Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

"-tuumareaktsiooni" - 85 õppematerjali

thumbnail
12
doc

Tuumapomm (Referaat)

Sisukord Sisukord.............................................................................................................................. 1 Sissejuhatus.........................................................................................................................2 1. Tuumapommi sünd ja areng USA-s................................................................................3 2. Tuumapommi sünd ja areng NSV Liidus....................................................................... 5 3. tuumarelva ülesehitus......................................................................................................7 4. tuumareaktsioon..............................................................................................................8 5. tuumariigid......................................................................................................................9 kokkuvõte...................

Sõjandus → Riigikaitse
7 allalaadimist
thumbnail
2
docx

Tuumafüüsika kokkuvõte

Kontrolltöö aatomi-ja tuumafüüsikast 1. Tuumafüüsika: tuuma ehitus, tuumajõud, nukleonid, seoseenergia (tuuma seoseenergia arvutamine massidefekti ja eriseoseenergia kaudu). 2. Tuumareaktsiooni mõiste. Tuumareaktsioonide võrrandite kirjutamine, lähtudes laengu ja massi jäävuse seadustest. 3. Radioaktiivsus ja selle liigid. Nihkereeglid alfa-, beeta- ja gammakiirguse kohta. Võrrandite kirjutamine. Poolestusaeg 4. Raskete tuumade lõhustumine neutronite toimel. Kiired ja aeglased neutronid. Ahelreaktsioonid. Kriitiline mass. Neutronite paljunemistegur. Aatomi tuum on mõõtmetelt suurusjärgus 10-13 cm. Tuum on väga suure tihedusega ning oma olemuselt liitosake, mis koosneb prootonitest ja neutronitest, mida kokku nimetatakse tuumaosakesteks ehk nukleonideks. Prootoni laeng on võrdne elektroni laenguga ning seda nimetatakse tuumalaenguks (Z) Mass on 1,6726 · 10-27 kg, Neutroni mass on 1,6749 · 10-27 kg. Prootonite ja neutronite koguarv on tuu...

Füüsika → Füüsika
140 allalaadimist
thumbnail
2
docx

Tuumaenergia kokkuvõte

TUUMAENERGIA Tüüpilises tuumareaktsioonis eraldub miljoneid kordi rohkem energiat kui seda tüüpilises keemilises reaktsioonis. Aatomite ja molekulide ümberkorraldusi nimetatakse keemilisteks reaktsioonideks (Lihtsamatest osakestest võivad kombineeruda keerulisemad ja omakorda võivad need veel laguneda) Keemiliste reaktsioonide käigus muutuvad ühed ühendid teisteks. Tuumade ümberkorralduste, ühinemiste ja lagunemiste protsesse nimetatakse tuumareaktsioonideks, mis tavaliselt toimuvad aatomite põrkumisel teiste tuumadega või elementaarosakestega, radioaktiivse lagunemise jaoks ei ole aga väliseid põhjuseid tarviski. Tuumade radioaktiivne muundumine on sisuliselt nende lagunemine. Tuumareaktsiooni (kuid ka keemilises reaktsioonis) käigus võib eralduda või neelduda energiat (ehk põlemine) Väiksest aine kogusest saadakse tuumareaktsioonis väga palu energiat, aga keemilises reaktsioonis seevastu saadaks...

Füüsika → Füüsika
10 allalaadimist
thumbnail
2
docx

Tuumafüüsika 9. klass

1. Mis on keemilise reaktsiooni ja tuumareaktsiooni vahe? Keemilise reaktsiooni korral tekivad uued ained, kuid tuumareaktsioonide korral tekivad uued keemilised elemendid. 2. Mis on seoseenergia? Seoseenergia on mehaaniline energia, mida on vaja rakendada, et purustada tervik osadeks. Mida suurem on seoseenergia, seda raskem on terviku lammutamine ja vastupidi. 3. Mis on kergete tuumade ühinemisreaktsioon? kui kaks kerget ainet kõrgel temperatuuril ja kõrgel rõhul ühinevad ning tulemuseks on tohutu energia ( näiteks kahe vesiniku ühendumisel) 4. Millised on tuumareaktsiooni toimumiseks vajalikud tingimused? Kõrge temp ja kõrge rõhk. 5. Milles seisneb raskete tuumade lõhustumine? Tuumade lagunemine kaheks kergemaks kildtuumaks, võime saada tuumaenergiat. Lõhustumine toimub neutronite toimel. 6. Miks rasked tuumad lõhustuvad? Kuna see on kõikidele rasketele tuumadele energeetiliselt soodus. 7. Mis on ahelrea...

Füüsika → Füüsika
33 allalaadimist
thumbnail
13
pptx

Tuumareaktsioonid

Tuumareaktsioonid Ernest Rutherford Tuumareaktsioonide avastajaks oli Ernest parun Rutherford kes tekitas 1919 a. pommitas lämmastiku tuuma alfa osakestega ja avastas,et selle tulemusena tekivad kiired prootonid.Oli sündinud esimene tehisliktuumareaktsioon. Mis on tuumareaktsioon? Tuumareaktsioon on kahe aatomituuma või elementaarosakese ja aatomituuma kokkupõrge, mille tulemusena tekivad uued aatomituumad ja/või elementaarosakesed. Põhilised tuumareaktsioonid: Tuumareaktsioon aatomituumas Energia võib tuumareaktsiooni puhul vabaneda erineval moel: 1. Reaktsiooni tulemusena tekkinud tuumade ja osakeste kineetilise energiana 2. Gammakiirgusena 3. Ergastatud olekus tekkinud tuum on ergastatud olekus (omab energiat). Põhilised tuumareaktsioonide tüübid on järgmis...

Füüsika → Füüsika
122 allalaadimist
thumbnail
3
doc

Füüsika kordamisküsimused lk. 38-88

Füüsika kordamisküsimused lk. 3888 1. Selgita mõisted: 1) Sulamissoojus Näitab kui suur soojushulk tuleb anda 1kg ainele tema täielikuks sulamiseks sulamistemperatuuril. 2) Aurustumissoojus Näitab kui suur soojushulk kulub 1kg vedela aine täielikuks aurustumiseks keemistemperatuuril. 3) Keemine Vedeliku aurustumine kogus ulatuses. 4) Isotoop Keemiline element, kus prootonite arv on sama, kuid neutronite arv erinev. 5) Looduslik radioaktiivsus Ebapüsivate tuumade iseeneselik sisemine ümberkorraldumine, mille käigus tuum paiskab välja alfaosakesi, beetaosakesi või gammakiirgust. 6) AhelreaktsioonProtsess, kus protsessi lõpptulemus käivitab uue samatüübilise protsessi. 2. Kirjelda ja võrdle: Thomsoni aatomimudel, planetaarne aatomimudel, Bohri aatomimudel. Thomsoni aatomimudel: · Negatiivselt laetud osakesed, positiivsed osakesed tiirlevad nende ümber. · Tuum puudub. · Selle mudeli järgi koosneb aatom ühtlaselt jaot...

Füüsika → Füüsika
55 allalaadimist
thumbnail
27
pptx

Tuumaenergia esitlus

Tuumaenergia Cattenomi tuumajaam Prantsusmaal Click to edit Master text styles Second level Third level Fourth level Fifth level Mis on tuumaenergia? Tuumaenergiat saadakse kontrollitud tuumareaktsiooni käigus. Tuumareaktsioon on kahe aatomituuma või elementaarosakese kokkupõrge, mille käigus tekkib tuumalõhenemine ning energia vabanemine. Tuumaenergia avastas prantsuse füüsik Henri Becquerel 1896. aastal. Reaktoris luuakse tuumaenergia tootmiseks kontrollitud ahelreaktsioon, kus energia vabaneb soojusena. Viimast rakendatakse vee kuumutamiseks ja auru tekitamiseks, auru abil pannakse tööle elektrienergia tootmiseks kasutatavad turbogeneraatorid Tuumalõhenemine Click to edit Master text styles Secon...

Füüsika → Füüsika
27 allalaadimist
thumbnail
1
odt

füüüsika

11.Loetle termotuumareaktori eeliseid lõhustumisreaktori ees. *Kütuse küllus. Radioaktiivsete jääkide puudumine 10.Tähtedel võib termotuumareaktsioon, mille tulemuses on vesiniku muutumine heeliumiks, kulgeda mitut võimalikku ahelatpidi. Kas energiasaagis sõltub ka konkreetsest ahelast? *Ei sõltu. Tähtis on alg-ja lõpp-tuumade seoseenergia 9.Miks ehitatakse termotuuma- ehk vesinikupomme selle asemel, et suurendada tavalise tuumapommi võimsust? *Sest vesinikupommi plahvatus ületab sadu kordi tavalise tuumapommi võimsuse 8.Miks ei saa reaktor töötada ilma neelajata *Töötingimused reaktoris muutuvad pidevalt. Kütuse hulk väheneb. Neelajaga saab paljunemistegurit reguleerida. 7.Nimetaga 2 põhjust, miks ei saa ahelreaktsioon toimuda prootonite toimel. *Suurtes tuumades on alati neutronite ülekaal, lõhustamisel ei saa vabaneda prootoneid *Kulonilise tõukumise tõttu on prootonil vähe võimalusi läheneda uuele tuumale 6.Kuidas muutub tuumareakts...

Füüsika → Füüsika
41 allalaadimist
thumbnail
1
docx

Füüsika 12.klassile

Aatomi läbimõõt on suurusjärgus 10-10m. Aatomi tuuma läbimõõt on suurusjärgus 10-15m. Enamus aatomimassist on koondunud tuuma (99,95%). Elemendi järjenumber keemilisteelementide tabelis on sama suur kui tuumalaeng. Aatomituum koosneb prootonitest ja neutronitest. Prooton on posit elementaarlaenguga tuumaosake. Neutron on laenguta tuumaosake Prooton ja neutron on ligikaudu sama massiga. Prootoni ja elektroni laengud on võrdsed aga vastasmärgilised. Tuumas olevate prootonite ja neutronite vahel mõjuvad tuumajõud, mis hoiavadki tuuma koos. Tuumajõud elektrilisest jõust oluliselt tugevam, mõjuulatus on väga väike ja ei sõltu tuumaosakese laengust. Seoseenergia näitab, kui suur energia tuleb tuumaosakesele anda, et ta eralduks tuumast. Isotoop on keemilise elemendi teisend, milles prootonite arv on sama kuid neutronite arv on erinev. Sültuvalt neutronite arvust on tuum, kas stabiilne või radioaktiivne. Stabiilne tuum püsib muutumatu. Radioa...

Füüsika → Füüsika
8 allalaadimist
thumbnail
2
pdf

Füüsika, energia

Mis on seoseenergia? Energia,mis peitub tuuma sees. Miks termotuumal on vaja kõrget temperatuuri? Kergemate aatomituumade tuumaühinemisel, kõrge temperatuuri tulemusena tekivad raskemad aatomid. Tuumajõu iseloomustus. Tugev vastastikmõju.Tuumajõud on aatomituuma sees elektrilaenguvahelistest jõududest tunduvalt tugevamad. Mõjuraadius on väga väike. Ei olene osakeste elektrilaengust, nad mõjuvad ühetugevuselt kõigi nukleonide vahel. Tuumareaktsiooni mõiste ja liigid(2).Jäävusseadus tuumareaktsioonis. Tuumareaktsioonis tekivad uued keemilised elemendid, isotoobid. Liigid on Raskete, näiteks uraani tuumade lõhustamine, Kergete tuumade ühinemisreaktsiooni juhtimine. Massidefekt. Massidefekt vabanemine esineb, kui ühe elemendi aatomitest moodustub teise elemendi aatom. Elektron=0.00055 Prooton=1.00728 Neotron=1.00867 (kolmnurk) E=(kolmnurk) m*c(ruudus) E1=(kolmnurk) E / neiukonide arv (kolmnurk) m= (m(p)+m(n))

Füüsika → Füüsika
1 allalaadimist
thumbnail
2
docx

Ühiskonna areng eestis 1919-1930

Teaduse areng- võit esimeses maailmasõjas tagas dem. suurriikidele (USA, sbr, pr.)suure mõjuvõimu mitte ainult poliitikas ja majanduses vaid ka teaduses ning tehnikas. Sõjajärksetel aastatel tegid just nende maade teadlased suurimaid edusamme.juba 1919 a. Teostas uus-meremaal sündinud briti teadlane Ernest Rutherford esimese tehisliku tuumareaktsiooni. 1930 a. Avastas prantsuse füüsikutest abielupaar Irene ja Frederic Joliot-Curie tehisradioaktiivsuse. Maailma esimene tuumareaktor pandi tööle 1942 a. USA-s. Teadlaste avastused olid kasulikud ka meditsiinile, esimest korda saadi vitamiine ning antibiootikume kunstlikul teel . Tehnika võidukäik- teaduse edusammud aitasid kaasa ka tehnika arengule, elekter muutis ka inimeste igapäevaelu. Arenenud maades tekkis inimestel võimalus osta üha uusi elektrilisi tarbekaupu: raadiovastuvõtjaid, külmkapp, pesumasinaid. Tänu elektrile arenes ka raadio, mille kaudu hakkasid riigijuhid inimesi mõjutama...

Ajalugu → Ajalugu
17 allalaadimist
thumbnail
1
doc

Tuumafüüsika

Tuumafüüsika seadused erinevad makrofüüsika seadustest. 1. Aatomituum, tuumajõud. Tuumajõud hoiab koos aatomi. See on tugev vastastikmõju, mis on suurem elektrostaatilisest jõust. Tal on väike mõjuraadius ja ei sõltu laengust. 2. Radioaktiivsus on aatomi võime muunduda teise elemendi aatomiks. - kiirgusel (Heeliumi tuum ) on suur mass ja laeng, sellepärast liigub ta aeglaselt ega suuda läbida paberilehte. Sissehingamisel ja toidu kaudu manustamisel on mõju inimesele väga halb. -kiirgus on kiirete elektronide voog, tervist kahjustav. -kiirgusel on suur läbimisvõime, see on lühilaineline elektromagnetiline voog 3. Poolestusaeg on aeg, mille jooksul laguneb pool isotoobi massist. 4. Tuumakiirgus on ioniseeriv, sellepärast on see organismidele kahjulik 5. Neeldumisdoos näitab mingis keskkonnal neeldunud kiirgusele vastavat energiahulka. Ühikuks on grei (Gy), ka raad 6. ...

Füüsika → Füüsika
53 allalaadimist
thumbnail
2
doc

Aatom

Milline on aatomi ja tema tuuma suurusjärk? Aatomiks nim. väikseimat osakest, mis säilitab talle vastava keemilise elemendi keemilised omadused. Aatomid võivad aines esineda üksikuna või molekulideks liitununa. Tuuma suurusjärk on 10-15m. Mis määrab aatomi massiarvu? Prootonite ja neutronite koguarv. Kuidas paiknevad tuumaosakesed tuumas? Tuumaosakesed paiknevad tuumas nagu elektronid elektronkihtides.Kirjelda tuumajõude? Tuumajõud on kõige tugevam jõud ehk tugevaim vastastikmõjuks.Tuumajõud hoiab võrdselt koos neutroneid ja prootoneid.tuumajõud ulatub 10 astmel -5m-1f.Mis määrab aatomi laenguarvu,millega see veel on seotud? Laenguarv väljendab tuumalaengut elementaarlaengus,aga võrdub ta elektronide arvuga elektronkattes.Elektronide ja prootonite laeng on võrdne ja vastand märgiline.Mis on isotoobid,mis on neis ühesugust,erinevat? Isotoobid on erineva massiarvuga ja sama laengu arvuga tuumad.Massi arv erineb neutronite arvu erinevuse t...

Füüsika → Füüsika
100 allalaadimist
thumbnail
2
doc

Aatom

Milline on aatomi ja tema tuuma suurusjärk? Aatomiks nim. väikseimat osakest, mis säilitab talle vastava keemilise elemendi keemilised omadused. Aatomid võivad aines esineda üksikuna või molekulideks liitununa. Tuuma suurusjärk on 10-15m. Mis määrab aatomi massiarvu? Prootonite ja neutronite koguarv. Kuidas paiknevad tuumaosakesed tuumas? Tuumaosakesed paiknevad tuumas nagu elektronid elektronkihtides.Kirjelda tuumajõude? Tuumajõud on kõige tugevam jõud ehk tugevaim vastastikmõjuks.Tuumajõud hoiab võrdselt koos neutroneid ja prootoneid.tuumajõud ulatub 10 astmel -5m-1f.Mis määrab aatomi laenguarvu,millega see veel on seotud? Laenguarv väljendab tuumalaengut elementaarlaengus,aga võrdub ta elektronide arvuga elektronkattes.Elektronide ja prootonite laeng on võrdne ja vastand märgiline.Mis on isotoobid,mis on neis ühesugust,erinevat? Isotoobid on erineva massiarvuga ja sama laengu arvuga tuumad.Massi arv erineb neutronite arvu erinevuse t...

Füüsika → Füüsika
6 allalaadimist
thumbnail
11
ppt

Fukushima tuumajaam Jaapanis

Fukushima tuumajaam Jaapanis Koostaja: Maris Mäeotsa Õnnetuse algus · Tuumajaamas algasid probleemid 11. märtsil 2011 · Jaapanit tabas tugev maavärin ja tsunami · 11. aprill tabas Jaapanit uus maavärin · Fukushima 4. reaktori juures tekkis uus tulekahju · 30 km raadiuses on evakueeritud 200 000 inimest 1. reaktor · Jahutusvee pumpamine seiskus ja kütusevardad jäid õhu kätte. · Eraldus vesinikku ja toimus plahvatus. · Reaktor jäi terveks, radioaktiivset materjali ei leki. 2.reaktor · Mõnda aega valitses kriitilise tuumareaktsiooni oht. · Reaktori betooni pragudest lekib radioaktiivset vett. · Radiatsiooni tase kõrge selle ümbruses. 3. reaktor · Toimus tugev vesinikuplahvatus · Reaktori kest võib olla kahjustatud · Võib lekkida radioaktiivseid aineid 4.reaktor · Hooldustöödeks seisma pandud · Kütusevardad sattusid õhu kätte · Tekki...

Geograafia → Geograafia
8 allalaadimist
thumbnail
3
doc

Aatompomm

Aatompomm Kuidas on võimalik aatomitest energiat kätte saada? Saksa füüsikult Albert Einsteinilt pärineb teaduse ehk kõige kuulsam valem. See kõlab järgmiselt: energia võrdub massi ja valguse kiiruse ruudu korrutisega (E=m x c2) ning tõestab, et mass ehk mateeria pole midagi muud kui üks energia liike. Teoreetiliselt on seega võimalik mateeriat energiaks muundada ning saadud energia hulka selle valemi abil välja arvutada. Esimeseks sellise "muundamise "tulemuseks praktikas olid aatomipommid, mis lõhkesid Teise maailmasõja lõpus esmalt (katsetamise eesmärgil) New Mexico kõrbes (USA) ning heideti ...

Füüsika → Füüsika
68 allalaadimist
thumbnail
2
odt

Tuumaenergia test

FÜÜSIKA KONTROLLTÖÖ TUUMAENERGIA 1. Mis toimub tuumareaktsiooni käigus? a. Vabaneb väga palju energiat ja tekivad uued elemendid. b. Vabaneb väga palju energiat ja tekivad uued ained. 2. Joonisel on kujutatud radioaktiivse kiirguse eriliikide läbimisvõimet. Missugune kiirgus on tähistatud numbriga 3? a. α-kiirgus. b. β-kiirgus. c. γ-kiirgus. 3. Mida on vaja termotuumareaktsiooni käivitamiseks sobivate komponentide olemasolu korral? a. Vaba neutroni olemasolu. b. Väga suur soojushulk. c. Aine kogus peab ületama kriitilise massi piiri. 4. Missugustes piirkondades on tuumareaktsioonides võimalik kätte saada kõige rohkem energiat? a. Raskete tuumade ühinemisel ja kergete tuumade lagunemisel. b. Kergete tuumade ühinemisel ja raskete tuumade lõhustumisel. 5. Mida on kujutatud joonisel? a. Tuumareaktor. b. Tuumapomm. c. Termotuumapomm. 6. Mille pool...

Füüsika → Füüsika
17 allalaadimist
thumbnail
9
pptx

Tuumareaktsioonid

Tuumareaktsioonid Jaanika Orav ja Margo Martis 12c Tuumareaktsioonid Tuumateaktsioonides tekkivad uued keemilised elemendid e isotoobid. Tuumareaktsioone on väga palju, neid kasutatakse peamiselt looduses mitteesinevate isotoopide tootmiseks. Sobivaim vahend tuumareaktsiooni esilekutsumiseks on neutronite voog, sest tänu neutroni laengu puudumisele liitub ta kergesti iga tuumaga, tuues kaasa reaktsioonika vajalikku kineetilist energiat. Näiteks : Chadwicki eksperiment, milles berülliumi ja heeliumi tuumade kokkupõrkel tekkis süsiniku tuum. Kui tuuma satub neutron, siis muutub tuuma massiarv ühe võrra suuremaks. Tekib uus isotoop, reeglina ergastatud seisundis ja ebastabiilne. Ta laguneb, kiirates kas - või - osakese ja - kvante, mis omakorda võib osutuda radioaktiivseks. Looduses on kõige raskema tuumaga element uraan. Tuumade lõhustumine See on tuuma jagunemine kaheks. Ahelreaktsioon : tuuma lõhustumisel vabanenud neutro...

Füüsika → Füüsika
26 allalaadimist
thumbnail
10
pptx

Päikese - powerpoint esitlus

Päike Click to edit Master text styles Second level Third level Fourth level Fifth level Päike on üks 100-st miljardist tähest meie galaktikas Läbimõõt: 1,390,000 km Mass: 1.988820 x 1027 tonni ehk 1,988,920,000,000,000,000,000,000,000 tonni Kaugus Maast: 149,6 miljonit kilomeetrit Moodustab 99,8% päikesesüsteemi kogumassist Päikese mass koosneb 92% vesinikust ja 7% heeliumist Temperatuur tuumas: 15,000,000 ° C Temperatuur pinnal: 5500 ° C Päikese magnetväli ulatub teisele poole Pluutot Päikese poolt väljastatav energia toodetakse tuumareaktsiooni käigus Igas sekundis muundab Päike 7 miljonit tonni vesinikku heeliumiks, mille käigus tekib 5 miljonit tonni energiat Tuumas tekkinud energial kulub pinnale jõudmiseks miljon aastat Päikese pinda nimetatakse foto...

Füüsika → Füüsika
38 allalaadimist
thumbnail
1
docx

Aatomi ehitus

Isotoop ­ keemiline element, mille prootonite arv on sama, neutronite arv erinev. Looduslik radioaktiivsus ­ aatomituumade iseeneslik muundumine. Tuumajõud ­ kahe või enama nukleoni vahel mõjuv jõud, mis hoiab koos aatomituuma. Tuumareaktsioon ­ kahe aatomituuma kokkupõrge. Seoseenergia ­ võrdne minimaalse tööga, mis kulub selle liitosakese lahutamiseks koostisosadeks. Ahelreaktsioon ­ reaktsioon, kus reaktsiooni saadus põhjustab uue reaktsiooni. Thomsoni aatomimudel ­ aatom koosneb ühtlaselt jaotunud positiivsest elektrilaengust ja negatiivse elektrilaenguga elektronidest, mis selles liiguvad. Rutherfordi aatomimudel ­ aatom koosneb positiivselt aatomituumast ja elektronkattest, mis sisaldab ümber tuuma tiirlevaid elektrone. Bohri aatomimudel ­ aatom koosneb positiivse elektrilaenguga tuumast ja elektronidest, mis tiirlevad ümber tuuma kindlatel orbiitidel. Bohri postulaadid 1)elektron liigub aatomis ainult teatud kindlatel lubatud orb...

Füüsika → Füüsika
81 allalaadimist
thumbnail
1
doc

Aatomi mudel

1.MÕISTED isotoop - keemiline element, mille prootonite arv on sama, aga neutronite arv erinev looduslik radioaktiivsus - tuumade iseeneslik sisemine ümberkorraldumine, paiskavad välja alfa, beeta või gamma osakesi tuumajõud - hoiavad aatomituuma koos lühikese mõjuraadiusega tuumareaktsioon - protsess, mille käigus molekulid võivad ühineda, ümber korralduda ja laguneda seoseenergia - mehaaniline energia, mida on vaja rakendada, et purustada tervik osadeks ahelreaktsioon - protsess, mille käigus lõpptulemused käivitab uue samatüübilise protsessi 2.VÕRDLE THOMSONI AATOMIMUDELIT PLANETAARSE AATOMIMUDELIGA Thomson - meenutab rosinakuklit, elektronid on aatomituumas sees Planetaarne - meenutab planeetide tiirlemist ümber päikese, neutronid pöörlevad ümber aatomituuma 3.SÕNASTA BOHRI POSTULAADID 1)Elektron liigub aatomis ainult teatud kindlatel "lubatud" orbiitidel. Lubatud orbiitidel liikude elektron ei kiirga. 2)Elektroni üleminekul ühelt o...

Füüsika → Füüsika
104 allalaadimist
thumbnail
3
doc

Tuumafüüsika küsimused

Tuumafüüsika (Ainsaar) 1. Milline on aatomi ja tema tuuma suurusjärk? Aatomi läbimõõt on suurusjärgus 10-10, tuumal aga 10-15 2. Mis määrab aatomi massiarvu? Aatomi massiarvu määrab prootonite ja neutronite koguarv (A=Z+N) 3. Kuidas paiknevad tuumaosakesed tuumas? Tuuma osakesed prootonid ja neutrinid paiknevad tuumas tihedalt üksteise kõrval ja nede vahel in vastastikmõju. 4. Kirjelda tuumajõude. (IX kl.) Tuumajõud mõjuvad prootonite ja neutronite vahel ühtviisi tõmbuvalt, seda nimetetatkse ka tugevaks jõuks. See jõud on väikestel kaugustel palju tugevam kui tõukuv elektrostaatiline jõud prootonite vahel, kuid kaugemal kahaneb see peaaegu olematuks. 5. Mis määrab aatomi laenguarvu? Millega see veel seotud on? Laenguarvu määrab prootonite arv tuumas ehk tuuma laeng. See on ühtlasi ka elemendi järjekorranumber perioodilisuse süsteemis. 6. Mis on isotoobid, mis on neis ühesugust ja mis erinevat? Isotoobid o...

Füüsika → Füüsika
97 allalaadimist
thumbnail
19
pptx

Tuumaenergia powerpoint

Tuumaenergia Rõngu Keskkool Pillerin Palo 9.klass 2010/11 õa Tuumaenergia ajalugu · 1789.a avastas Martin Heinrich Klaproth aine, mille ta nimetas uraaniks(uraandioksiid).S Click to edit Master text styles uri aastal 1817. Second level Third level Fourth level · Metallist uraani sai Fifth level esmakordselt alles Eugen Péligot aastal 1841. Tuumaenergia ajalugu 2 Aastal 1896 avastas Henri Click to edit Master text styles · Bacquerel, et uraan kiirgab Second level nähtamatuid kiiri, mis läbivad musta paberit ja põhjustavad fotoplaadi Third level tumenemise. Selle kiirguse ta ...

Keemia → Keemia
21 allalaadimist
thumbnail
3
doc

Tuumafüüsika raamatu küsimuste vastused

1.Milline on aatomi ja tema tuuma suurusjärk? Tuuma mõõtmed on umbes sada tuhat korda väiksemad kui aatomil. Aatomi läbimõõt on suurusjärgus 10 (-10) m , tuumal aga 10 (-15) m . 2.Mis määrab aatomi massiarvu? Aatomi massiarvu määrab prootonite ja neutronite koguarv ehk A=Z+N. 3.Kuidas paiknevad tuumaosakesed tuumas? Tuum on ehituselt liitosake ning koosneb kahesugustest osakestest. Ei tuuma ega ta koostisosakesi ei saa kujutleda kui kõvu kehi, sest neil mõlemal on sisemine struktuur, puudub aga kindel välispind. Tuumaosakesed paiknevad tuumas kihiti. Tuuma osakesed prootonid ja neutrinid paiknevad tuumas tihedalt üksteise kõrval ja nende vahel on vastastikmõju. 4.Kirjelda tuumajõude. (IX kl.) Tuumajõud on ülitugevad, ei levi kaugele ning tuumajõud mõjub kõikidele osakestele ühte moodi.. See jõud on väikestel kaugustel palju tugevam kui tõukuv elektrostaatiline jõud prootonite vahel, kuid kaugemal kahaneb see peaaegu olematuks. 5.Mis mä...

Füüsika → Füüsika
112 allalaadimist
thumbnail
1
docx

Füüsika-tuumareaktsioon

Ioniseeriv kiirgus koosneb suure energiaga osakestest või lainetest, millel on piisavalt energiat, et rebida ära vähemalt üks elektron aatomi elektronkattest (s.t. ioniseerida aatom). Osakeste voo või laine ioniseerimisvõime ei sõltu osakeste arvust, vaid iga konkreetse osakese ioniseerimisvõimest (energiast). Ioniseerivat kiirgust kasutatakse laialdaselt meditsiinis, tööstuses, teadusuuringutel ja mujal. Mõõtes ioniseeriva kiirguse materjalis neeldumist on võimalik hinnata materjali paksust ja kvaliteeti. Alfakiirgus on ioniseeriv radioaktiivne kiirgus, mis tekib tuumareaktsioonide tulemusel ja koosneb alfaosakestest. Alfakiirgus on tulenevalt oma väikesest läbimisvõimest inimesele suhteliselt ohutu. Beetakiirgus on beetaosakestest () koosnev ioniseeriv radioaktiivne kiirgus, mis tekib beetalagunemisel. Beetakiirgus võib olla negatiivne (koosneb negatiivsetest beetaosakestest (­) elektronidest) või positiivne (koosneb positiivsetest be...

Füüsika → Füüsika
32 allalaadimist
thumbnail
4
odt

Tuumaenergia

Tuumaenergia Tuumaenergia ehk aatomienergia on füüsika seisukohast aatomituuma moodustavate elementaarosakeste süsteemi seoseenergia, mis võib tuumareaktsioonides vabaneda. Tuumaenergia ajalugu on lühike. Martin Heinrich Klaproth avastas 1789. aastal uraandioksiidi. Metallilist uraani sai aga esimest korda alles Eugen Peligot 1841. aastal. 1896. aastal avastas Henri Becquerel, et uraan kiirgab mingisuguseid nähtamatuid kiiri, mis on võimelised läbima musta paberit ja põhjustama fotoplaadi tumenemist. Ta nimetas selle kiirguse uraanikiirteks. Samal ajal avastasid Marie ja Pierre Curie, et uraanikiired on omased ka mõndadele teistele ainetele ning nimetasid need kiired ümber radioaktiivseks kiirguseks. Alles 1939. aastal avastasid Otto Hahni ja Fritz Strassmann, et uraani isotoobi 235 tuum lõhustub aeglaste neutronite mõjul, kiirates välja energiat ning veel 2-3 neutronit, mis on võimelised teisi uraa...

Füüsika → Füüsika
4 allalaadimist
thumbnail
1
docx

Tuumafüüsika spikker

Tuum-prootonid +(p), neutronid neutraalne(n). Looduslik radioaktiivsus iseeneslik kiirgumine, avas A.Becquerel. Kiirgused -kiirgus posit, He aatomituum, väike läbitungivus, elektromagnetväli kallutab vähe, - kiirgus elektronid, läbib 1mm Al plaati, -kiirgus tugevaim, ei mõjuta magnet-, elektriväli, liigub valguse kiirgusega, suur läbitungimisvõime. Poolestusaeg aeg, mil isotoop kaotab poole radioaktiivsusest. Isotoop element, keemilistelt omadustelt sama, füüsikalistelt erinevad. Radioaktiivse lagunemise seadus N=No*2-t/T (ühik rad.akt. osakest), No=m/M*Na (No-rad.aat. arv ajahetk, T-poolestusaeg, t-aeg). Radioaktiivsete ainete eluiga aeg, mille jooksul pool radioaktiivsusest kaob. Raskete tuumade lõhustumine ahelreaktsioon, lõhustumisel kasutatakse neutronitega pommitamist, eralduvad neutronid ja energia. Kriitiline mass aine vähim mass, kus reaktsioon toimub rahulikul teel. Paljunemistegur antud põlvkonna ja eel...

Füüsika → Füüsika
8 allalaadimist
thumbnail
2
odt

Tähe liigid

Tähe Liigid Hiidtähed Hiidtähed on suurimad tähed, isegi Päikesest suuremad. Hiidtähti on erinevat värvi ja ka erineva suurusega. Sinised hiiud on umbes 15 korda suurema läbimõõduga kui Päike. Sinised hiiud on noored ning kuumad tähed, Punased hiiud aga hoopis vastupidi ­ vanad ning külmad. Punased hiiud võivad olla Päikesest umbes 100 korda suurema läbimõõduga. Kõige suuremad tähed ­ ülihiiud ­ on Päikesest kuni 1000 korda suuremad. Kääbustähed Need on maailma kõige väiksemad tähed. Kääbustähed on samuti erineva värvuse ning suurusega. Kõige vanemad kääbustähed on Maaga ühesuurused valged kääbused. Olles Maaga ühesuurused on nad massilt sarnased hoopis Päikesele. Valged kääbused on jahtuvad tähed ning nad jahtuvad kuni muutuvad külmadeks ­ mustadeks kääbusteks. Punased kääbused võivad olla nii noored kui ka vanad, kuid nad on Päikese massist väiksemad ning jahedad. Punasest tähest väiksema mas...

Füüsika → Füüsika
45 allalaadimist
thumbnail
22
pptx

Vesinik

VESINIK Leidumine looduses  Vesinik on kõige sagedasem element terves universumis, moodustades 75% universumi kogumassist.  Maa massist moodustab umbes 0,12%.  Maal on vesinik oma loomulikul, puhtal kujul haruldane, kuna on põhiliselt ühinenud mõne teise ainega, näiteks hapnikuga, moodustades vee molekule.  Esineb looduses enamuselt vee koostises.  Leidub nii ehedalt kui ka ühendites: Ehedalt: päikeses, atmosfääri ülemistes kihtides Füüsikalised omadused  Värvitu, lõhnatu mittemetalliline gaasiline aine.  Koosneb 1 prootonist ja elektronist.  2 stabiilset isotoopi  Isotoopidel kuni 2 neutronit.  Aatommass: 1.00794  Tihedus : 0.08988 g/dm33  Sulamistemperatuur : -259.14 °C  Keemistemperatuur : -252.87 °C Keemilised omadused  Tähis H  Paikneb keemiliste elementide tabelis IA rühmas ja 1. perioodis.  Aatomnumber on 1.  Elektronegatiivsus on 2,1.  Toimib p...

Keemia → Keemia
13 allalaadimist
thumbnail
17
pptx

Tuumafüüsika rakendused ja loodushoid

TUUMAFÜÜSIKA RAKENDUSED v Tuumarelvad v Elektrienergia tootmine v Radioaktiivsete isotoopide meetod v Allveelaevad ja jäälõhkujad (tuumkütused) Tuumarelvad v Relv, mis põhineb tuumaenergia kasutamisel v Mõjutegurid lööklaine, valguskiirus ja radioaktiivne kiirgus v Neid loetakse ka massihävitusrelvadeks. v Tuumarelvaks on näiteks tuumapomm Tuumapomm Tuumapommis on ahelreaktsiooni tekkimiseks vaja teatud kriitiline mass ainet. Kui kriitilise aine mass on kriitilise massiga võrdne, siis k=1 ja reaktsioon toimub muutumatu kiirusega. Kui k>1 (aine mass on kriitilisest massist suurem) toimub plahvatus, viimast kasutataksegi tuumapommides. Tuumpommid on uraanipommid või plutooniumipommid. Uraan on looduslik, aga seda rikastatakse. Plutooniumi toodetakse spetsiaalsetes reaktorites. Tuumapomm Elektrienergia tootmine v Elektrienergiaga on tegu energeetika sei...

Füüsika → Füüsika
40 allalaadimist
thumbnail
2
doc

Gammakiirgus

GAMMAKIIRGUS Gammakiirgus on kõige lühema lainepikkusega ja seega suurima sageduse ning energiaga elektromagnetiline kiirgus. Gammakiirgus koosneb gammakvantidest ehk suure energiaga (üle 100 keV) footonitest. Gammakiirgus tekib tuumaprotsessides, mõne teist tüüpi radioaktiivse kiirguse teisese kiirgusena ning elementaarosakeste annihileerumisel. [2] Gammakiirgus tekib tähtedevahelises ruumis kihutavate vesiniku aatomi tuumade ehk prootonite põrkumisel üksteisega. Kaks kokku põrkavat prootonit moodustavad uue osakese, mille nimi on piion ehk -meson. Piion aga laguneb momentaalselt kaheks gammakvandiks ehk gammakiirguse footoniks. Mustade aukude ümber olevas gaasikettas võib energia kasvada pööraselt suureks. Sel juhul tekib kettas ohtralt positrone, elektroni vastandosakesi. Kui positron põrkab kokku elektroniga (nende elektrilaengud on vastasmärgilised), muutuvad osakesed gammakiirguseks. Nähtust nimeta...

Füüsika → Füüsika
24 allalaadimist
thumbnail
4
rtf

Aatomfüüsika, tuumajõud jm konspekt

Tuumajõud - maailma tugevaim jõud m.ü. kohta. Tänu neile on tuum tohutult püsiv kooslus, lõhkumiseks vaja suurt energiat. Need mõjuvad ka väljaspooltuuma väikses raadiuses. Seosenergia - energia, mida läheb vaja tuuma täielikuks lõhkumiseks üksikuteks osadeks. Tänu tuumajõule on see suur. Massidefekt - tuuma seisumass on alati väiksem tema modustavate osakeste seisumasside summast. Energia jäävuse seaduse põhjal eraldub samasugune energia nagu seosenergia tuuma moodustamisel, see energia tekib massidefektist. Eriseosenergia - seosenergia m.ü. kohta. Oleneb elemendist. Tuumareaktsiooni energiat on võimalik eraldada kas viimaste elementide lagunemisel või esimeste ühinemisel. Uraan - looduslik U(92,238). Tuumafüüsika jaoks on oluline U(92,235), mis moodustab 1/140 looduslikust uraanist. Selle eraldamiseks kasutatakse rikastustehaseid. Ahelreaktsioon - U-235 pommitades neutroniga, neutron lööb U-235 2-ks kildtuumaks ja tekib krüptoon,...

Füüsika → Molekulaarfüüsika
4 allalaadimist
thumbnail
2
doc

Tuumareaktsioonid ja füüsika jäävuse seadus

Tuumareaktsioonid. Uraani tuuma jagunemine. Ahelreaktsioon. Kriitiline mass. 1919 sooritas Rutherford esimese tuumareaktsiooni, pommitades lämmastikku -osakestega. 14 7 N +24He178 O +11H Füüsika jäävuse seadused on universaalsed. Kirja pandud reaktsiooni nimetatakse tuumareaktsiooniks. Siin kehtivad laengu jäävuse seadus (7+2=8+1) ja massi jäävuse seadus (14+4=17+1). Neutron avastati mäletatavasti 1932 (Chadwick). 9 4 Be+24He126C +01n Protsessi käigus avastati tegelikult suure läbitungimisvõimega kiirgus, mis läbis isegi 10-20 cm paksuse pliiplaadi, kiirguse osakesteks osutusid neutronid. Nii pärast 1919. aastast kui ka 1932. aastat intensiivistusid uurimistööd tuumareaktsioonide alal. 1939 jõuti selgusele, et uraani tuumade lagundamisel, kui neid pommitada neutronitega, võib saada väga suurt energiat. Põhimõtteliselt on energia kättesaamine aatomist lihtne. Joonisel mõjutab neutron uraani tuuma poolduma ja muunduma kaheks uuek...

Füüsika → Füüsika
40 allalaadimist
thumbnail
2
docx

Tuumafüüsika vastused

Tuumafüüsika: 1. Kamber on kaetud küllastusoleku lähedase vee või piirituse auruga. Kui kolb järsult alla suruda siis aur paisub ilma soojuseta ja jahtub. Aur muutub üleküllastuseks. Kui elementaarosake satub üleküllastunud auru siis tekitab oma teel ioone. Tekivad udupiisad, millest moodustub osakeste nähtav jälg. Jäljed pildistatakse. 2. Töötava ainena kasutatakse vesinikku või propaani, mida hotakse suure rõhu all. Kui rõhku järsult vähendada satub vedelik ülekuumutatud olekusse. On vaja aurustumis keskmeid, kuhu saavad auru mullid koguneda. Tekitab teel ioone. Ioonide ümber moodustavad auru mullid- tekib osakeste jälg mida pildistatakse. Töökestus 0,1 s. 3. kamma kiirgus ­ Ei muuda magnetväljas oma suunda. Sarnaneb röntgenkiirgusele. Laine pikkus on m . Levimise kiirus = valguskiirgus, erinevates lainetes neeldub erinevalt. Beeta kiirgus - Kaldub magnetväljast otse...

Füüsika → Füüsika
31 allalaadimist
thumbnail
2
docx

Tuumafüüsika

1) Aatomtuum koosneb prootonitest ja neutronitest 2) aatominumber ehk laenguarv (Z) 3) Massiarv on nukleonide (prootonite ja neutronite) koguarv aatomi tuumas. Ainult prootonite arvu aatomi tuumas näitab aatomnumber. 4) Mille poolest erinevad, sarnanevad prootonid ja neutronid? 5) Prootonid ja neutronid kokku ­ Nukleonid 6) Isotoopideks nimetatakse ühe elemendi erineva massiarvuga tuumi. Neid tähistatakse 7) Ülesanne tuuma koostise kohta 8) Radioaktiivsus ehk tuumalagunemine on ebastabiilse (suure massiga) aatomituuma iseeneslik lagunemine. Selle protsessiga kaasneb radioaktiivne kiirgus. 9) Alfa kiirgus ­ Alfakiirgus on ioniseeriv radioaktiivne kiirgus, mis tekib tuumareaktsioonide tulemusel ja koosneb alfaosakestest. Alfakiirgus on tulenevalt oma väikesest läbimisvõimest inimesele suhteliselt ohutu, ei suuda läbida isegi paberit. Beeta kiirgus- Beetakiirgus on beetaosakestest koosnev ioniseeriv radioaktiivn...

Füüsika → Füüsika
6 allalaadimist
thumbnail
2
doc

Tuuma- ja termotuumareaktsioonid

http://www.abiks.pri.ee TUUMAREAKTOR Reaktsiooni kiirust reguleeritakse reguleerimisvarrastega, mis neelavad neutroneid, nt kaadium või boor. Reaktoris on torustik, milles tsirkuleeritav vesi (või Na) kannab tekkiva soojuse reaktorist välja. Et neutronid ei väljuks reaktorist on see kaitsdud raudbetooniga. Välja juhitud veeuar või vedel Na soojendab omakorda aurugeneraatoris teise süsteemi vett, mis aurustub > paneb käima turbiini, mis paneb omakorda käima generaatori. Kütuseks on kasutatav ka looduslik, rikastamata uraan, kui parandada temas neutronite neelamist 235U poolt. Selleks tuleb vähendada neutronite kasutut neeldumist 238Us. Kui aga neutroneid kiiresti aeglustada, siis nende kasutu neeldumine väheneb. Aeglustajaks sobib grafiit ja deuteerium TUUMAPOMM Tuumapommis paikneb lõhustuv aine kahes osas, mis mõlemad on parajasti nii väikese...

Füüsika → Füüsika
154 allalaadimist
thumbnail
1
doc

Esimene ja teine maailmasõda

1.Teaduuvutused keemias, füüsikas ja meditsiinis. Füüsika harudest arenes eriti jõudsalt tuumafüüsika(aatomituuma ja selles toimuvaid protsesse käsitlev füüsikaaru) 1919.a teostas Rutherford esimese tehisliku tuumareaktsiooni. 1930.aastal avastati tehisraadioaktiivsus(Irene ja Frederic JoliotCurie)maailma esimene tuumareaktor pandi tööle 1942.a Usas. Töötati ka tuumapommi loomise kallal. Keemikud õppisid looma kindlate omadustega tehisaineid(sünteetilised ained). Tehti kindlaks valkude ehitus ning alustati ainevahetusprotsesside uurimist. Saadi vitamiine ning antibiootikume kunstlikul teel. Meditsiiniarengule tõid keemikute avastused suurt kasu. Need muutsid haigete ravimise tunduvalt tõhusamaks. 2.Sidevahendite areng(massimeedia vahendid) Tänu elektrile arenes jõudselt sidetehnika, eriti raadio. Enamus riigijuhte mõistsid raadio pakutavaid võimalusi inimeste meelsuse mõjutamisel. Seetõttu alustati paljudes riikides 1920.aastail ...

Ajalugu → Ajalugu
50 allalaadimist
thumbnail
8
docx

LOODUSLIK RADIOAKTIIVSUS

LOODUSLIK RADIOAKTIIVSUS Avastati juhuslikult Prantsuse füüsiku Becquerel poolt, kes uuris ainete fotoluminestsentsi. Ta avastas,et uraan kiirgas kogu aeg iseeneselikult mingit erilist kiirgust, mis mõjus fotopaberile. Hiljem avastati, et eriti tugev kiirgus on elemendil raadium ( ca 4x tugevam kiirgus) , millest tuletati nimetus radioaktiivsus. Eriti põhjalikult uuris radioaktiivsust Marie Curie Osutus, et see kiirgus oli olemas kogu aeg ning lisaks kiirgusele eraldus ka veidikene soojust. Osutub, et Mendelejevi tabeli kõik elemendid mille järjekorra number on suure kui 83 on looduslikult radioaktiivsed. Alfa, beeta ja gamma kiirgus Radioktiivse kiirguse uurimisel avastati, et võib tegelikult koosneda kolmest erinevast komponendist. Selleks uurimiseks kasutati, kas elektri või magnetvälja. α kiirgus Kujutab endas heeliumi aatomi tuumi. Nad on positiivsed ja suure massiga. Tal on suhteliselt väikene kiirus, suhteliselt väikene läbi...

Keemia → Keemia
9 allalaadimist
thumbnail
2
docx

Tuumakütus, tuumapomm ja reaktor

Kriitiline mass: · Kriitiline mass on vähim tuumkütuse kogus, milles tuumalõhustumine saab toimuda iseseisva ahelreaktsioonina. Sõltub nt tuumkütuse tihedusest, geomeetrilisest kujust, temperatuurist, puhtusest · Tuumkütuse massi kriitilisust mõõdetakse neutronkordaja (k) abil, kus: · k = ntekkinud - nkaotatud · k on väiksem kui 1 -> alakriitiline. Kiirgab neutronkiirgust, selle suurus oleneb k'st. · ..suurem..->ülekriitiline. · Kõik tuumarelvad vajavad plahvatamiseks ülekriitilise massi saavutamist. · K=1 on kriitiline. Kõik tuumajaamad töötavad selles reziimis. Tuumakütuseks sobivad elemendid: · Enamuse reaktorite kütuseks olev uraan koosneb eelkõige kahest isotoobist, milleks on uraan-235 ja uraan-238 · Mõnedes reaktorites üritatakse ...

Füüsika → Termodünaamika
14 allalaadimist
thumbnail
2
doc

Ajaloo kordamine pt.9-10

AJALUGU pt.9-10 MÕISTED Balti liit ­ Eesti, Soome, Läti, Leedu ja Poola vaheline leping, mille alusel kõik osalised oleksid osutanud üksteisele abi sõjalise rünnaku korral. Landeswehr ­ Läti pinnal 1918-1919 tegutsenud baltisaksa väekoondis, mis püüdis kukutada Läti ja Eesti rahvuslikku valitsust ning luua baltisaksa hertsogiriiki. Sürrealism ­ mis pidas pidas loomingu lähtealuseks unenägu, nägemust ja vaistlikke tundeid ning eitas loogikat ja kunstitraditsiooni. Balti ajastu - AASTAD 28.nov.1918 ­ Punaarmee ründas Narvat ja sundis Eesti Rahvusväe üksuseid taganema, hõivates poole Eesti mandriosast 02.veebr.1920 ­ Kirjutati alla rahulepingule Tartus, peale 2 vaidlus kuud Venemaaga. Lõpetas sõja, tagas soodsa idapiiri ning lahendas mõned majanduslikud probleemid. 1934 ­ Konstantin Päts ja Johann Laidoner teostasid riigipöörde, kuulutati välja kaitseseisukord, Riigikogu saadeti laiali, erakondade teg...

Ajalugu → Ajalugu
6 allalaadimist
thumbnail
8
pdf

12. klassi füüsikaarvestuse konspekt

Füüsika Mikro- ja megamaailm ❏ Mikro - Palja silmaga ei näe; aatomid, aineosakesed ❏ Makro - universum, astronoomia Makrofüüsika ❏ Täht koosneb ​gaasist (vesinik, mis muutub heeliumiks), ​mis põleb . Täht koosneb vesinikust, tuumareaktsiooni käigus muutub heeliumiks, mida aeg edasi, seda raskemad elemendid tuumareaktsioonide käigus tekivad (kuni rauani) ❏ Kui gaas saab otsa ja paisub, siis tekib punane hiid ❏ Punases hiius hakkab heelium põlema, muutub valgeks kääbuseks (täht, kus lihtsamad elemendid on ära kasutatud) või toimub ​supernoovaplahvatus (täheplahvatus, kus võivad tekkida raskemad elemendid) ❏ Supernoovaplahvatusega võib tekkida ​neutrontäht​, mis koosneb ainult neutronitest ❏ Kui on tugev supernoovaplahvatus, siis tekib must auk- kõik koondub ühte punkti ❏ Gravitatsioon ja reaktsioonide jõud on tasakaalus (alguses), ku...

Kirjandus → 12. klass
3 allalaadimist
thumbnail
4
doc

Päike

Päike Sol Päike on tavaline täht, üks rohkem kui 100st biljonist tähest meie galaktikas. diameeter: 1,390,000 km. mass: 1.989e30 kg. temperatuur: 5800 K (pinnal) 15,600,000 K (tuumas) Päike on suurim objekt meie Päikesesüsteemis. Tas sisaldab rohkem kui 99.8% kogu Päikesesüsteemi massist (Jupiter mahutab suurema osa ülejäänust). Päike on isikustatud paljudes mütoloogiates: kreeklased kutsuvad teda Helioseks ja roomlased kutsusid teda Sol. Päikese mass koosneb praegusel ajal 75% vesinikust ja 25% heeliumist (92.1% vesinikku ja 7.8% heeliumi aatomite arvu järgi); kõik ülejäänud ("metallid") moodustavad ainult 0.1%. See koostis muutub aja jooksul aeglaselt, kuna vesinikku muundatakse Päikese tuumas ümber heeliumiks. ...

Füüsika → Füüsika
116 allalaadimist
thumbnail
3
docx

Tuumafüüsika

aatomituum Koosneb nukleonidest ­ prootonitest ja neutronitest, mida hoiavad koos tuumajõud. Prootoni laeng on + e, neutronil laeng puudub. Mõlema mass on (aatommassiühik, Mendelejevi tabelis on massid antud nendes ühikutes, 1 u on 1/12 süsinik-12 isotoobi aatomi massist) Tuuma on koondunud suurem osa aatomi massist. Tuuma mõõtmed ­ läbimõõt 10-14 m Keemilise elemendi tähis A ­ aatomi massiarv, nukleonide (prootonite + neutronite arv, ligikaudne aatomi mass aatommaassiühikutes Z ­ keemilise elemendi järjekorranumber, prootonite arv, elektronide arv neutraalses aatomis, tuuma laeng elementaarlaengutes N ­ neutronite arv, isotoobid On keemilise elemendi aatomid, mille tu...

Füüsika → Füüsika
156 allalaadimist
thumbnail
6
doc

Tuumarelvad

Tartu Karlova Gümnaasium Kristjan Kalve Tuumarelvad Referaat Juhendaja:õp. Silver Mägi Tartu 2009 Sisukord 1.Ajalugu 1.1Teaduslik areng 1930ndatel 1.2Manhattani projekt 1.3Nõukogude Liidu tuumarelvastus 1.4Arendus Külma Sõja ajal 2.Ehitus 2.1Tuumareaktsioon 2.2Tuumakütused 2.3Erinevad stardiplatvormid ja kandjad 3.Tuumaplahvatuse tagajärjed 3.1Plahvatus 3.2Soojuskiirgus 3.3Radiatsioon 4. Kasutatud Kirjandus 1.Ajalugu 1.1.Teaduslik Areng 1930ndatel Aastal 1898 avastasid Pierre ja Maria Curie uraani radioaktiivsuse. Aastal 1932 John Cockroft ning Ernest Walton poolitasid esmakordselt aatomituuma. Aastal 1934 patenteeris Leo Szilard aatomipommi. Kolumbia ülikool korraldas aastal 1939 esimese tuumareaktsiooni. 1.2.Manhattani Projekt Manhattani proje...

Ajalugu → Ajalugu
21 allalaadimist
thumbnail
3
doc

Radioaktiivsus ja kiirgus

Kordamine. Radioaktiivsus. 1. Mis on radioaktiivsus? Radioaktiivsus oa aatomi lagunemine laetud osakesteks ja teiseks aatomiks, mille keemilised omadused on esialgse aatomi omadustest erinevad. 2. Millest oleneb tuumade püsivus? Tuumade püsivus oleneb tuumalaengu ja massiarvu suhtest. 3. Mis moodustavad alfakiirguse? Alfakiirguse moodustavad heeliumi aatomite tuumad. 4. Mis moodustavad beetakiirguse? Beetakiirguse moodustavad elektronid, mis tekivad radioaktiivse elemendi ühe neutroni muundumisel prootoniks 5. Mis moodustavad gammakiirguse? Gammakiirguse moodustavad elektomagnetlained. 6. Nihkereeglid. · Alfa-lagunemine ­ tuum kaotab kahekordse elementaarlaengu suuruse positiivse elektrilaengu ning tema mass väheneb kuni 4-aatommassi ühiku võrra. Element ninhkub perioodilisustabelis kahe ruudu võrra ettepoole. · Beeta-lagunemine ­ elektron lendab tuumast välja,tuumalae...

Füüsika → Füüsika
61 allalaadimist
thumbnail
3
docx

PÄIKE

PÄIKE Päike on tavaline G2 täht, üks rohkem kui 100-st miljardist tähest meie galaktikas. Diameeter: 1,390,000 km. Mass: 1.989e30 kg. Temperatuur: 5800 K (pinnal); 15,600,000 K (tuumas) Päike on suurim objekt meie Päikesesüsteemis. Tas sisaldab rohkem kui 99.8% kogu Päikesesüsteemi massist (Jupiter mahutab suurema osa ülejäänust). Päike on isikustatud paljudes mütoloogiates: kreeklased kutsuvad teda Helioseks ja roomlased kutsusid teda Sol. Päikese mass koosneb praegusel ajal 75% vesinikust ja 25% heeliumist (92.1% vesinikku ja 7.8% heeliumi aatomite arvu järgi); kõik ülejäänud ("metallid") moodustavad ainult 0.1%. See koostis muutub aja jooksul aeglaselt, kuna vesinikku muundatakse Päikese tuumas ümber heeliumiks. Päikese välised kihid ilmutavad eristatavat pöörlemist: ekvaatoril pindmine kiht teeb täispöörde iga 25,4 päevaga; pooluste lähedal aga 36 päevaga. Selline veider käitumine tuleb...

Füüsika → Füüsika
12 allalaadimist
thumbnail
3
docx

Ajaloo kontrolltöö Õp lk 64-87.

Ajaloo kontrolltöö Õp lk 64-87. 1. Mõisted. 1) Vabadussõda ­ Eesti võitlus Venemaa ja Landeswehri vastu aastatel 1918-1920. 2) Landeswehri sõda ­ Eesti võitlus baltisakslaste vastu aastal 1919. 3) Riigivanem ­ isik, kes juhtis riigikogu poolt ametisse määratud valitsuse tegevust. Tegeles nii peaministri kui ka presidendina. 4) Eesti Vabadussõjalaste Keskliit ­ suurim poliitiline liikumine Eestis, mis algselt koondas Vabadussõja veterane. Nõudis põhiseaduse muutmist. 5) Vaikiv ajastu ­ ajastu, mil Riigikogu oli vaikivas olekus(autoritaarne riigikord). Tööl ei käidud, palka saadi. Algas 12 märts 1934, kui Päts ja Laidoner korraldasid riigipöörde. 6) Maareform ­ olulisim ümberkorraldus majanduse alal, mõisnike maavaldused riigistati ja jagati soovi...

Ajalugu → Ajalugu
8 allalaadimist
thumbnail
9
docx

Tuumaelektrijaam

2008 Referaat Tuumaelektrijaam Füüsika Juhendaja: Indrek Karo Mari Parts Pelgulinna Gümnaasium Sisukord Tuumaelektrijaam........................................................................................3 Tööpõhimõte...........................................................................................4 Olemus ja mehhanism..............................................................................5 Ajalugu....................................................................

Füüsika → Füüsika
108 allalaadimist
thumbnail
6
doc

Päike ja tähed

SISSEJUHATUS Tähed on meist väga kaugel, seetõttu paistavad nad öötaevas säravate täpikestena, mis Maa atmosfääri mõju tõttu vilguvad. Erandiks on Päike, mis on ainsana Maale piisavalt lähedal, et paista meile kettana ning anda olulisel määral valgust (päikesevalgust). Tavakeeles Päikest enamasti täheks ei nimetata, see-eest aga nimetatakse Päikesesüsteemi planeete ja isegi meteoore mõnikord tähtedeks. Sellest tulenevad astrofüüsika seisukohast ebakorrektsed väljendid kinnistäht, rändtäht (Päikesesüsteemi planeet) ja langev täht (Maa atmosfääri sisenenud ja hõõrdumise tõttu tugevalt hõõguv meteoor). PÄIKE Päike on Maale lähim Galaktika täht, mille ümber tiirlevad Maa ja teised Päikesesüsteemi planeedid, nii Maa-sarnased kui ka gaashiiglased. Peale selle tiirlevad Päikese ümber veel asteroidid, meteoroidid, komeedid, Neptuuni-tagused o...

Füüsika → Füüsika
98 allalaadimist
thumbnail
4
doc

1936 - Victor Francis Hess ja Carl David Anderson

1936 - Victor Francis Hess ja Carl David Anderson Koostas: Rain Berezin 12a Kosmiline kiirgus Selgitades tuumafüüsika ja osakeste füüsika uurimist, ei tohi unustada, millist rolli on mänginud kosmiline kiirgus. Kosmiline kiirgus oli 1930. aastate algul ainus kõrge energiaga osakeste allikas ning ainus vahend avastamaks ,,uusi" osakesi nagu positron (elektroni antiosake). Esimest korda õnnestus positron tuvastada 1932. aastal Carl Andersonil, kes oli kosmilise kiirguse spetsialist. 19. sajandi lõpul, füüsikud, kes vajasid elektriliselt neutraalset gaasi oma mateeriastruktuuri katsetusteks, panid tähele, et sellist gaasi on võimatu saada väljaspool ionisatsiooni allikat. Sellist fenomeni on üpris lihtne korrata väga traditsionaalselt kulla lehe ning elektroskoobiga. Korrektne tõlgendus sellele oleks, et Maa pind võtab pidevalt vastu laetud osakeste voolu. Algselt usuti,...

Füüsika → Füüsika
11 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun