paralleelsed 6. Millal on kahe vektori skalaarkorrutis 0? Kui koosinus on null ehk vektorid on risti 7. Nimetada SI-süsteemi põhiühikud. teepikkus meeter massiühik kilogramm ajaühik sekund elektrivoolu tugevus amper termodünaamiline temperatuur kelvin ainehulk mool valgusühik - kandela 8. Kirjutada kiiruse ühik põhiühikute kaudu kiirus = teepikkus/aeg (meeter/sekundiga) 9. Kirjutada kiirenduse ühik põhiühikute kaudu. a=1m/s2 10. Kirjutada sageduse ühik põhiühikute kaudu. 1 Hz = 1 / 1s 11. Kirjutada liikumishulga ühik põhiühikute kaudu. kg m s 12
Vastavalt kiiruse definitsioonile , seda uuesti integreerides saadakse teada koordinaadi sõltuvus ajast , kus x koordinaat 3)Kõverjoonelise liikumise kiirendus: Kõverjoone lõikusid saab aproksimeerida ringjoone lõiguga: , kus suvaline vektor, |a| moodul ja ühikvektor. , kus an normaalkiirendus, kus a tangensiaalne kiirendus, nurkkiirendus 4)Ringliikumine , kus (nüü)sagedus (täispöörded ajaühikus), T periood (ühe täisringi tegemise aeg) , kus nurkkiirus , pöördenurk , kus nurkkiirendus Juhul, kui 5)Newtoni seadused Klassikalise dünaamika aluseks on kolm Newtoni poolt formuleeritud seadust. NEWTONI I SEADUS: Kui kehale ei mõju mingeid jõudusid, siis keha liigub ühtlaselt. On olemas taustsüsteem, mida nimetatakse inertsiaalsüsteemiks: kui kehale ei mõju mingeid jõudusid või kui need on omavahel tasakaalus, siis keha liigub ühtlaselt (ka seisab paigal). Inertsiaalsüsteem on kiirendusega liikuv süsteem
F - jõud g - raskuskirendus p - rõhk S - pindala h - kõrgus v - kiirus t - aeg s - teepikkus A - töö N - võimsus - kasutegur Valem Mille arvutamiseks kasutatakse Tähised tihedus raskusjõud rõhk vedeliku samba rõhk üleslükke jõud keha mass kiirus töö võimsus kasutegur Q soojushulk Soojushulk
Adiabaatilised protsessid nt küttesegu kokkusurumine suurem, mida suurem on trajektoori (ringjoone)raadius:v= R=l/t võimalikult väiksemat pinda. sisepõlemismootorisilindris ja õhu kiire kokkusurumine õhksütikus. Jada: Pöördvõrdeline, juhtmetel pole takistust U=U1+U2+U3 Absoluutselt elastne põrge: kehtib mehaanilise energia jäävuse seadus, 1/C=1/C1+1/C2+1/C3 I=const kuna sellel ei teki jääkdeformatsioone ei muutu mehaaniline energia mingiks teiseks liigiks Pindpinevustegur- arvuliselt = vedeliku pinna 1 ühiku võrra Absoluutselt mitteelastne põrge: selle käigus osa summaarsest Kesktõmbekiirendus-väljnendab ringliikumisel kiiruse muutust ajas an = suurendamiseks vajaliku tööga. G=F/I kineetilisest energiast muutub kehade siseenergiaks
F G G gravitatsioonikonstant r2 Suletud süsteemi moodustavate kehade impulsside summa ei muutu nende vastastikmõju tulemusel. Impulsi jäävuse seadus p const p mv keha impulss Elastsusjõud on võrdeline pikenemisega. Hooke'i seadus Fe kx k keha jäikus (1N/m), x keha deformatsioon e. pikenemine (1m) Toereaktsioon N mg cos mg raskusjõud, kaldenurk Amontons'i-Coulomb'i seadus Fh N Liugehõõrdejõud on võrdeline toereaktsiooniga.
Vaba langemine algkiiruseta: h=gt²/2 ; algkiirusega: h=v t - gt²/2 Teepikkuseks nimetatakse füüsikas trajektoori pikkust, mille liikuv keha või punktmass läbib mingi ajavahemiku jooksul. Nihe ehk nihkevektor: suunatud sirglõik, mis ühendab keha alg- ja lõppasukohta. Hetkkiirus näitab kiirust antud ajahetkel. Vektoriaalne suurus. v=s/t Kiirendus näitab, kui palju muutub kiirus ajaühikus. Vektoriaalne suurus. Tähis a. a=(v-v )/t (s nihe, l teepikkus, v kiirus, t aeg, vk. keskmine kiirus, a kiirendus, v lõppkiirus, v0 algkiirus) Perioodiline liikumine Ühtlane Ringliikumine on liikumine ringjoonelisel trajektooril, kui keha läbib võrdsetes ajavahemikes võrdsed kaarepikkused. Joonkiirus on ringjoonel liikumise kiirus v. Joonkiiruse suund on alati puutuja sihiline. Valem: v=l/t -> raadiuse poolt kaetud nurk l=r => v=r/t /t= (nurkkiirus) ; ühik 1 rad/s Nurkkiirus: =2f Joonkiiruse ja nurkkiiruse seos: v=r
suunatud liikumisele vastu. Sissehõõrdeteguri e.viskoossuse () ühikuks on (Pa s) (paskalsekund). Üleminekut laminaarselt voolamiselt turbulentsele voolamisele iseloomustab Reinoldsi arv. Kriitiline Reinoldsi arv. Rek=1000 21. Termodünaamika Termodünaamika tegeleb kehade makroskoopiliste omadustega ja tema aluseks on termodünaamika põhiseadused. Termodünaamika 1. seadus: Süsteemile antud soojushulk läheb süsteemi siseenergia juurdekasvuks ning töö tegemiseks süsteemi välisjõudude vastu. Q = U2 - U1 + A , kus Q - soojushulk U - siseenergia A - töö välisjõudude vastu Soojushulga ( Q ) ühikuks on dzaul ( J ). 22. Isotermiline protsess Isotermiline protsess on protsess kus konstantsel temperatuuril (t0 ) on antud gaasihulga ruumala (V) pöördvõrdeline rõhuga (p). 23. Isobaariline protsess
Impulsiks nimetatakse keha massi ja kiiruse korrutist: p = mv . Impulssi iseloomustab purustusvõime. Kehale mõjuv jõud F ja impulsi muutus p on omavahel. v - v0 F = ma ; a = ; t (v - v0 ) mv - mv0 mv p F =m = = = . t t t t Siit saame, et impulsi muutus p = Ft . Mida lühema aja jooksul impulss muutub, seda suurem jõud mõjub kehale. Inertsijõuks nimetatakse näivat jõudu, mis mõjub kiirendusega liikuvas süsteemis asuvale kehale. Inertsijõudu nimetatakse näivaks sellepärast, et see pole kiirenduse põhjus, vaid tagajärg. Inertsus on kõikide kehade omadus, mis seisneb selles, et keha kiiruse muutmiseks peab teise keha mõju sellele kehale kestma teatud aja. Mida suurem on see aeg, seda inertsem on keha.
10.Gravitatsiooniseadus: Ülemaailmne gravitatsiooniseadus on Newtoni poolt formuleeritud mudel gravitatsioonijõu toime kohta. Selle seaduse kohaselt kaks masspunkti tõmbuvad üksteise poole jõuga, mis on võrdeline nende massidega ning pöördvõrdeline nendevahelise kauguse ruudu ga: , kus: G on gravitatsioonikonstant, m1 on esimese keha mass, m2 on teise keha mass, r on kehadevaheline kaugus. 11.Töö(seletus;valem) Töö ehk mehaaniline töö (tähis: A või W) on füüsikaline suurus, mis kirjeldab olukorra muutmisel tehtavat pingutust ning võrdub jõu ja jõu mõjul liikunud keha nihke vektori skalaarkorrutisega. Kui kehale mõjub jõud ja keha selle jõu mõjul liigub, siis teeb see jõud tööd. Mehaanilist tööd arvutatakse valemiga: (1), kus W töö, F jõud, s nihe. Lihtsamaid valemeid
Mass on inertuse mõõduks. Ühiks on Kg. 1) Iga keha liigub ühtlaselt ja sirgjooneliselt või seisab paigal, kuni välised jõud seda olekut ei muuda. 2) Keha kiirendus a on võrdeline ning samasuunaline temale mõjuva jõuga F ja pöördvõrdeline tema massiga m, a=F/m. 3) 2 keha mõjutavad teineteist võrdsete ja ühel sirgel ja vastassuunaliste jõuduega. F=-F . Impulsi jäävuse seadus - Vektori suurust p=mv nimetatakse ainepunkti impulsiks. Ainepunktide isoleeritud süsteemi kogu impulss on jääv. Kreeka E m v= const. Töö, võimsus, energia: Töö – Töö on võrdne kehale mõjuva jõu F ja nihke s skalaarkorrutisega. A=Fs (kui vektorid, siis lisaks *cosa) Ühik on dzaul (J) 1J on töö, mida teeb jõud 1N tee pikkusel 1m. Võimsuseks nimetatakse suurust, mis näitab, palju tööd tehti ajaühiku kestel. N=da/dt = Fv ühik W(vatt) 1W=1J/s 1hj=736W. Energiaks nimetatakse füüsikalist suurust, mis iseloomustab keha võimet tööd teha. Ühiks on J(dzaul)
v= t liikumisel v - v0 Kiirendus Kinemaatika a= t v = v 0 + at Hetkkiirus ühtlaselt muutuval Kinemaatika sirgjoonelisel liikumisel at 2 Teepikkus ühtlaselt muutuval Kinemaatika s = v0 t + sirgjoonelisel liikumisel 2 v 2 - v0 2 Nihe ühtlaselt muutuval Kinemaatika s= sirgjoonelisel liikumisel 2a at 2 2s Aeg, kui algkiirus on 0 Kinemaatika s= ehk t=
taustsüsteem - Taustsüsteem on mingi taustkehaga seotud ruumiliste ja ajaliste koordinaatide süsteem. teepikkus - Trajektoor, mille keha läbib teatud ajavahemiku jooksul. nihe - Sirglõik, mis ühendab keha liikumise algusasukohta lõppasukohaga. hetkkiirus Keha kiirus teatud ajahetkel. kiirendus Näitab kui palju muutub kiirus ajaühikus. liikumise suhtelisus Keha liikumine sõltub taustsüsteemi valikust. Ei ole olemas absoluutselt liikumatut taustsüsteemi. Seega mehaaniline liikumine on alati suhteline. liikumisvõrrand Võrrand, mis kirjeldab mõnda liikumist iseloomustavat suurust ajas. Kehade vastastikmõju mass 1) Väljendab keha inertsi ehk võimet säilitada liikumise kiirust. 2) Väljendab keha võimet tõmmata ligi teisi kehi ehk gravitatsioonivõimet. jõud Ühe keha mõju suurus teisele. rõhk Pinnale risti mõjuva jõu ja pindala suhe. tihedus Näitab aine massi ruumalaühiku kohta.
T on absoluutne temperatuur magnetvälja tugevusest. ning R on universaalne F=k1Bilsinα.4. gaasikontakt (=8.3145 J/mol/K). Molekulaarkineetiline teooriavõrrand - avaldis, mis seob gaasi molekulide (molekulide kineetilise kineetilise energia gaasi rõhu ja energia kandumine) - mingist ruumalaga. pinnast läbikantav soojushulk on võrdeline temperatuuri 3. Variant 1. gradiendiga, pindalaga, ajaga, Senjettelektrikud - ning sõltub aine omadusest, Senjettelektrik on eri liiki mida arvestab dielektrik, mille polarisatsioon soojusjuhtivustegur. võib tekkida iseeneslikult, Soojusjuhtivustegur on
v=s/t=l/t kiirus v(keskm)= l(kogu)/t(kogu) keskmine kiirus v=s/t hetkkiirus a=(v- v)/t - kiirendus v= v+at eelmisest valemist tuletatud lõppkiirus v(keskm)= (v+v)/2 keskmine kiirus arvutatuna läbi alg- ja lõppkiiruse v(keskm)= v+(at²)/2 keskmine kiirus arvutatuna aja ja kiirenduse olemasolul s= vt+ (at²)/2 teepikkus/nihe, kui on teada aeg s= (v²- v²)/2a teepikkus/nihe kui on teada lõppkiirus v=v+gt vaba langemise kiirus s= vt +(gt²)/2 vaba langemise teepikkus NB! Vabalt langeva keha g>0 g=9,8 m/s² 10 m/s² Vertikaalselt üles visatud keha g<0 g= -9,8 m/s² -10 m/s² JÕUD JA IMPULSS 1. Füüsikaliste suuruste tähised, mõõtühikud ja mõõtmine. Mass m Kg Kaal Raskusjõud F N Dünamomeeter Gravitatsioonijõud F N Dünamomeeter Hõõrdejõud Fh N Dünamomeeter Jõud F N Dünamomeeter
· Ühtlase sirgjoonelise liikumise kiiruseks nimetatakse jäävat vektorsuurust, mis võrdub suvalises ajavahemikus sooritatud nihke ja selle ajavahemiku suhtega. · nihe on vektoriaalne füüsikaline suurus, vektor liikuva keha algasukohast keha lõppasukohta. Tähis . · Teepikkuseks nimetatakse füüsikas trajektoori pikkust, mille liikuv keha või punktmass läbib mingi ajavahemiku jooksul. Tähis s. s = v · t, kus s - teepikkus, v - kiirus, t - aeg. · Liikumist, kus kiirus muutub mis tahes võrdsete ajavahemike jooksul ühesuguste väärtuste võrra, nimetatakse muutuvaks liikumiseks. · Keskmise kiiruse leidmiseks leiame kogu teepikkuse ja kogu liikumisaja suhte. · Kõverjooneline liikumine on punktmassi , mille korral kiirusvektori suund muutub. · Ringliikumine on kulgliikumine mööda ringjoonekujulist trajektoori.
Liikumise liigid : Trajektoori järgi a) Sirgjooneline b) Kõverjooneline c) Ringjooneline Kiiruse järgi a) Ühtlane liikumine – mistahes ajavahemikes läbitakse võrdsed teepikkused. b) Mitteühtlane liikumine Liikumise suhtelisus – erinevate taustkehade suhtes võib liikumine olla erinev. Teepikkus – iseloomustab keha liikumist, mõõdetakse mööda trajektoori. Kui keha liigub, siis ei saa teepikkus olla 0. Tähis Nihe – kaugus keha algus – ja lõppasukohast, mis mõõdetakse mööda sirgjoont. Nihe on keha algasukohast lõppasukohta suunatud vektor. Tähis: s Taustsüsteem koosneb: Taustkeha, Taustkehaga seotud koordinaadistik, mõõtühikud ja mõõtesuunad Aja mõõtmise süsteem(ühikud, alghetk) Kehade vastastikmõju tulemusena muutub kas keha kiirus, liikumise suund või keha kuju.
Liikumise liigid : Trajektoori järgi a) Sirgjooneline b) Kõverjooneline c) Ringjooneline Kiiruse järgi a) Ühtlane liikumine mistahes ajavahemikes läbitakse võrdsed teepikkused. b) Mitteühtlane liikumine Liikumise suhtelisus erinevate taustkehade suhtes võib liikumine olla erinev. Teepikkus iseloomustab keha liikumist, mõõdetakse mööda trajektoori. Kui keha liigub, siis ei saa teepikkus olla 0. Tähis Nihe kaugus keha algus ja lõppasukohast, mis mõõdetakse mööda sirgjoont. Nihe on keha algasukohast lõppasukohta suunatud vektor. Tähis: s Taustsüsteem koosneb: Taustkeha, Taustkehaga seotud koordinaadistik, mõõtühikud ja mõõtesuunad Aja mõõtmise süsteem(ühikud, alghetk) Kehade vastastikmõju tulemusena muutub kas keha kiirus, liikumise suund või keha kuju.
m1v1 + m2v2 = m1v1' + m2v2' Mehaaniline töö on võrdne kehale mõjuva jõu, nihke ja jõu ning nihkevahelise nurga koosinuse korrutisega. A = Fs cos Võimsus on arvuliselt võrdne ajaühikus tehtud tööga. A N= N = Fv t Mehaaniline energia iseloomustab keha võimet teha tööd. mv 2 Ek = E p = mgh 2 Mehaanilise energija jäävuse seadus kui kehale mõjuvad ainult raskus- ja elastusus jõud, on keha mehaaniline koguenergia jääv. Ek + E p = const Jõud F N kg*m/s2 Keha mass m kg Kiirendus a m/s2 Jäikustegur k N/m Nihke suurus deformatsioonil Dl m Hõõrdetegur m Rõhumisjõud Fn N kg*m/s2
suunaga ehk Kui kiirus ajas ei muutu,siis diferentsiaale ei kasutata ning vektorseosed kattuvad v v - v0 vektoriaalsed suurused a = = . skalaarseostega,sest on tegemist t t sirgjoonelise liikumisega.Järelikult on ajaühikus läbitud teepikkus võrdne kiirusega ühtlasel sirgliikumisel 1.1.4.Ühtlaselt muutuv ringliikumine Ja aja t jooksul läbitud teepikkus on siis vastavalt S=Vt. 1.Ühtlaselt muutuvaks ringliikumiseks nimetatakse sellist ringjoonelist liikumist, SI süsteemis on kiiruse mõõtühikuks m/s. kus keha läbib 1.1.3
Liikumise liigid : 1 Trajektoori järgi a) Sirgjooneline b) Kõverjooneline c) Ringjooneline 2 Kiiruse järgi d) Ühtlane liikumine mistahes ajavahemikes läbitakse võrdsed teepikkused. e) Mitteühtlane liikumine Liikumise suhtelisus erinevate taustkehade suhtes võib liikumine olla erinev. Teepikkus iseloomustab keha liikumist, mõõdetakse mööda trajektoori. Kui keha liigub, siis ei saa teepikkus olla 0. Tähis Nihe kaugus keha algus ja lõppasukohast, mis mõõdetakse mööda sirgjoont. Nihe on keha algasukohast lõppasukohta suunatud vektor. Tähis: s Taustsüsteem koosneb: 1 Taustkeha, 2 Taustkehaga seotud koordinaadistik, mõõtühikud ja mõõtesuunad 3 Aja mõõtmise süsteem(ühikud, alghetk) Kehade vastastikmõju tulemusena muutub kas keha kiirus, liikumise suund või keha kuju.
y=y(t), z=z(t). Punktmassi kiirendusvektoriks nimetatakse tema kiirusvektori ajalist tuletist (kohavektori teine tuletis aja järgi): a(vektor)=v(vektor) tuletis=r(vektor) teine tuletis Kiiruste liitmine-et leida punktmassi kiirust paigaloleva taustkeha suhtes, tuleb liita selle punktmassi kiirus liikuva taustkeha suhtes ja liikuva taustkeha kiirus paigaloleva taustkeha suhtes. Vaba langemine-keha liikumist juhul, kui talle mõjub ainult raskusjõud. See tähendab, et ka õhutakistust ei arvestata. Vaba langemise korral kehtivad veel järgmised väited. 1. Vaba langemise kiirendus ei sõltu langeva keha massist. 2. Kui alg- ja lõppkõrgus on võrdsed, siis a) üleslennu aeg võrdub allalangemise ajaga, b) keha langeb maapinnale sama kiirusega, millega ta sealt üles visati. 2. Kõverjooneline liikumine-Vektorkujul või komponentkujul kirjutatud liikumisvõrranditel on
v =¿ t liikumisel v−v 0 Kiirendus Kinemaatika a= t v =v 0 +at ❑❑❑ Hetkkiirus ühtlaselt muutuval Kinemaatika sirgjoonelisel liikumisel s=v 0 t +¿ at❑2 Teepikkus ühtlaselt muutuval Kinemaatika 2 sirgjoonelisel liikumisel v ❑2−v 20 Nihe ühtlaselt muutuval Kinemaatika s=¿ sirgjoonelisel liikumisel 2a 2 at ❑ Aeg, kui algkiirus on 0 Kinemaatika s= ehk t=√❑ 2
t. kulgliikumisel ja kui liikumise ulatus vôrreldes keha môôtmetega on suur. 4. Liikumine on ühtlane, kui keha kiirus ei muutu, s. t. keha läbib vôrdsetes ajavahemikes vôrdsed teepikkused (sirgjoonelisel liikumisel nihked). 5. Liikumine on mitteühtlane, kui keha läbib vôrdsetes ajavahemikes erinevad teepikkused. 6. Liikumine on ühtlaselt muutuv, kui keha kiirus muutub vôrdsetes ajavahemikes vôrdse suuruse vôrra. 7. Trajektoor on joon, mida mööda keha liigub. 8. Teepikkus on trajektoori pikkus, mille keha mingi ajaga on läbinud. 9. Kiirus on füüsikaline suurus, mis näitab ajaühikus läbitud teepikkust (nihet). v = s / t (m/s; km/) 10. Kiirendus on füüsikaline suurus, mis näitab kiiruse muutu ajaühikus. a=(v-v)/ t (m/s 2) 11.Ühtlaselt muutuva liikumise põhivõrrandid: s=v·t+(a·t 2)/2; s=( v2v2 )/2a s - nihe (teepikkus sirgjoonelisel liikumisel) (m) v0- algkiirus (m/s) v - lôppkiirus a - kiirendus (m/s2) t - aeg (s) Ringliikumine 12
m z m2 N m2 Punktmasside gravitatsioonijõud: F=G G=6,67 ⋅10−11 r2 kg2 Mm Maa gravitatsioonijõud: F g=G R2 F GMm M m Raskuskiirendus:a= = 2 =G 2 =9.8 2 =g m R m R s Kaal Mõisted: kaal P, raskusjõud F g, mass m, gravitatsioonilise vabalangemise kiirendus g Kaal: P=F g =mg Impulss Mõisted: impulss p, mass m, kiirus v Impulss: p=mv kg ⋅m Ühik (p): s v−v 0 mv−m v 0 ∆p Impulsi seos jõuga: a= ⇛ F= ⇛ F= ∆t ∆t ∆t ∆ p1 −∆ p 2 Impulsi jäävseadus: F 1=−F2 ⇛ = ∆t ∆t
Tihedus suurus, mis näitab aine massi ruumalaühikus. p=mv Raskusjõud gravitatsioonijõud, millega Maa tõmbab enda poole tema lähedal asuvaid kehi. F=mg Hõõrdejõud jõud, mis mõjub mööda pinda liikuvale kehale ja on liikumisssuunaga vastupidine. F=F N Elastsusjõud keha kuju või mõõtmete muutumisel kehas tekkiv jõud. F=-kl Üleslükkejõud vedelikus või gaasis asuvale kehale mõjuv jõud, mis on vastassuunaline raskusjõule. F=gV Impulss liikumishulk keha massi ja kiiruse korrutis. Newtoni I seadus keha liigub ühtlaselt ja sirgjooneliselt või seisab paigal, kui talle ei mõju jõudusid või kui need jõud tasakaalustuvad. Newtoni II seadus keha liikumise kiirendus on võrdeline talle mõjuva jõuga ja pöördvõrdeline massiga. Newtoni III seadus kaks keha mõjutavad teineteist suuruselt võrdsete kuid vastassuunaliste jõududega.