2018 Abimaterjal aines „Ehitusfüüsika“ Veeauru küllastusrõhk, psat, Pa 25 3300 Veeaurusisaldus õhus, g/m3 17 ,269t psat 610,5 e 237,3 t , Pa, kui t 0 o C , 20 2640 Veeaururõhk, Pa 21,875t 15
TEHNILINE TERMODÜNAAMIKA SISSEJUHATUS Termodünaamika on teadus energiate vastastikustest seostest ja muundumistest, kus üheks komponendiks on soojus. Tehniline termodünaamika on eelmainitu alaliigiks, mis uurib soojuse ja mehaanilise töö vastastikuseid seoseid. Tehniline termodünaamika annab alused soojustehniliste seadmete ja aparaatide (näiteks katelseadmete, gaasiturbiinide, sisepõlemismootorite, kompressorite, reaktiivmootorite, soojusvahetusseadmete, kuivatite jne.) arvutamiseks ja projekteerimiseks. Tehniline termodünaamika nagu termodünaamika üldse tugineb kahele põhiseadusele. Termodünaamika esimene seadus on energia jäävuse seadus, rakendatuna soojuslikele protsessidele, teine seadus aga määrab kindlaks vahekorra olemasoleva soojuse ja temast saadava mehaanilise töö vahel, st määrab kindlaks soojuse mehaaniliseks tööks muundamise tingimused. Termodünaamika kui teadus hakkas hoogsalt arenem
Soojusõpetus. 1. Mikroparameetrid, makroparameetrid. Soojusliikumine. Soojusnähtusi kirjeldatakse parameetrite abil. Parameetriks nimetatakse ühelaadseid, olekuid või protsesse kirjeldavat suurust, mille iga väärtus määrab mingi kindla objekti, oleku või protsessi. Makroparameetrid on füüsikalised suurused, mida kasutatakse ainekoguse kui terviku kirjeldamisel. Nendeks on näiteks ainekoguse mass, rõhk, ruumala, temperatuur. Mikroparameetrid on füüsikalised suurused, mida kasutatakse aine üksiku molekuli kirjeldamisel. Nendeks onnäiteks molekuli mass, molekuli kiirus. Soojusnähtusi seletatakse molekulaarkineetilise teooria või termodünaamika abil. Esimene kasutab peamiselt mikroparameetreid, teine makroparameetreid. Molekulaarkineetilise teooria põhialused põhinevad kolmel väitel: a) Aine koosneb molekulidest. b) Osakesed on pidevas liikumises. c) Osakesed mõjutavad üksteis
Materjalitehnika instituut Materjaliõpetuse õppetool MTM40LT Ove Hillep Optiliste sensorite kasutamine veearvestite taatlusprotsessis Bakalaureusetöö Autor taotleb tehnikateaduste bakalaureuse akadeemilist kraadi Tallinna Tehnikaülikool 2014 AUTORIDEKLARATSIOON Deklareerin, et käesolev lõputöö on minu iseseisva töö tulemus. Esitatud materjalide põhjal ei ole varem akadeemilist kraadi taotletud. Töös kasutatud kõik teiste autorite materjalid on varustatud vastavate viidetega. Töö valmis Lauri Lillepea juhendamisel “.......”....................201….a. Töö autor ............................. allkiri Töö vastab bakalaureusetööle esitatavatele nõuete
FÜÜSIKA PÕHIVARA Liikumine 1. Mehaaniliseks liikumiseks nim. keha asukoha muutumist ruumis teiste kehade suhtes mingi aja jooksul. 2. Kulgliikumisel sooritavad keha kôik punktid ühesugused nihked (trajektoori). 3. Keha vôib lugeda punktmassiks, kui tema môôtmed vôib ülesande tingimustes jätta arvestamata, s. t. kulgliikumisel ja kui liikumise ulatus vôrreldes keha môôtmetega on suur. 4. Liikumine on ühtlane, kui keha kiirus ei muutu, s. t. keha läbib vôrdsetes ajavahemikes vôrdsed teepikkused (sirgjoonelisel liikumisel nihked). 5. Liikumine on mitteühtlane, kui keha läbib vôrdsetes ajavahemikes erinevad teepikkused. 6. Liikumine on ühtlaselt muutuv, kui keha kiirus muutub vôrdsetes ajavahemikes vôrdse suuruse vôrra. 7. Trajektoor on joon, mida mööda keha liigub. 8. Teepikkus on trajektoori pikkus, mille keha mingi ajaga on läbinud. 9. Kiirus on füüsikaline suurus, mis näitab ajaühikus läbitud teepikkust (nihet). v = s / t (m/s; km/) 10. Kiirendu
Füüsika I osa eksami kordamisküsimused TEST........................................................................................................................................... 1 DEFINITSIOONID...................................................................................................................13 VALEMID (SEADUSED)........................................................................................................20 TEST Loeng 1 · Arvutüübid: naturaalarv, täisarv, ratsionaalarv, reaalarv, kompleksarv. naturaalarv loendamiseks kasutatavad arvud 0, 1, 2, 3, ... (mõnikord jäetakse 0 naturaalarvude hulgast välja); täisarv kõik naturaalarvud ja nende negatiivsed vastandarvud; ratsionaalarv need reaalarvud, mida saab esitada kahe täisarvu m ja n (n0) m/n. Igal ratsionaalarvul on lõpmatu kümnendarendus ja see on alati perioodiline. Nt.
1. RAHVUSVAHELINE MÕÕTÜHIKUTE SÜSTEEM SI. PÕHIÜHIKUD, ABIÜHIKUD JA TULETATUD ÜHIKUD SI-süsteem kasutab 7 füüsikalist suurust põhisuurustena ning nende suuruste ühikuid nimetatakse põhiühikuteks. Ülejäänud füüsikaliste suuruste mõõtühikud SI-süsteemis on tuletatud ühikud, need on määratud põhiühikute astmete korrutiste kaudu. Põhiühikud: m, kg, s, A, K, mol, cd. Abiühikud: rad, sr (steradiaan). Tuletatud ühikud: N, Pa, J, Hz, W, C 2. KLASSIKALISE FÜÜSIKA KEHTIVUSPIIRKOND. MEHAANIKA PÕHIÜLESANNE. TAUSTSÜSTEEM Seda makromaailma kirjeldavat füüsikat, mille aluseks said Newtoni sõnastatud mehaanikaseadused, nimetatakse klassikaliseks füüsikaks. Mehaanika põhiülesandeks on leida keha asukoht mistahes ajahetkel. Taustsüsteem on mingi kehaga (taustkehaga) seotud ruumiliste ja ajaliste koordinaatide süsteem. Taustkeha, koordinaatsüsteem ja ajamõõtmisvahend (kell) moodus
FÜÜSIKA RIIGIEKSAMI KONSPEKT TTG 2005 SISSEJUHATUS. MÕÕTÜHIKUD SI System International, 7 põhisuurust ja põhiühikut: 1. pikkus 1 m (mehaanika) 2. mass 1 kg (mehaanika) 3. aeg 1s (mehaanika) 4. ainehulk 1 mol (molekulaarfüüsika) 5. temperatuur 1 K (kelvini kraad, soojusõpetus) 6. elektrivoolu tugevus 1 A (elekter) 7. valgusallika valgustugevus 1 cd (optika) Täiendavad ühikud on 1 rad (radiaan) nurgaühik ja 1 sr (steradiaan) ruuminurga ühik. m m Tuletatud ühikud on kõik ülejäänud, mis on avaldatavad põhiühikute kaudu, näiteks 1 ,1 2 , s s kg m 1 N 2 , 1 J ( N m) . s Mitte SI ühikud on ajaühikud 1 min, 1 h, nurgaühik nurgakraad, töö- või energiaühik 1 kWh, rõhuühik 1 mmHg. Ühikute eesliited: piko- (p) 10-12
Kõik kommentaarid