Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

TERMODÜNAAMIKA 1-3 - sarnased materjalid

soojus, gaas, termodünaamika, const, siseenergia, soojusjuhtivus, ringprotsess, seoseid, ühelt, konvektsioon, carnot, adiabaat, punktmass, vaatleme, konstantne, moodus, mikroosakeste, soojusjuhtivustegur, soojushulk, erijuhud, isotermiline, isobaariline, ühtemoodi, mehaanikas, sekundaarne, kirjeldavad, parameetrid, paisuvad, boyle, üldistus
thumbnail
10
docx

Keskkonnafüüsika

· Oleku kirjeldamiseks võetud kasutusele 3 parameetrit ­ rõhk, ruumala, temperatuur Mida kirjeldavad prarameetrid · Rõhk ­ pindala kohta tulev jõud, tekib molekulide põrgetel keha ümbritseva keskkonnaga · Temperatuur ­ keha siseeenergiat iseloomustav suurus, (teoreetiliselt muutub 0-ks absoluutse 0 e T = 0 K juures), loogiline uue skaala tekkimine ­ Kelvini skaala · Ruumala ­ aine hulka iseloomustav suurus Esimene süsteem · Termodünaamilisi seoseid hakatakse kirjeldama ideaalse gaasi abil · Ideaalne gaas ­ 1) molekulidevahelised jõud puuduvad, 2) molekulid on punktmassid · Sellises süsteemis kirjeldatakse termodünaamiliste parameetrite vahelised seosed ja uritakse miks muutused tekivad Keskkonnafüüsika- soojus Mõisted · Soojus on ühelt süsteemilt teisele energia ülekandumise mikroskoopiline moodus. Siin

Keskkonafüüsika
27 allalaadimist
thumbnail
25
doc

Termodünaamika õppematerjal

(2) Eksisteerib kindel kvantitatiivne seos molekulide kollek-tiivi omaduste ja üksikmolekuli iseloomustava füüsikalise parameetri keskväärtuse vahel. (3) Aine makroskoopiliste ning mikroskoopiliste omaduste vaheliste seoste leidmiseks on vaja teada vaid üksikmolekule iseloomustavate suuruste teatud tõenäoseid väärtusi. Molekulaarkineetilises teoorias kasutatakse ideaalse gaasi mudelit. Sisuliselt on ideaalne gaas antud definitsiooniga: (i) Ideaalse gaasi molekulid on punktmassid, mille kogu-ruumala võrreldes gaasi sisaldava anuma ruumalaga on kaduvväike, s.t. seda ei arvestata. (ii) Ideaalse gaasi molekulide vahel puuduvad tõmbe- ja tõukejõud (molekulaarjõud), väljaarvatud molekulide põrgete korral ilmnevad lühiajalised tõukejõud. Põrked on absoluut-selt elastsed. Paljud kergemad gaasid alluvad normaaltingimustel küllalt hästi ideaalse gaasi mudelile.

172 allalaadimist
thumbnail
21
doc

Soojustehnika küsimuste vastused

seadus)....................................................................................................................................................4 8.Mehaaniline töö e.(mahumuutuse töö), arvutamine (valem) ja kujutamine olekudiagrammil...........5 9.Tehniline töö e.(rõhumuutuse töö), arvutamine (valem) ja kujutamine olekudiagrammil.................5 10.Siseenergia ja soojuse mõiste (kuidas leitakse siseenergia, muutuse määramine protsessis)...........5 11.Termodünaamika esimene seadus (sõnastus ja matemaatiline avaldis)........................................... 6 12.Entroopia mõiste ja TS-diagramm....................................................................................................6 13.Soojushulga määramine entroopia abil (Soojushulga kujutamine TS-diagrammil).........................7 14

Soojustehnika
400 allalaadimist
thumbnail
4
doc

Füüsika

Mool on sellise süst ainehulk, kus osakeste arv võrdub 0,012 kg süsiniku aatomite arvuga. Aine molekulide hulga N ja ainehulga V suhet nim Avogaadro arvuks. See näitab, mitu aatomit või molekuli on ühes moolis aines. Molaarmassiks M nim suurust, mis võrdub aine massi m ja ainehulga V suhtega. Molekuli massi m0 tuleb keha mass m jagadasselle keha molekulide arvuga. St; molekuli massi leidmiseks tuleb teada selle molaarmassi M ja Avogaadro arvu. Ideaalse gaasi olekuvõrrand. Ideaalne gaas ­ gaas, kus molekulide vahlised tõmbejõud puuduvad, tõukejõud mõjuvad aga molekulide omavahelisel põrkumisel ja põrkumisel vastu anuma seina. Ideaalse gaasi olekuvõrrand seob 3e gaasi parameetrit: See on Clapeyroni võrrand. Nende 3e suuruse vaheline seos on konstantnesuurus, mis on ühe mooli gaasi puhul kõikidel gaasidel ühesugune. Seda nim unevrsaalseks gaasi konstandiks ja tähis on R. Medeleejev andis olekuvõrranditele sellise kuju: See on Medeleejevi Clapeyroni võrrands.

Füüsika
109 allalaadimist
thumbnail
11
pdf

Termodünaamika eksamiküsimused 2013

Termodünaamika I kordamisküsimused 2013 1. Nimetada termodünaamika kolm printsiipi. Esimene printsiip on energia jäävuse seadus, millest järeldub siseenergia U kui olekufunktsiooni olemasolu. Kui ainehulk on jääv, siis siseenergia muutus U=Q-W, kus Q on süsteemi sisestatud soojushulk ja W süsteemi tehtud töö. Teine printsiip määrab iseeneslike protsesside suuna. Klassikalised sõnastused, mille kohaselt soojus ei saa iseenesest minna külmemalt kehalt soojemale ja ei ole võimalik ehitada perioodiliselt töötavat soojusjõumasinat, mille tegevuse ainus tulemus on soojuse muundumine tööks Kolmas printsiip määrab termodünaamilises tasakaalus olevate süsteemide käitumise absoluutse nullpunkti ligidal: tasakaalulises süsteemis on entroopia absoluutse nullpunkti juures süsteemi olekust sõltumatu 2. Mida uurib statistiline , klassikaline ja tehniline termodünaamika

Masinamehaanika
30 allalaadimist
thumbnail
25
doc

Termodünaamika I eksamiküsimused vastustega

1) Nimetada termodünaamika 3 printsiipi: Termodünaamika esimene printsiip on energia jäävuse seadus, millest järeldub siseenergia U kui olekufunktsiooni olemasolu. Kui ainehulk on jääv, siis siseenergia muutus U=Q- W, kus Q on süsteemi sisestatud soojushulk ja W süsteemi tehtud töö. Termodünaamika teine printsiip määrab iseeneslike protsesside suuna. Klassikalised sõnastused, mille kohaselt soojus ei saa iseenesest minna külmemalt kehalt soojemale ja ei ole võimalik ehitada perioodiliselt töötavat soojusjõumasinat, mille tegevuse ainus tulemus on soojuse muundumine tööks Termodünaamika kolmas printsiip määrab termodünaamilises tasakaalus olevate süsteemide käitumise absoluutse nullpunkti ligidal: tasakaalulises süsteemis on entroopia absoluutse nullpunkti juures süsteemi olekust sõltumatu 2

Termodünaamika
226 allalaadimist
thumbnail
29
doc

Füüsika

2) a - b vahe 3) a jab korrutis a *b =a * b * sin 4) a * b = a * b * cos skalaarkorrutis Taustsüsteemi, milles kehtib Newtoni I seadus, nimetatakse inertsiaalseks. Iga taustsüsteemi, mis liigub inertsiaalse suhtes ühtlaselt ja sirgjooneliselt, nimetatakse samuti inertsiaalseks. Üleminek ühelt inertsiaalsest süsteemist teise on võimalik Galilei teisenduste abil. Olgu keha asukoht määratud mistahes kordinaatidega: x;y;z. Aeg kulgeb mõlemas süsteemis ühtemoodi. x=x'+Not ( x- kordinaat ; No- kiirus I suhtes ; t- aeg ) y=y' z=z' t=t' Keha kiirus esimeses süsteemis: N -Keha kiirus teises taustsüsteemis:

Füüsika
354 allalaadimist
thumbnail
20
pdf

Füüsika eksam

Mida aga tähistab sel juhul suurus n? Baromeetrilises valemis näitas see molekulide arvu ruumalaühiku kohta kõrgusel , kuid ei öelnud midagi nende molekulide kiiruste kohta. Võiksime väita, et see tihedus sisaldab kõiki neid molekule, mis võiksid tõusta kõrgemale kõrgusest . Molekulide koguarv vastaks siis neile molekulidele, mis suudavad tõusta kõrgemale kõrgusest . Boltzmanni jaotus kuulub nn. integraalsete jaotusfunktsioonide hulka. 32. Termodünaamika I printsiip ja kuidas see seadus näeb välja isoprotsessides(kõigis neljas). du=dQ-dA, mis on i m  siseenergia(keha kin ja pot energia vms). Ideaalse gaasi korral on ; A= pdV (dA=pdV) u  2

Füüsika
91 allalaadimist
thumbnail
12
doc

Soojustehnika - küsimused vastustused

Termodünaamika on teadus erinevate energialiikide muutus S= S2- S1 = s1s2 dQ/ T [J/(kg*K)]. Entroopia on vastastikustest muundumistest. Termodünaamika hõlmab ekstensiivne suurus. Entroopia kui olekufunktsiooni väärtuse mehaanilisi, soojuslike, elektrilisi, keemilisi, elektromagnetilisi ja määravad kaks meelevaldset olekuparameetrit. Gaasi entroopia muid nähtuseid. Tehnilise termodünaamika põhi ülesanne on väärtus normaaltingimustel loetakse nulliks. teoreetiliste aluste loomine, soojusmootorite, soojusjõu seadmete, soojus transformaatoritele. 4. Isohooriline protsessiks nim. sellist protsessi, kus Termodünaamilise süsteemi all mõistetakse kehade kogu, termodünaamilise süsteemi soojuslikul mõjutamisel selle maht mis võivad olla nii omavahel kui ka väliskeskkonnaga ei muutu

Soojustehnika
89 allalaadimist
thumbnail
90
pdf

Soojustehnika eksami küsimused

Sellelt lingilt saab tõmmata Arvo otsa soojustehnika raamatu. http://digi.lib.ttu.ee/i/?967 Faili lõpus on eksami näide, mida tunnis vaadati. 1. Termodünaamika põhimõisted, termodünaamiline süsteem, termodünaamiline keha jatermodünaamilised olekuparameetrid. Termodünaamiline süsteem. Nimetus „termodünaamika” hõlmab see mõiste kõik nähtused mis kaasnevad energiaga ja energia muundusega. Jaguneb füüsikaline, keemiline ja tehniline termodünaamika. Tehniline termodünaamika käsitleb ainult mehaanilise töö ja soojuse vastastikuseid seoseid. Termodünaamiline süsteem on kehade kogu, mis võivad olla nii omavahel kui ka väliskeskkonnaga energeetilises vastasmõjus. Väliskeskkond on termodünaamilist süsteemi ümbritsev suure energia mahtuvusega keskkond, mille teatud olekuparameetrid (T, p jne.) ei muutu, kui süsteem mõjutab teda soojuslikul, mehaanilisel või mõnel muul viisil. Termodünaamilise süsteemi üks lihtne näide on

tehnomaterjalid
121 allalaadimist
thumbnail
26
odt

Füüsika eksam dünaamika

3)    Kulgliikumise dünaamika põhimõisted •Mass (+ mõõtühik) Mass m on kehade inertsusemõõt. Mass  on skalaarne suurus [m]SI =1kg •Inerts (+ inertsus) Inertsus on keha omadus säilitada oma liikumisolekut •Inertsiaalne taustsüsteem Samal ajal kõik inertsiaalsed taustsüsteemid on absoluutselt ekvivalentsed ja ükski mehaaniline katse (antud taustsüsteemi raames) ei võimalda kindlaks teha, kas süsteem liigub ütlaselt sirgjooneliselt või on  paigal. Inertsiseaduse kontroll  võimaldabki kindlaks teha, kas taustsüsteem liigub ühtlaselt sirgjooneliselt (või on paigal) või  mitte. •Jõud (+ mõõtühik) Jõud on ühe keha mõju teisele, mille tulemusena muutub kehade  liikumisolek või nad deformeeruvad. Jõud on alati vektorsuurus. (F)SI=1N •Newtoni 3 seadust (+ valemid ja joonised) Iga keh

Dünaamika
45 allalaadimist
thumbnail
30
docx

Füüsika eksam vastustega: liikumine

Liikuv objekt hälbib põhjapoolkeral paremale ja lõunapoolkeral vasakule. Piki ekvaatorit liikuvaile objektidele Coriolisi efekt mõju ei avalda. ⃗a =2( c ω ⃗ ⃗u ) ⃗ F c =m ⃗a x c 10.Töö, võimsus, kineetiline energia. Töö (A) on füüsikaline suurus, mis iseloomustab ühelt füüsikaliselt objektilt teisele kanduva energia hulka(J – ühik) Kui jõud F on konstantne, liikumine on sirgjooneline, läbitud teepikkus on s ning jõu suuna ja liikumise suuna vaheline nurk on α, siis töö A avaldub korrutisena A=F·s·cosα. Erijuhul, kui jõu ja liikumise suund langevad kokku avaldub töö A=F·s. Teiste sõnadega, töö avaldub jõuvektori ja nihkevektori skalaarkorrutisena. Kui töö on positiivne, siis teeb jõud tööd

Füüsika
47 allalaadimist
thumbnail
52
ppt

Dermodünaamika

Termodünaamika · Termodünaamika käsitleb soojusülekannet ja soojuse muundumist tööks · Termodünaamika tegeleb igasugust kütust tarbivate masinate konstrueerimise üldiste seaduspärasustega. · Termodünaamika on makrokäsitlus. Seepärast on kasutusel makroparameetrid ­ p, V, T, Q, U, m. · Termodünaamika põhineb kahele printsiibile ­ need on TD I ja II printsiip Ideaalse gaasi siseenergia ·Siseenergia on keha molekulide soojusliikumise keskmise kineetilise energia ning molekulidevahelise vastasmõju potentsiaalse energia summa. E = Ekin + Epot . ·Ideaalse gaasi puhul potentsiaalset energiat ei ole, seega siseenergia sõltub vaid kineetilisest energiast. ·Kineetiline energia sõltub temperatuurist. Seega ­ Keha siseenergia sõltub keha temperatuurist. Keha temperatuuri muutmise viisid Keha temperatuuri,seega ka siseenergiat, saab muuta kahel viisil 1

Füüsika
66 allalaadimist
thumbnail
13
doc

Soojusfüüsika

Parameetreid jaotatakse makro- ja mikroparameetriteks. Termodünaamika käsitleb kehade kogumeid, mis on soojuslikus kontaktis, st saab toimuda soojusvahetus. Neid kogumeid nimetatakse termodünaamilisteks süsteemideks. Kui süsteemi parameetrid muutuvad, siis süsteem läheb ühest olekust teise, st süsteemi parameetrid muutuvad. Sellist üleminekut nimetatakse protsessiks. Ajalooliselt on vanimtermodünaamika ja sellepärast alustamegi sellest. 4.1. Termodünaamika Termodünaamika kasutab nähtuste kirjeldamiseks makroparameetreid, milleks on füüsikalised suurused, mida kasutatakse ainekoguse kui terviku soojusliku oleku kirjeldamisel. Nendeks on suurused, mida on võimalik hõlpsasti mõõta, näiteks ainekoguse mass, rõhk, ruumala, temperatuur . Suurusi rõhk, ruumala ja temperatuur nimetatakse ka olekuparameetriteks. Olek ei tähenda siin mitte agregaatolekut, vaid ainekoguse seisundit, mis on määratud olekuparameetrite p, V ja T konkreetsete

Füüsika
27 allalaadimist
thumbnail
10
odt

Füüsika 10. klassi teemad

· V(ruumala) konsentratsioon) Kui üht olekuparameetrit. · T(abs. Temperatuur) · v(molekulide muuta, siis muutub vhmlt · (tihedus) keskmine kiirus veel üks ja seega ka olek. Molekul- molekulaarfüüsikas vähim osake, millest ained koosnevad ja mis on pidevas kaootilises liikumises Temperatuur- iseloomustab keha soojuslikku seisundit; molekulide liikumise keskmise kineetilise energia ja siseenergia mõõt (t) Absoluutne temperatuur- temperatuur Kelvini skaalal (T) Absoluutne nulltemperatuur- temperatuur, mille saavutamisel molekulid lakkavad liikumast Ideaalne gaas- lihtsaim mudel gaasi kirjeldamiseks, milles ei arvestata molekulide mõõtmeid ja vastastikmõju Mool- ainehulk, mis sisaldab Avogadro arvuga võrdse arvu molekule või aatomeid (mol) Avogadro arv- aatomite või molekulide arv ühes moolis aines (N A) Molaarmass- ühe mooli aine mass (M)

Füüsika
60 allalaadimist
thumbnail
19
doc

Soojustehnika eksamiküsimused (vastused)

Soojustehnika eksamiküsimused. Aroni nägemus soojuse eksamist, ei vastuta õigsuse eest ja osad joonised ja asjad puudu ka. 1. Mida käsitleb soojustehnika ja termodünaamika ? Soojusthenika ­ teadusharu, mis käsitleb kõiki soojusega seotud nähtusi, kusjuures on rakendusteadus. Alused rajanevad termodünaamikal ja soojuslevil. ST tegeleb soojuse tootmise ja transportimisprotsessidega, samuti jahutusprotsessidega ­ külmutustehnika. Termodünaamika ­ Teadus mis tegeleb erinevate energialiikide vastastikuste muundumistega (hõlmab keemilisi, füüsikalisi, mehaanilisi, sooojuslike ning elektromagneetilisi nähtusi) 2. Energia mõiste ja mõõtühikud?

Soojustehnika
764 allalaadimist
thumbnail
19
doc

Soojustehnika eksami küsimuste vastused

Soojustehnika eksamiküsimused. Aroni nägemus soojuse eksamist, ei vastuta õigsuse eest ja osad joonised ja asjad puudu ka. 1. Mida käsitleb soojustehnika ja termodünaamika ? Soojusthenika ­ teadusharu, mis käsitleb kõiki soojusega seotud nähtusi, kusjuures on rakendusteadus. Alused rajanevad termodünaamikal ja soojuslevil. ST tegeleb soojuse tootmise ja transportimisprotsessidega, samuti jahutusprotsessidega ­ külmutustehnika. Termodünaamika ­ Teadus mis tegeleb erinevate energialiikide vastastikuste muundumistega (hõlmab keemilisi, füüsikalisi, mehaanilisi, sooojuslike ning elektromagneetilisi nähtusi) 2. Energia mõiste ja mõõtühikud?

Soojustehnika
59 allalaadimist
thumbnail
9
docx

Füüsika kordamine 10-nda klassi üleminekueksamiks

Molekulaarkineetilise teooria põhiseisukohad: 1)kõik ained koosnevad molekulidest 2)kõik aineosakesed on lakkamatus korrapäratusliikumises- soojusliikumine a)Browni liikumine b)difusioon- ühe aine osakeste liikumine teise aine osakeste vahel. 3)Kõik aine osakesed on vastastikmõjus. Aatomeid ja molekule iseloomustavad suurused: 1) aatomi (molekuli) mass 2) aatommass 3) molekulmass 4)ainehulk mol 5) Avogadro arv 6)Molaarmass 7) konsentratsioon n Ideaalgaas ­ gaas, mille molekulide vahel vastastikmõju puudub. Ideaalse gaaasi poolt anuma seintele avaldatav rõhk on võrdeline molekulide keskmise kineetilise energiaga. Gaaside kineetilise teooria põhivõrrand: Temperatuur ­ molekulide soojusliikumise keskmise kineetilise energia näitaja. Absoluutne temperatuur T- väljendab otseselt molekulide kaootilise liikumise ehk soojusliikumise intensiivsust. Seos Kelvini ja Celsiuse temperatuuriskaalade vahel ­ T(K) =T (°C)+273 Gaasi olekuparameetrid : 1)Rõhk

Bioloogiline füüsika
66 allalaadimist
thumbnail
76
pdf

Soojusõpetuse konspekt

Tallinna Ülikool Matemaatika ja Loodusteaduste Instituut Loodusteaduste osakond Soojusõpetuse lühikonspekt Tõnu Laas 2009-2010 2 Sisukord Sissejuhatus. Soojusõpetuse kaks erinevat käsitlusviisi.......................................................................3 I Molekulaarfüüsika ja termodünaamika..............................................................................................4 1.1.Molekulide mass ja mõõtmed....................................................................................................4 1.2. Süsteemi olek. Protsess. Tasakaaluline protsess.......................................................................4 1.3. Termodünaamika I printsiip.....................................................................................................

Füüsika
31 allalaadimist
thumbnail
57
rtf

TEHNILINE TERMODÜNAAMIKA

TEHNILINE TERMODÜNAAMIKA SISSEJUHATUS Termodünaamika on teadus energiate vastastikustest seostest ja muundumistest, kus üheks komponendiks on soojus. Tehniline termodünaamika on eelmainitu alaliigiks, mis uurib soojuse ja mehaanilise töö vastastikuseid seoseid. Tehniline termodünaamika annab alused soojustehniliste seadmete ja aparaatide (näiteks katelseadmete, gaasiturbiinide, sisepõlemismootorite, kompressorite, reaktiivmootorite, soojusvahetusseadmete, kuivatite jne.) arvutamiseks ja projekteerimiseks. Tehniline termodünaamika nagu termodünaamika üldse tugineb kahele põhiseadusele. Termodünaamika esimene seadus on energia jäävuse seadus, rakendatuna soojuslikele protsessidele, teine seadus aga määrab kindlaks vahekorra olemasoleva soojuse ja temast

Termodünaamika
17 allalaadimist
thumbnail
2
doc

Mehaanika ja soojuse valemid

Gravitatsiooniseadus m1 m 2 F G G ­ gravitatsioonikonstant r2 Suletud süsteemi moodustavate kehade impulsside summa ei muutu nende vastastikmõju tulemusel. Impulsi jäävuse seadus p const p mv ­ keha impulss Elastsusjõud on võrdeline pikenemisega. Hooke'i seadus Fe kx k ­ keha jäikus (1N/m), x ­ keha deformatsioon e. pikenemine (1m) Toereaktsioon N mg cos mg ­ raskusjõud, ­ kaldenurk Amontons'i-Coulomb'i seadus Fh N Liugehõõrdejõud on võrdeline toereaktsiooniga.

Mehaanika ja soojuse valemid
20 allalaadimist
thumbnail
54
pdf

SOOJUSTEHNIKA EKSAMI VASTUSED

olevate kehade massiga või osakeste arvuga. Nt. maht, energia, entroopia, entalpia. Parameetreid, mille kaudu iseloomustatakse soojuse ja töö vastastikust muundumist, nim. termilisteks olekuparameetriteks. Termodünaamilise keha termilisteks olekuparameetriteks on erimaht (tihedus), rõhk ja temp. Soojuslikeks oleku-parameetriteks on aga suurused, mis iseloomustavad termodünaamilise süst. energeetilist olukorda. Nendeks on: siseenergia u,[J/kg]; entalpia h,[J/kg]; entroopia s,[J/kg]. Sõltumatud olekuparameetrid on: 1.Erimaht(keha massiühiku maht) v=1/, [m3/kg]. 2. Tihedus(on erimahu pöördväärtus) =M/V=1/v, [kg/m3].3. Rõhk (pinnaühikule normaalisihis mõjuv jõud) p [N/m2,Pa]. 4.Temperatuur(iseloomustab antud keha kuumenemise astet mingi teise keha suhtes ja määrab nendevahelise soojusvoo suuna). Soojus ja töö. Energia ülekanne töö vormis- on seotud kehade ümberpaiknemisega ruumis või süsteemiväliste

Soojustehnika
46 allalaadimist
thumbnail
34
doc

Füüsika eksam inseneri erialadele

· Njuutoni dimensioon. Njuuton (N) on jõu ühikuks. 1 njuuton on jõud, mis annab ühe kilogrammise massiga kehale kiirenduse üks meeter sekundis sekundi kohta. Njuutoni dimensioon (väljend põhiühikute (meeter, sekund, kilogramm) kaudu) on ehk . Loeng 4 · Suurused: töö, energia. Nende ühik ja selle dimensioon. töö ­ (tähis A või W) on füüsikaline suurus, mis iseloomustab ühelt füüsikaliselt objektilt teisele kanduva energia hulka. Töö mõõtühik (energia ühik) SI- süsteemis on dzaul (J) (1 J = 1 kg*m2/s2 = 1 N*m). Klassikalises mehaanikas avaldatakse tööd tavaliselt kehale või punktmassile mõjuva jõu ning selle jõu toimel läbitud teepikkuse kaudu. Kui jõud F on konstantne, liikumine on sirgjooneline, läbitud teepikkus on s ning jõu suuna ja liikumise suuna vaheline

Füüsika
381 allalaadimist
thumbnail
22
docx

Füüsikalised suurused ja nende etalonid

f =N /t (1HZ = 1s) 7) Pöördliikumise dünaamika o Jõumoment, selle suund (+ valem, mõõtühik ja joonis) Jõumoment on jõu võime põhjustada pöörlevat liikumist ümber punkti. Jõu F ja jõu rakenduspunkti raadiusvektori r vektorkorrutis. M=rxF. Ühik 1Nm.Suunatud trajektoori kõveruskeskpunkti poole o Pöördliikumise Newtoni 3 seadust (+ valemid) Newtoni I seadus: Kui Mres = 0, siis ka β = 0 ja ω = const. Keha on paigal või pöörleb ühtlaselt. Newtoni II seadus: Kui Mres ei võrdu 0-ga, siis M =βI . Keha saab nurkkiirenduse, mis on võrdeline summaarse jõumomendiga Mres Newtoni III seadus: M12=-M21 .Kaks keha pööradvad teineteist jõumomentidega, mis on suuruselt võrdsed ja omavahel vastassuunalised (üks pöörab päri- ja teine vastupäeva) o Inertsimoment (+ valem ja mõõtühik)

Füüsika
37 allalaadimist
thumbnail
6
doc

Keemia termodünaamika alused

Keemia termodünaamika alused 1. Ideaalse gaasi definitsioon. Ideaalse gaasi olekuvõrrand. Ideaalse gaasi olekufunktsioonid ­ p, T, V, U (siseenergia). Ideaalse gaasi kineetilise teooria alused ­ rõhu, temperatuuri ja siseenergia avaldised osakeste liikumisolekute kaudu. 1) Ideaalne gaas on reaalse gaasi lihtsaim mudel, kus lihtsuse mõttes oletatakse, et : · Molekulidel on lõpmata väikeste elastsete kerakeste omadused · Molekulide liikumine on kulgliikumine · Ideaalne gaas on lõpmatult kokkusurutav · Molekulide vastasmõju seisneb ainult nende omavahelistes elastsetes põrgetes · Ideaalset gaasi pole võimalik veeldada Reaalsed gaasid käituvad ideaalsetena suurtel hõrendustel.;

Üldloodusteadus
31 allalaadimist
thumbnail
4
doc

Soojusnähtused

Soojusnähtused. 1. Siseenergia olemus ja selle muutmise viisid: Siseenergia – keha molekulide kineetilise ja nende vahelise vastastikmõju potentsiaalse energia summa a. Soojusülekande teel – Q=∆U (∆U – siseenergia muut) (Q – soojushulk – iseloomustab soojusvahetuse teel ülekantud energia hulka) Soojendamine – Q>0 ∆U>0 Jahutamine – Q<0 ∆U<0 Soojusjuhtivus – soojusenergia kandumine kuumemalt kehalt külmemale kehale aineosakeste vastasmõju tagajärjel (metallid) Konvektsioon – aine liikumisega kaasnev soojuse levimine vedelikus või gaasis Soojuskiirgus – soojuse levimine kehade poolt kiiratava, temperatuurist sõltuva elektromagnetkiirguse mõjul b

Füüsika
8 allalaadimist
thumbnail
16
pdf

Esimese semestri füüsika eksami materjal

ruumala muutub märksa enam kui vedeliku ruumala Üleslükkejõud  ehk Archimedese jõud on kehale vedelikus või gaasis mõjuv raskusjõule vastassuunaline jõud  Üleslükkejõud võrdub keha poolt välja tõrjutud vedeliku või gaasi kaaluga Bernouelli võrrand Kui kiirus suureneb, siis rõhk väheneb 9. TERMODÜNAAMIKA  Füüsikaharu, mille uurimisobjektiks on soojus kui energiaülekandevorm ning selle seos töö ja siseenergiaga  Termodünaamika ei arvesta kehade siseehitusega  Termodünaamilised põhiparameetrid on rõhk (p), ruumala (V) ja temperatuur (T)  Soojusülekanne - energia kandumine ühelt kehalt teisele  Soojushulk (Q) - füüsikaline suurus, mis mõõdab soojusülekandes ühelt kehalt teisele kandunud energiat. Ühik džaul (J)  Soojuslik tasakaal - olukord, kus soojus-ülekandes osalevate kehade temperatuurid on võrdsustunud

Füüsika
11 allalaadimist
thumbnail
21
docx

Soojustehnika konspekt

SOOJUSTEHNIKA Soojustehnika mõisted. Soojustehnika on rakendusteadus, mis käsitleb kõiki soojusega seotud nähtusi. Samal ajal on ta ka tehnikaharu, mis tegeleb nende nähtuste rakendamisega praktikas. Soojustehnika teoreetilised alused rajanevad järgmistel erialustel: 1. Termodünaamika 2. Soojuslevi e. Soojusülekanne (soojusvahetus) 3. Soojusmootorite teooria 4. Soojusjõu seaduste teooria Soojustehnika hõlmab veel soojuse tootmist, soojusenergeetikat, soojuse vahetut kasutamist tööstuses ja olmes. Soojust toodetakse nüüdisajal erinevat tüüpi kolletes, edasi põlemiskambrites ja ntx. Sisepõlemismootorite turbiinides ja seda soojust saadakse kütuste keemilisest energiast. Vähemal määral toodetakse soojust tuuma-, päikese- ja elektrienergiast.

Soojustehnika
134 allalaadimist
thumbnail
13
doc

Mehaanika ja soojus

Jõumomendi M mõjul hakkab ketas pöörlema kiirenevalt. Saab tõestada, et kehtib valem, mis on analoogne Newtoni 2. seadusele (f = ma): M = I w' = I , kus: I ­ ketta (üldiselt keha) inertsimoment, w' ­ nurkkiiruse tuletis e. nurkkiirendus, ­ nurkkiirendus. NB! Sellisel kujul M = I w' = I pöördliikumise dünaamika põhivõrrandit esitades tehakse vaikiv eeldus, et keha inertsimoment I on muutumatu, s.t. et I = const , inertsimoment on aga konstantne siis, kui keha kuju on muutumatu. Üldisemal juhul on keha kuju ikkagi muutuv (nagu näiteks kõigil elusolenditel), seega inertsimoment üldjuhul ei ole konstant: I ei = const, kuigi mass m on konstantne. Inertsimomendi võimalikku muutumist arvestades oleks vaja ka pöördliikumise dünaamika põhivõrrand esitada üldisemal kujul, kus inertsimoment I oleks samuti tuletise märgi all (aktsepteerime seda väidet tõestuseta): M = (I w)',

Füüsika
95 allalaadimist
thumbnail
2
doc

Soojustehnika teooria eksamiks

vahemikus 0- kindlaks töötava keha oleku. Intensiivseteks nim. siseenergiaks, mis on keha molekulide kulg -ja 100C, alla 0 on ta tahkes ja üle 100 gaasilises. Aine selliseid töötava keha parameetreid, mis ei sõltu pöörlemisliikumiseenergia, aatomite võnkumisenergia jt. faasilise oleku väljendamiseks kasut. faasimuutuse termodün.süsteemis oleva keha massist või osakeste energiate summa. siseenergia antakse tavaliselt keha 1kg diagramme. Nt. pt- diagramm, Ts- diag., Pv, hs- diag. arvust. Intensiivne parameeter on nt. rõhk ja temp. kohta. Siseenergia on ekstensiivne suurus. Siseen. kui Aditiivseteks e. ekstensiivseteks termodün parameetriteks olekufunktsiooni väärtuse määravad keha kaks on parameetrid, mis on proport-sionaalsed süsteemis meelevaldset olekuparameetrit, sagedamini valitakse olevate kehade massiga või osakeste arvuga. Nt

Soojustehnika
727 allalaadimist
thumbnail
26
doc

Tahke keha mehhaanika.

süsteemi mehhaaniline energia väheneb aja jooksul, energia "kaob" kuhugi. Näiteks väheneb igasuguse pendli võnkeamplituud aja jooksul, valemi (4.10) järgi väheneb siis ka pendli energia. Sealjuures täheldame süsteemi ja seda ümbritseva keskkonna soojenemist. Energia ei kao, see vaid muundub suurte kehade kineetilisest ja potentsiaalsest energiast erinevaks energiavormiks, siseenergiaks. Kehade mehhaanilise energia ja siseenergia vastastikuseid üleminekuid, samuti siseenergia üleminekut ühelt kehalt teisele, ühe sõnaga ­ soojusnähtusi, uurib soojusõpetus e. termodünaamika. Termodünaamika ei seleta siseenergia olemust. Osutub, et see on kehade mikroskoopiliste koostisosade ­ molekulide liikumise kineetilise ja molekulidevaheliste konservatiivsete jõudude (molekulaarjõudude) potentsiaalse energia summa. Molekulide liikumise ja molekulaarjõududega seotud küsimusi uurib molekulaarfüüsika. Termodünaamika ja

Füüsika
99 allalaadimist
thumbnail
34
docx

Füüsika eksami konspekt

jäikustegur. Miinusmärk Hooke'i seaduses näitab, et elastsusjõud on deformeeriva jõu suhtes vastassuunaline. Jäikustegur näitab, kui suur elastsusjõud tekib keha pikkuse ühikulisel muutmisel. Hõõrdejõud on liikumisele vastassuunaline takistusjõud, mis tekib kahe pinna kokkupuutel. F=μmg, kus μ –hõõrdetegur 10,* Töö, võimsus, kineetiline energia. Töö (A) on füüsikaline suurus, mis iseloomustab ühelt füüsikaliselt objektilt teisele kanduva energia hulka(J – ühik) Kui jõud F on konstantne, liikumine on sirgjooneline, läbitud teepikkus on s ning jõu suuna ja liikumise suuna vaheline nurk on α, siis töö A avaldub korrutisena A=F·s·cosα. Erijuhul, kui jõu ja liikumise suund langevad kokku avaldub töö A=F·s. Teiste sõnadega, töö avaldub jõuvektori ja nihkevektori skalaarkorrutisena. Gaasi kokkusurumiseks tehtav töö avaldub A= ∫ Fds

Füüsika
46 allalaadimist
thumbnail
8
docx

Füüsika spikker

Kondensaatoriks nim. teineteise jõud f = q E.See tekitab lähedale asetatud ja laengute korrapärase liikumise teineteisest isoleeritud välja sihis (positiivsed välja elektrijuhi paari. Juhipaari suunas, negatiivsed mahtuvus C=q/ fii1-fii2. Kondeka vastassuunas) seda nim. mahtuvus on laeng, mis tuleb elektrivooluks. Elektrivoolu viia kondeka ühelt juhilt teisele, iseloomustatakse tugevusega. et muuta potensiaalide vahet Voolutugevus on võrdne ühe ühiku võrra. Laetud juhi ajaühikus juhi ristlõiget läbiva energia võrdub laadimisel laenguga. I = dq/dt kulutatud tööga dA=fii*dq. Voolutugevuse ühikuks on Kondensaatori energia amper (A). Voolutihedus on w=Cu2/2

Füüsika
7 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun