Ande Andekas-Lammutaja Matemaatika Funktsiooni tuletis Funktsiooni tuletiseks nimetatakse funktsioonimuudu ja argumendimuudu suhete piirväärtust argumendi muudu lähenedes nullile. lim x xlim f ( x + x ) - f ( x ) y ' = f ' ( x ) =x 0 = 0 y x Funktsiooni tuletise valemid: ' 1 1 =- 2 x x (x 2 ) ' = 2x x ' =1 c' = 0 [cf ( x)] ' = cf ' ( x ) ( x) ' = 1 2 x [ f ( x) ± g ( x)] ' = f ' ( x) ± g ' ( x) (x ) n ' = n x n -1 [ f ( x ) g ( x )] ' = f ' ( x) g ( x) + f ( x) g ' ( x) ' f ( x) f ' ( x) g ( x ) - f ( x) g ' ( x) = g ( x) [ g ( x )
poole jäävatel kohtadel, näeme, et mida lähemal on x väärtus arvule 1, seda vähem erineb funktsiooni väärtus arvust 2: x 1,00001 1,0001 1,001 1,01 1,1 1,5 y 2,00001 2,0001 2,001 2,01 2,1 2,5 Seega kui x 1, siis y 2. Kuigi funktsioonil puudub väärtus kohal x = 1, öeldakse, et tal on sellel kohal olemas piirväärtus. x 2 -1 Arvu 2 nimetatakse funktsiooni y = piirväärtuseks argumendi lähenemisel x -1 x 2 -1 arvule 1 ja kirjutatakse lim = 2. x 1 x -1 10 Leiame veel mõningad selle funktsiooni piirväärtused. Ülaltooduga analoogilisi tabeleid koostades veendume, et:
lim () = , kui f(x)A niipea kui xa. (loe: kui f(x) läheneb A-le niipea kui x läheneb a-le) · Piltlikult öeldes on arv A funktsiooni y = f(x) piirväärtuseks kohal a, kui funktsiooni y = f(x) väärtused tulevad arvule A kuitahes lähedale, kui argumendi x väärtused on arvule a küllalt lähedal. 2 Piirväärtuse mõiste · Näiteks on f(x) = x + 1 piirväärtus kohal 3 võrdne neljaga, sest kui argumendi x väärtus läheneb arvule 3, siis funktsiooni väärtused f(x) hakkavad lähenema arvule 4. · Sümbol lim on lühend ladinakeelsest sõnast limes ja tähendab piiri. 3 Arv A on funktsiooni y = f(x) piirväärtuseks kohal a parajasti siis, kui iga arvu > 0 korral leidub niisugune arv > 0, et võrratusest 0 < |x a| < järeldub võrratus |f(x) A| < .
Funktsiooni tuletis Paljude matemaatiliste probleemide lahendamine viib tulemusele, et tuleb võtta funktsiooni muudu ja argumendi muudu suhte piirväärtus argumendi muudu lähenemisel 0 st y lim x x 0 Seetõttu on antud sellele piirväärtusele erinimetus ja sümbol. Funktsiooni f(x) muutumise kiirust kohal x0 nimetatakse funktsiooni tuletiseks kohal x0 ja tähistatakse f´`(X) y f ( x 0 x ) f ( x 0 ) f `( x0 ) lim lim . x 0 x x 0 x
Funktsiooni piirväärtus Kontrolltöö A Nimi: ................................. 1. Leia piirväärtus. 1.1. lim 3 x x 4 1.2. lim log x x 1000 x 4 x 1.3. lim x x sin 5 x 1.4. lim x 0 3x x² 5x 6 1.5. lim x 2 x² 3x 10 x9 1.6. lim x 9 x 3 3x 4 2 x ² 5 x 1 1.7. lim x 2 x³ 5x² 4 x cos x 1.8. lim x x
Funktsiooni tuletis Rühmatöö Sirgjoonelise liikumise teepikkus s (meetites) sõltub liikumise ajast t (sekundites) järgmiselt: s = 0,3t 2 + t Leida funktsiooni muut. Mida võimaldab see valem arvutada? Leitud valemi abil arvutada ajavahemikul 3 t 5 läbitud teepikkus. Leida funktsiooni muudu ja argumendi muudu suhe. Mida võimaldab see valem arvutada? Leitud valemi abil arvutada keskmine kiirus lõigus 3 t 5 s Leida piirväärtus lim Mida võimaldab see valem arvutada? t 0 t Leitud valemi abil arvutada hetkeline kiirus momendil t = 5 2 Diferentsiaalarvutuse rajajad Isaac Newton Gottfried Wilhelm Leibniz 1643-1727 1646-1716 3 Liikumise kiirus Punkti liikumise seadus: s = f (t) 0 (t = 0)
Matemaatika 11. klassi valemid Astendamise abivalemid am n a an a a =a m n m +n (a m ) n = a mn ( ab) n = a n b n n = a m -n = n a b b n p Liitprotsendiline kasvamine (kahanemine): L = A 1 + , kus L on 100 lõppväärtus, A - algväärtus, p - kasvamise protsent, n - kasvutsüklite arv. Logaritmide omadused: log a c = b a b = c a loga c = x lo
Kirjutame: z = f (P ) või z = f ( x1 ,..., x m ) Hulka D nimetatakse funktsiooni f määramispiirkonnaks. Funktsiooni z = f (P ) loomulikuks määramispiirkonnaks nimetatakse punktide P hulka, mille korral funktsiooni määrav eeskiri omab mõtet. Def. M-muutuja funktsiooni f graafikuks nimetatakse hulka { ( f ) = ( x1 ,..., x m , z ) R m +1 : ( x1 ,..., x m ) R m , z = f ( x1 ,..., x m ) . } 3. Mitme muutuja funktsiooni piirväärtus Olgu antud funktsioon z = f (P ) = f (x1 ,..., x m ) P D ja punkt A D D . Def. Arvu nimetatakse funktsiooni z = f (P ) piirväärtuseks punktis A , kui iga arvu > 0 korral leidub niisugune arv ( ) > 0 nii, et kehtib võrratus f (P ) - < alati kui 0 < d (P, A) < . Kirjutame: lim f (P ) = või lim f (x1 ,..., x m ) = või f (P ) kui P A
Kõik kommentaarid