Tõenäosusteooria.
12. klass Tõenäosusteooria 1. Sündmuse klassikaline tõenäosus Sündmuse A tõenäosuseks p(A) nimetatakse sündmusele A soodsate elementaarsündmuste (võimaluste) arvu k ja kõigi elementaarsündmuste (võimaluste) arvu n suhet. k p(A) = n Siin eeldakse: 1) arvu n lõplikkust;
Klassikaline või geomeetriline tõenäosus μ(ΩA)=(2,25-2*0,5)=1,25 k V =k! Ck P(A)=1,25/2,25=5/9 Variatsioonid: n n Liitmislause, korrutamislause, tinglik 1) Karbis on 10 pooljuhti, neist 7 hiljuti testitut. Karbist tõenäosus, sõltumatud sündmused, võetakse huupi 5 pooljuhti. Leidke tõenäosus, et sõltumatute katsete seeria nende hulgas on täpselt 3 hiljuti testitut. Liitmislause: P(A1+A2)=P(A1)+P(A2)-P(A1A2) Lahendus: A=“3 pooljuhti 5-st on testitud“ P((A1+A2)+A3)= P(A1)+P(A2)+P(A3)-P(A1A2)- 5 P(A1A3)-P(A2A3)+P(A1A2A3) │Ω│=n= C10 =12 Tinglik tõenäosus: DEF. P(A/B)=P(AB)/P(B) ; 3 2
Kui suur on tõenäosus, et kontsert toimub? Lahendus. Vastavalt ülesande tingimustele on vaja leida sündmuse tõenäosus. Kuna sündmused A ja B ei välista teineteist, siis kasutame valemit (2) /või läheme üle vastandsündmusele/: p ( A B ) = p( A) + p( B ) - p( A B) = 0,8 + 0,9 - 0,8 0,9 = 1,7 - 0,72 = 0,98 Kui lahendada vastandsündmuse kaudu (kontsert ei toimu), saaksime tulemuseks p ( A B) = 1 - p ( A B ) = 1 - 0,2 0,1 = 0,98 7. Peeter lahendab tõenäosusteooria ülesande tõenäosusega 0,3. Ants on veidi parem lahendaja, tema puhul on vastav tõenäosus 0,6. Lausa "kuldlahendaja" on aga Piret, kelle puhul on sama ülesande lahendamise tõenäosus 0,95. Kui eeldada, et õpilased istuvad kontrolltöö ajal hajutatult ning neil puudub võimalus üksteisega lahenduskäiku kooskõlastada, kui suur on siis tõenäosus, et a) kõik kolm õpilast lahendavad antud ülesande b) mitte ükski neist ülesannet ei lahenda c) ülesande lahendab vähemalt üks neist
ÜLESANDEID ISESEISVAKS LAHENDAMISEKS 1. Abonent on unustanud vajaliku telefoninumbri kaks viimast numbrit (need on teineteisest erinevad) ja valib need juhuslikult. Kui tõenäone on, et ta valib õiged numbrid? P(A) = 0,011. 2. Kaupluses töötab 7 nais- ja 3 meesmüüjat. Ühes vahetuses töötab 3 müüjat. Kui tõenäone on, et ühes juhuslikult valitud vahetuses on 3 meesmüüjat? P(A) = 0,008. 3. Kauplusse saabus 500 komplekti õmblustooteid kolmest vabrikust: 100 komplekti vabrikust K , 150 vabrikust L ja 250 vabrikust M. Vabriku K toodangust kuulub keskmiselt 75 % I sorti. Vabrikute L ja M jaoks on see näitaja vastavalt 90 % ja 80 %. Leida tõenäosus, et huupi võetud komplekt on esimest sorti. (0,82) 4. Loterii iga 10000 pileti kohta loositakse 150 rahalist ja 50 esemelist võitu. Kui tõenäone on ühe piletiga võitmine? (0,02) 5. Kui tõenäone on kähe täringu viskel saada 7 või 8 silma? (0,3056) 6. Ettevõtte toodangust on 95 % sta
kunagi ei toimu. Võimatuteks sündmusteks on näiteks täringul üheaegselt 6 ja 4 silma heitmine; vesi ei saa tahkes olekus olla, kui temperatuur on +10 kraadi. Kindla sündmuse vastandsündmus on võimatu sündmus. Juhuslik sündmus sündmus, mis antud vaatluse või katse korral võib toimuda, aga võib ka mitte toimuda. Juhuslikeks sündmusteks on 6 silma tulek täringu viskel, loteriiga võidu saamine, tuttava kohtamine tänaval. Juhuslik katse on tõenäosusteooria jaoks kirjeldatud, kui on loetletud tema võimalike tulemuste hulk. Seda hulka nimetatakse lühidalt elementaarsündmuste hulgaks ja tähistatakse sümboliga S. Näide 1. Katse võimalikuks tulemuseks täringu viskel loetakse teatava tahu peale langemist. Sellel katsel on 6 võimalikku tulemust ja vastav elementaarsündmuste hulk on: S = {1, 2, 3, 4, 5, 6 }. Katsetulemuste hulk moodustab elementaarsündmuste ruumi, tähistatakse . Eelnevas näites S =.
HARJUTUSÜLESANDED TÕENÄOSUSTEOORIAST - LAHENDUSED 1. Laagris on 7 õpilast, kellest 2 on väga head sportlased. 1) Leidke tõenäosus, et: a) seitsme õpilase hulgast juhuslikult välja kutsutud õpilane on väga hea sportlane; kogu võimaluste arv n1 = 7 , soodsate võimaluste arv m1 = 2 ; tõenäosus, et m1 2 kutsutud õpilane on väga hea sportlane on: p ( A) = = n1 7 b) seitsme õpilase hulgast juhuslikult välja kutsutud õpilane ei ole väga hea sportlane. kogu võimaluste arv n 2 = 7 , soodsate võimaluste arv m2 = 5 ; tõenäosus, et m2 5 kutsutud õpilane ei ole väga hea sportlane on: p( B) = = n2 7 2) Mitu erinevat võimalust on treeneril sell
Sündmused. Kindel A = {1, 3, 5} ja sündmus B = {1, 2, 3}, perekonnas on sündmus (tähistatakse K) - sündmus, siis A B = AB = {1, 3}.Sündmusi, mis teatud tingimuste korral alati mille korrutiseks on võimatu toimub.Kindlateks sündmusteks on sündmus, nimetatakse üksteist kooliaasta algus 1. septembril, välistavateks.Kui A = igahommikune päikesetõus, vesi on {1, 3, 5} ja B = {2, 4, 6}, siis AB ämbris vedelas olekus kui temperatuur = , siis öeldakse on 10 kraadi. Võimatu sündmused A ja B on sündmus (tähistatakse V) - sündmus, teineteist välistavad. mis antud vaatluse või katse korral Näide7. Olgu täringu kunagi ei toimu. viskel sündmus A = {1, 3, 5} Võimatuteks sündmusteks on näiteks ja sündmus B = {1, 2, 3}, siis AB = tär
Tõenäosusteooria ja matemaatiline statistika Ajaloost Tekkinud 17. saj. seoses hasartmängudes (kaardid, täringud) tekkinud probleemidega kuidas jaotada panuseid, kui mäng juhtuks mingil põhjusel pooleli jääma, milliste kaartide korral on mõtet edasi mängida jms Tuntumad teadlased, kellel on suuri teeneid tõenäosusteooria arendamisel: De Fermat, Pascal, Huygens, Bernoulli, Gauss, Laplace, Kolmogorov jt Tänapäeval on tõenäosusteooria ja matemaatiline statistika paljude ülikoolide mitmete erialade õppekavas. Põhimõisted katse põhimõtteliselt lõpmatult palju kordi teostatav toiming, mille korraldamise protseduur on fikseeritud; katse käigus jälgitakse, kas teatud sündmused toimuvad või mitte sündmus katse tulemus või erinevate tulemuste ühendamisel saadav tulemus Näit. Katseks on täringu viskamine, sündmusteks võivad olla järgmised: - saadakse 4 silma - saadakse 5 silma
Kõik kommentaarid