Kujutav geomeetria, loeng 2 Mongei meetod, sirge jälgpunktid, eriasendilised sirged, sirglõigu pikkus ja kaldenurgad, kahe sirge vastastikused asendid Sirgjoone jälgpunktid Sirge jälgpunktiks (jäljeks) nim sirgjoone ja ekraani lõikepunkti. Üldasendilisel sirgel on kolm jälge: *lõikepunkt põhiekraaniga -põhijälgpunkt *esiekraaniga- esijälgpunkt *külgjälg- külgjälgpunkt Põhijälg ja tema pealtvaade asetsevad põhiekraanil ja sirge pealtvaatel, põhijälje eestvaade aga x-teljel ja sirge eestvaatel. Esijälg ja tema eestvaade asetsevad esiekraanil ja sirge eestvaatel, esijälje pealtvaade aga x-teljel ja sirge pealtvaatel. Üldasendiline sirge Üldasendiline sirge ei ole paralleelne ühegi ekraaniga ega asetse sellel. Tunnus: kõik 3 sirge projektsiooni on kaldu ekraanide suhtes. Sirglõigu ristprojektsioonid on sirglõigust enesest lühemad. Sirgjoone kaldenurgad ei esine üheski v...
TEEMA: DEFINEERIMINE JA TÕESTAMINE Defineerimine mõiste täpne ja lühike määratlus Algmõiste mõiste, mida ei defineerita (punkt, sirge, tasand, ruum, hulk, arv, suurus) Ülesanne: defineeri ja õpi selgeks järgmised mõisted: 1. Lõik, murdjoon, hulknurk 2. Nelinurk, rööpkülik, ristkülik, ruut, romb, trapets. 3. Ristuvad ja lõikuvad sirged, paralleelsed sirged. 4. Täis-, nüri- ja teravnurkne kolmnurk; võrdhaarne ja võrdkülgne kolmnurk. 5. Kolmnurga kõrgus. 6. Ring ja ringjoon, diameeter, raadius, kõõl. 7. Alg- ja kordarv, naturaalarv, täisarv. 8. Liig- ja lihtmurd. 9. Murru taandamine ja laiendamine. 10. Nurk, sirgnurk, täisnurk, kõrvunurgad, tippnurgad. 11. Üks- ja hulkliige, sarnased üksliikmed. 12. Võrrand, võrre, võrratus. 13. Protsent. 14. Ristsumma. 15. Aritmeetiline keskmine. 16. Aksioom. Lõik Lõik ehk sirglõik on sirge kaht punkti A ja B ühendav osa, punk...
Algarv- algarvuks nimetatakse ühest suuremat naturaalarvu, mis jagub vaid arvuga 1 ja iseendaga. Kordarv- positiivne naturaalarv,mis jagub peale 1 ja iseenda veel mõne naturaalarvuga. Murru taandamine- murru lugeja ja nimetaja jagamine ühe ja sama arvuga. Murru laiendamine- murru lugeja ja nimetaja korrutamine 1 ja sama arvuga. Liigmurd- harilik murd mille lugeja on suurem või võrdne kui nimetaja. Lihtmurd- harilik murd. Mille lugeja on väiksem, kui nimetaja. Sirgnurk- on nurk, mille haarad moodustavad sirge. Kõrvunurgad- on nurgad, millel on 1 ühine haar ja teised haarad moodustavad sirge. Tippnurgad- on nurgad, millel on ühine tipp ja haarad moodustavad sirged. Täisnurk- on pool sirgunurgast väiksemad nurgad. Teravnurgad- on täisnurgast väiksemad nurgad. Nürinurk- on täisnurgast suuremad nurgad. Lõikuvad sirged- on tasandil asuvad sirged, millel on ühine punkt. Ristuvad sirged- on lõikuavd sirged, mille lõikumisel tekivad täisnurgad. ...
Lõikuvad sirged Sirged, millele on üks ühine punkt. Ristuvad sirged Sirged, mi,s lõikuvad 90 kraadise nurga all. Kolmnurga kõrgus Lõik, mis on joonestatud kolmnurga tipust vastasküljeni ja mis on sellega risti. Ruut Nelinurk, mille kõik nurgad on täisnurgad ja küljed on võrdsed. Ringjoone diameeter Lõik, mis läbib kahte punkti ringjoonel ja keskpunkti. Täisnurkne kolmnurk Kolmnurk, mille üks nurk on täisnurk. Algarv Arv, mis jagub ainult 1 ja iseendaga. Kordarv Arv, millel on rohkem kui kaks tegurit. Liigmurd Murd, mille lugeja on nimetajast suurem Lihtmurd Murd, mille nimetaja on lugejast suurem Sirgnurk Nurk, mis on 180 kraadi Paralleelsed sirged Sirged, millel puudub ühine punkt Romb Nelinurk, mille küljed on võrdsed. Naturaalarvu tegur Arv, millega naturaalarv jagub Naturaalarvu kordne Arv, mis jagub naturaalarvuga. Taandamine Lugeja ja nimetaja jagamine ühe ja sama nullist erineva arvuga. Laiendamine...
5.nädalal KT Kujutav geomeetria, loeng 2 Mongei meetod, sirge jälgpunktid, eriasendilised sirged, sirglõigu pikkus ja kaldenurgad, kahe sirge vastastikused asendid Sirgjoone jälgpunktid Sirge jälgpunktiks (jäljeks) nim sirgjoone ja ekraani lõikepunkti. Üldasendilisel sirgel on kolm jälge: *lõikepunkt põhiekraaniga -põhijälgpunkt *esiekraaniga- esijälgpunkt *külgjälg- külgjälgpunkt Põhijälg ja tema pealtvaade asetsevad põhiekraanil ja sirge pealtvaatel, põhijälje eestvaade aga x-teljel ja sirge eestvaatel. Esijälg ja tema eestvaade asetsevad esiekraanil ja sirge eestvaatel, esijälje pealtvaade aga x-teljel ja sirge pealtvaatel. Üldasendiline sirge Üldasendiline sirge ei ole paralleelne ühegi ekraaniga ega asetse sellel. Tunnus: kõik 3 sirge projektsiooni on kaldu ekraanide suhtes. Sirglõigu ristprojektsioonid on sirglõigus...
Matemaatika definitsioonid 1.Lõikuvad sirged on sirged, millel leidub ühine punkt. 2.Paralleelsed sirged on sirged, mis paiknevad ühel ja samal tasandil ning ei lõiku. 3.Ristuvad sirged on kaks lõikuvat sirget, mis lõikumisel moodustavad täisnurga. 4.Sirgnurk on sirge, mille haarad moodustavad sirge. 5.Täisnurk on sirge, mis on 90kraadi. 6.Teravnurk on nurk, mis mahub täisnurga sisse. 7.Nürinurk on nurk, mis mahub sirgnurga sisse, aga mitte täisnurga sisse. 8.Kõrvunurkadeks nimetatakse kaht nurka, millel üks haar on ühine ja mille teised haarad moodustavad sirge. 9.Kaht nurka nimetatakse tippnurkadeks, kui ühe nurga haarad on teise nurga haarade pikendused üle nende ühise tipu. 10.Täisnurkne kolmnurk on kolmnurk, mille üks nurk on täisnurk. 11.Teravnurkne kolmnurk on kolmnurk, mille kõik nurgad on teravnurgad. 12.Nürinurkne kolmnurk on kolmnurk, mille üks nurk on nürinurk. 13.Erikülgne kolmnurk on ko...
KAKS SIRGET küsimus vastus näide Millal on sirged paralleelsed? a1/a2=b1/b2 c1/c2 6x+8y+1=0 3x+4y+4=0 6/3=8/4 1/4 Millal on sirged lõikuvad? a1/a2 b1/b2 c1/c2 4x+2y+3=0 6x+5y+5=0 4/6 2/5 3/5 Millal on sirged ühtivad? a1/a2=b1/b2=c1/c2 1x+2y+3=0 2x+4y+6=0 1/2=2/4=3/6 Kuidas leida nurka sirgete Tan a=(k1 k2?/1+ k1· k2 vahel? Kuidas leida sirgete Lahendada s...
Kahe tundmatuga lineaarvõrrand TSG Võrrand · Kahe tundmatuga lineaarvõrrand sisaldab kahte esimeses astmes olevat tundmatut · Üldkuju: ax + by = c · x ja y on tundmatud · a, b ja c on arvud ehk võrrandi kordajad · Näiteks 2x 3y = 5 -7x + 5y = -12 Võrrandi lahend · Võrrandi lahendiks on järjestatud arvupaar, mille korral võrdus on tõene · Selliseid arvupaare on lõpmata palju Näiteks: võrrandi 2x y = 5 lahendiks on arvupaarid (2; -1), (5; 5), (4; 3), (1; -3) jne. Sirge võrrand · Kahe tundmatuga lineaarvõrrandi graafiliseks kujutiseks on sirge · Seepärast nimetatakse kahe tundmatuga lineaarvõrrandit sirge võrrandiks · Selle sirge iga punkti koordinaadid on selle võrrandi lahendiks Kahe tundmatuga lineaarvõrrandisüsteem · Võrrandisüsteem koosneb kahest kahe tundmatuga lineaarvõrrandist · Võrrandisüsteemi lahendiks on kahe sirge lõikepunkti koordinaa...
Matemaatika põhimõisted. Definitsioon. Milline peab olema definitsioon? Lühike, tabav ja täpne. Adekvaatne ning ei tohi defineeritavaga sõnaliselt kattuda. Milline peab olema algmõiste? Ei vaja selgitust, on sobiv klassifitseerimiseks. Mis on aksioom? Väide, mille tõesuses pole kahtlust. Teoreem-lause, mille õigsus tõestatakse faktidele tuginedes arutluse kaudu. Millest koosneb teoreem? Eeldus ja väide Nurk-geomeetriline kujund, mille moodustavad 2 ühest ja samast punktist väljuvat kiirt. Sirgnurk-nurk, mille haarad moodustavad sirgjoone Kõrvunurgad-2 nurka, millel 1 haar on ühine ja mille teised haarad moodustavad sirge Tippnurgad-ühe nurga haarad on teise nurga haarade pikendused üle nende ühise tipu Täisnurk-nurk, mis on 90 kraadi Nürinurk-nurk, mis on suurem kui 90 kraadi, kuid väiksem kui 180 kraadi Teravnurk-nurk, mis on väiksem kui 90 kraadi Tipunurk-võrdhaarse kolmnurga haarade vaheline nurk Harilik murd-näitab, mitmeks võrdseks...
Ruuduks nim. võrdsete kölgedega ja täisnurkadega nelinurka. Ristkülik on nelinurk, mille kõik nurgad on täisnurgad. Trapets on nelinurk, mille kaks külge on paralleelsed. Võrdhaarne trapets on nelinurk, mille kaks haara on paralleelsed ja võrdsed. Täisnurkne trapets on nelinurk, mille kaks külge on paralleelsed ja üks nurk on 90 kraadi. Kolmnurgaks nimetatakse kolme punktiga määratud kinnist murdjoont koos tasandi osaga, mida see murdjoon piirab. Võrdkülgne kolmnurk, mille kõik kolm külge on võrdsed. Võrdhaarne on kolmnurk, mille vähemalt kaks külge on võrdsed. Erikülgne on kolmnurk, mille kõik küljed on erineva pikkusega. Täisnurkne on kolmnurk, mille üks nurk on täisnurk. Nürinurkne on kolmnurk, mille üks nurk on nürinurk, s.o suurem kui 90o. Teravnurkne on kolmnurk, mille kõik nurgad on teravnurgad, s.o väiksemad kui 90o Rööpkülik ehk rööpnelinurk on nelinurk, mille vastasküljed on paralleelsed ning võrdsed. Rombiks nim. nelinurka , ...
5.klassi geomeetria kokkuvõte Sirge. Kiir. Lõik. A B s Sirge s (ehk AB) Ei ole algus- ega lõpp-punkti A B t Kiir t (ehk AB) On alguspunkt,puudub lõpp-punkt A B Lõik AB On alguspunkt ja lõpp-punkt A E B Murdjoon Murdjoon koosneb lülidest. C D Sirge põhiomadus: Läbi iga kahe punkti saab tõmmata ainult ühe sirge. Nurkade liigid A a a r Nurk AOB h O tipp haar B Täisnurk Sirgnurk Teravnurk Nürinurk Nurkade mõõtmine Nurga mõõtühikuks on 1 o (kraad). ...
Matemaatika 8 klass Kõrvunurkadeks nimetatakse kahte nurka, mille üks haar on ühine ja teised moodustavad sirge. Kõrvunurkade omadus: kõrvunurkade summa on 180kraadi. Tippnurkadeks nimetatakse kahte nurka, kus ühe haarad on teise haarade pikendused üle ühise tipu. Tippnurki on alati kaks paari! Tippnurkade omadus: tippnurgad on võrdsed. Põiknurkadeks nimetatakse kahte nurka, mille sisepiirkonnad on teine teiselpool lõikajat ja mille haarad lõikajal on suunatud teineteisele vastu. Lähisnurkadeks nimetatakse kahte nurka, mille sisepiirkonnad on ühel ja samal pool lõikajat ning haarad lõikajal on suunatud teineteisele vastu. Kui põiknurgad on võrdsed, siis lähisnurkade summa on 180kraadi ja sirged on paralleelsed. Kui põiknurgad ei ole võrdsed, siis ka lähisnurkade summa ei ole 180kraadi ja sirged ei ole paralleelsed. Rööpkülikuks nimetatakse nelinurka, mille vastasküljed on paralleelsed. Rööpkülikuks ...
1. Optiline illusioon Milline lõik on pikem, kollane või sinine? · Mõlemad lõigud on tegelikult ühepikkused. Kumb punane joon on pikem? · Mõlemad punased jooned on ühepikkused Kumb koletis on suurem? · Mõlemad koletised tegelikult ühepikkused 2. Painutused ja kõverdused. Kas jooned on paralleelsed? Kas need jooned on paralleelsed? · Raske uskuda, et kõik diagonaaljooned on tegelikult paralleelsed. Kas kolmnurga küljed on sirged? · Kolmnurga küljed tunduvad sissepainutatutena, tegelikult on sirged. Kas ring on lopergune? · väärarvamuse põhjustab tagaplaanikujund (joonte murdumine) 3. Muutlikud kujundid. Kas sa näed kuubi sisemist või alumist põhja? Mitut erinevat pilti sa näed? · Võimalik on näha vähemalt nelja erinevat varianti Kas trepp läheb üles või alla? 4. Kaksipidi pildid. Mida näed pildil? · Kas vaas või kaks nägu? Mida näed ...
Defineerimine ja tõestamine. Planimeetria elemente. Kordamine Matemaatika 8.klass Rita Punning Krootuse Põhikool Kordavad teemad ehk millest täna räägime: Defineerimine, teoreem, eeldus, väide, pöördteoreem; Kõrvu-, tipp-, kaas-, põik-, lähisnurgad; Sirgete paralleelsus; Rööpkülik, kolmnurk; Kolmnurga ja trapetsi kesklõigud; Kolmnurga mediaanid. 2 Defineerimine Mõiste täpset ja lühidat määratlemist nimetatakse selle mõiste defineerimiseks. Mõisted, mida ei defineerita, nimetatakse algmõisteteks. Algmõisted näiteks punkt, sirge, tasand, ruum jne. Kas järgmised mõisted on korrektsed? Kolmnurga kõrguseks nimetatakse kolmnurga tipust tõmmatud lõiku. Rööpkülikuks nimetatakse nelinurka, mille vastasküljed on paralleelsed. ...
Algarv- Ühest suurem naturaalarv, mis jagub vaid ühe ja iseendaga Kordarv-positiivne naturaalarv, mis jagub peale ühe ja iseenda veel mõne naturaalarvuga. Lihtmurd- murd, mille nimetaja on lugejast suurem Liigmurd- murd, mille lugeja on nimetajast suurem või temaga sama suur Naturaalarvu tegur- iga naturaalarv, millega antud arv jagub Naturaalarvu kordne- iga naturaalarv, mis antud arvuga jagub Murru laiendamine- murru lugeja ja nimetaja korrutamine ühe ja sama nullist erineva arvuga Murru taandamine- murru lugeja ja nimetaja jagamine ühe ja sama nullist erineva arvuga Arvu absoluutväärtus-selle arvu kujutava punkti kaugusega nullpunktist Üks protsent- üks sajandik osa Nurk-geomeetriline kujund, mille moodustavad kaks ühest ja samast punktist väljuvat kiirt. Sirgnurk-nurk, mis on 180 kraadi Teravnurk-nurk, mis on väiksem kui 90 kraadi Nürinurk- nurk, mis on suurem kui 90kraadi ja väiksem kui 180 kraadi Täisnurk- nurk, mis on 90kraadi Kõ...
Sirged ja tasandid Kordamine Sirge kanoonilised võrrandid: Antud on 2 sirge punkti A( x1 ; y1 ; z1 ) ja x - x1 = y - y1 = z - z1 B( x 2 ; y 2 ; z 2 ) : x 2 - x1 y 2 - y1 z 2 - z1 Antud on 1 sirge punkt A( x1 ; y1 ; z1 ) ja x - x1 y - y1 z - z1 = = sx sy ...
Nurk Geomeetria- uurib erinevaid kujundeid (maatemaatika osa) Nurk- on geomeetriline kujund, mille moodustavad kaks ühest ja samast punktist väljuvat kiirt. Kaks nurka on võrdsed kui neid saab ühtida. Nurgakraad Nurga mõõtühikuks on 1 nurgakraad. Täisnurk- on alati 90 kraadi Sirgnurk- on alati 180 kraadi Nurga mõõtmine Nurka mõõdetakse malli abil. Mõõtepiirkond on 0 kraadi-180 kraadi Kõrvunurgad Kõrvunurkadeks nimetatakse kaht nurka millel on üks ühine haar ja mille ülejäänud haarad moodustavad sirge( 180 kraadi) Kõrvunurkade omadus: · Kõrvunurga summa on alati 180 kraadi Tippnurgad Lõikuvateks sirgeteks nimetatakse sirgeid millel on üks ühine punkt. Sirgete ühispunkti nimetatakse nende lõikepunktiks. Tippnurkade omadus: · Tippnurgad on alati võrdsed Ristuvad sirged Ristuvateks sirgeteks nimetatakse kaht sirget mille lõikumisel tekib täisnurk( 90 kraadi). Ristumine on lõikumise erijuht. Ristuvateks lõikudek...
Teoreem.Kui kaks sirget v ja c on risti he ja sama sirgega g, siis sirged v ja c on teineteisega paralleelsed. Eeldus. v on risti g ja c on risti g Vide. v on paralleelne c Testus. Eitame videt ja oletame, et v ei ole paralleelne c-ga.Sellest oletusest jreldub, et need sirged peavad likuma mingis punktis W, sest tasandi kahe sirge puhul muud vimalust ei ole. Tekib vastuolu, sest vljaspool sirget asuvast punktist vib tmmata antud sirgele ainult he ristsirge.Seega sirged v ja c ei saa likuda.Et kolmandat vimalust ei ole,siis v on paralleelne c-ga MOT
1. Kui kujutamiskiired väljuvad ühest kindlast punktist (silmapunktist S), siis saadakse objekti tsentraalprojektsioon. Objekti paralleelprojektsioon puhul on kujutamiskiired omavahel paralleelsed. Silmapunkt lõpmata kaugel. 2. Paralleelprojektsioon jaguneb kald- ja ristprojektsiooniks. Need erinevad üksteisest kujutamiskiirte ekraanile langemise nurga poolest. 3. Sirgjoone projektsiooniks tuleb erijuhul punkt, siis kui sirge ühtib kujutamiskiirega. 4. Tasapinnalise kujundi paralleelprojektsiooniks tuleb sirglõik juhul, kui teda projekteerivad kiired asetsevad kõik kujundi tasapinnas. 5. Sirglõigu moondetegur näitab mitu korda on lõigu projektsiooni pikkus lõigu tegelikust pikkusest väiksem. Sirgjoone paralleelprojektsiooni pikkus Sirglõigu tegelik pikkus 6. Ristprojekteerimisel loetakse moondetegur üheks, täpne suurus 0,82. Paralleelprojek...
3.ptk Defineerimine ja tõestamine 8.klass Õpitulemused Näited 1.Hulkade ühisosa - ühised elemendid; Ül.564 tähis ; NB tehe hulkadega 2.Hulkade ühend - hulk, millesse kuuluvad Ül.567 ühe hulga kõik elemendid ja teise hulga need elemendid, mis esimesse hulka ei kuulunud; tähis ; NB tehe hulkadega 3.Matemaatilised sümbolid - hulkade ühisosa matemaatikale iseloomulik hulkade ühend nn.kokkuleppeline keel, et teksti lühidalt element kuulub hulka kirja panna (võit ajas ja ruumis) element ei kuulu hulka sidesõna "ja" sidesõna "või" hulga osahulk, "ei ole osahulk" kriipsutatakse sama tähis läbi ...
1. Mis asi on vektor ja skalaar? 2. Mis on nende erinevused ja sarnasused (näited)? 3. Kirjelda Eukleidsese, Lobatsevski ja Reimanni geomeetriat 4. Kuidas sõltub aeg liikumise kiireusest ja gravitatsioonist? 5. Kirjelda suhtelist liikumist, kulgliikumist, pöörlevatliikumist ja võnkumist? 6. Mille poolest erineb aine väljast? 7. Newtoni seadused peast ( 3tk) 8. Mida näitab töö? Mida näitab võimsus? 9. Mis asi on energia? 1. Vektor on suunatud matemaatikas suunatud ristlõik. Skalaar on füüsikaline suurus, mis on esitatav vaid ühe mõõtarvu ja mõõtühikuga. 2. . 3. Eukleides Tema on Antiik-Kreeka õpetlane, kes pani aluse tänapäeva koolimatemaatikas õpetatavale geomeetriale. Tema geomeetria üheks aluseks on see, et paralleelsed sirged, ei lõiku kunagi. Lobatsevski Tema tegi oma geomeetria, kus paralleelsed sirged on defineeritud kui sellised, mis lõpmatuses siiski lõikuvad. Ning erinevalt Eukledese sirge r...
Matemaatika valemid VÕRRANDID JA VÕRRATUSED ruutvõrrand murdvõrrand nimetaja ei võrdu nulliga! vajadusel leian ühise nimetaja kontroll! juurvõrrand võtan mõlemad pooled ruutu trigonomeetriline võrrand - logaritm eksponentfunktsioon ja eksponentvõrrandid 1. eksponentvõrrand 2. eksponentvõrrand 3. kolmeliikmeline eksponentvõrrand ehk logaritmfunktsioon ja logaritmvõrrand logaritmfunktsioon: logaritmvõrrandite lahendusvõtted: 1. potentseerimine 2. asendusvõte 3. logaritmi definitsiooni kasutamine võrrandisüsteem ja võrratussüsteem liitmis- või asendusvõte! GEOMEETRIA Tasandilised kujundid kolmnurk Heroni valem: r – siseringjoone raadius täisnurkne kolmnurk koosinusteoreem siinusteoreem R – ümberringjoone raadius ruut ristkülik rööpkülik trapets romb ringjoon, ring,...
1. Mis vahe on tsentraal- ja paralleelprojekteerimisevahel? Tsentraalprojekteerimisel kasutatakse tsentraalseid kujutamiskiiri. Kõik kujutamiskiired väljuvad ühest punktist. Paralleelprojekteerimisel on kujutamiskiired omavahel paralleelsed. See on tsentraalprojekteerimise erijuht, kus kujutamistsenter on viidud lõpmata kaugele. 2. Kuidas jaguneb paralleelprojektsioon ja kuidas need projektsioonid üksteisest erinevad? Jaguneb kald- ja ristprojektsioonideks, vastavalt kas kiired langevad paralleelselt või kaldu. 3. Mis juhtumil tuleb sirgjoone projektsiooniks punkt? Kui sirgjoon ühtib kujutamiskiirega. 4. Mis juhtumil tuleb tasandilise kujundi paralleelprojektsiooniks sirglõik? Kui kujundit projekteerivad kiired asetsevad kõik kujundi tasandis. 5. Mis on sirglõigu moondetegur? Sirglõigu paralleelprojektsiooni pikkuse ja lõigu enda pikkuse suhe. 6. Millistes piirides võib muutuda sirglõigu moondetegur? a) ristisomeetrias Tegelikult kui si...
Raudvara ptk.3 Defineerimine ja tõestamine Hulkade ühisosa ja ühend Kui kahes hulgas on ühiseid elemente, siis öeldakse, et need elemendid moodustavad hulkade ühisosa. A = {a; b; c; d; e} B = {c; d; e; f} Hulkade A ja B ühisosa on c, d ja e. Ühend on kahe hulga kõik elemendid kokkupandult. A = {a; b; c; d; e} B = {c; d; e; f} Hulkade A ja B ühend on a, b, c, d, e ja f. Defineerimine Defineerimine on mõiste lahti seletamine võimalikult täpselt ja lühidalt. Algmõiste Ei defineerita, aga teame. Mõisted Defineerime algmõiste abil. Teoreem Kui mingi lause tõesust saab matemaatikas põhjendada varem teada olevate tõdede abil, siis nimetatakse seda lauset teoreemiks. Lauseid, mida pole küll keegi tõestanud, kuid mille tõesuses pole põhjust kahelda, nimetatakse aksioomideks. Teoreemi tõesuse põhjendamist nimetatakse tõestamiseks. Teoreemi eeldus ja ...
SIRGED JA TASANDID RUUMIS (kordamisküsimused 12. kl.) KAHE SIRGE VASTASTIKUSED ASENDID RUUMIS ON: Kiivsed, ühtivas, lõikuvad, paralleelsed (ehk KÜLP). PARALLEELSETEKS SIRGETEKS - nim kahte ühel tasandil asuvat sirget millel ei ole ühtki ühist punkti. LÕIKUVATEKS SIRGETEKS - nim kahte sirget millel on üks ühine punkt. KIIVSETEKS SIRGETEKS - nim kahte mitteparalleelset sorget ruumis, mis ei oma ühiseid punkte. KAHE SIRGE VAHELISEKS NURGAKS - nim väiksemat nende sirgete lõikumisel tekkinud kõrvunurka. RISTUVATEKS SIRGETEKS - nim sirgeid kui võrdsete kõrvunurkade korral on sirgete vaheline nurk 90*. KIIVSIRGETE VAHELISEKS NURGAKS - loetakse nurka mille saame siis, kui joonistame ühele antud sirgetest sellise paralleeli, mis lõikab teist sirget. SIRGE JA TASANDI VASTASTIKUSED ASENDID - on paralleelsed, ristuvad ja lõikuvad. TASANDIGA PARALLEELSETEKS - nim sirget millel pole tasandiga ühtki ühist punkti. SIRGE JA ...
Võrdlus – Elektriväli ja magnetväli Definitsioon: Elektriväli – elektrilaengute mõjul tekkiv ja neid mõjutav väli. Magnetväli – laetud osakeste liikumisel tekkiv jõuväli. Elektriväli Magnetväli Keha omadus on elektrilaeng. Tähis – Q Keha omadus on voolutugevus. Tähis I, või q, ühik kulon (1C) ühik amper korda meeter (1A*m) Põhiseadus on Coulumb’i* seadus Põhiseadus on Ampere’i* seadus Välja kirjeldab elektrivälja tugevus (E- Välja kirjeldab magnetinduktsioon (B- vektor)* vektor)* Punktlaeng* Sirgvool* Võrdetegur* Võrdetegur* Elektrikonstant on Magnetkonstant on homogeense homogeense (ühtlase) välja võrdetegur (ühtlase) välja võrdetegur (jõujooned (jõujooned paralleelsed). ...
KORDAMISKÜSIMUSED 1. Mis on kujutava geomeetria esimeseks ja olulisimaks eesmärgiks? Kujutava geomeetria esimeseks ja olulisemaks eesmärgiks on teoreetiliste aluste andmine jooniste valmistamiseks ja lugemiseks. 2. Mis vahe on tsentraal- ja paralleelprojekteerimise vahel? Tsentraal projektsiooni puhul on silmapunkt lähedal. Ning kujutamiskiired lähtuvad kõik ühest punktist S. Paralleelprojektsiooni (on tsentraalprojektsiooni eriliik) korral on silmapunkt lõpmata kaugel. Ja kujutamiskiired on omavahel paralleelsed. 3. Kuidas jaguneb paralleelprojektsioon ja mille poolest need projektsioonid üksteisest erinevad? Paralleelprojektsioon jaguneb: Ristprojektsioon ja Kaldprojektsioon. Ristprojektsiooni korral on kujutamiskiired risti ekraaniga, kaldprojektsiooni korral on nad kaldu ekraani suhtes. 4. Miks ühest projektsioonist koosnev joonis ilma lisaandmeteta ei määra objekti? ...
1. harilik murd Harilik murd näitab, mitmeks võrdseks osaks on tervik jaotatud ja mitu sellist osa on võetud. 2. kümnendmurd Kümnendmurd on komaga arv. N: 23,4 ;14,1 ; 3,8 ; 10,5 3.murru taandamine Hariliku murru taandamiseks nimetatakse murru lugeja ja nimetaja jagamist ühe ja sama nullist erineva arvuga. 4.Astmete korrutamine Ühe ja sama arvu astmete korrutamisel astendajad liidetakse. 32 · 31 = 32 + 1 = 33 = 3 · 3 · 3 = 27 5.Astmete astendamine Astme astendamisel astendajad korrutatakse. 6.Astmete jagamine Ühe ja sama arvu astmete jagamisel astendajad lahutatakse. a m : a n = a m-n 7.Negatiivne astendaja Murd, mille lugejaks on arv 1 nimetajaks sama aste positiivse astendajaga. 1 a -n = n , kus a 0 a 8.Arvu standardkuju Kui arv on esitatud kahe teguri korrutisena, millest üks jääb arvude 1 ja 10 vahele ning teine arvu 10 aste, siis öeldakse, et arv on kirjutatud standardkujul. N: 20000 = 2 *10 4 500000000...
Lineaarkujutus ja teisendus. Olgu hulgad V, W vektorruumid. Aksioom1 Kahe vektorruumi V ja W korral määratud kujutust f: V W nimetatakse lineaarkujutuseks, kui on täidetud tingimus : f ( a + b) = f (a) + f (b). Järeldus1 Olgu = = 1 f ( a + b) = f ( a ) + f ( b ) lineaarkujutuse distributiivsus vektorite liitmise suhtes. Järeldus2 = 0 f ( a ) = f (a ) lineaarkujutuse kommutatiivsus skalaariga korrutamise suhtes. Järeldus3 = = 0 f ( 0 ) = 0 Aksioom2 Vektorruumi V korral määratud lineaarset kujutust f : V V nimetatakse selle vektorruumi V lineaarteisenduseks vektorruumist V iseendasse tagasi. Lineaarkujutuste f ja g korral lepitakse kokku rääkida ka nende summast f + g ja kujutuste korrutamisest reaalarvuga f. Lineaarkujutiste liitmisel ja korrutamis...
Kiirteteoreem Kui nurga haarasid lõigata paralleelsete sirgetega, siis nurga ühel haaral tekkinud lõigud on võrdelised teise haara vastavate lõikudega Kui sirged lõikavad nurga haarasid nii , et ühelhaaral tekkinud lõigud on võrdelised teisel haaral tekkinud lõikudega , siis lõikesirged on paralleelsed Kui nurga haarasid lõigata paral.sirgetega , siis on nurga haaral tekkinud lõigud võrdelised paral.sirgetel tekkinud lõikudega Nurga haarade lõikamisel paralleelsete sirgetega tekivad võrdeliste külgedega kolmnurgad.
Joonestamine 1. Mis vahe on tsentraal- ja paralleelprojekteerimise vahel? Tsentraalprojekteerimisel lähtuvad projekteerivad kiired kõik ühest punktist, mida nimetatakse silmpunktiks. Selle tulemiks on tsentraalprojektsioon ehk perspektiiv. Paralleelprojekteerimisel on kujutamiskiired omavahel paralleelsed. 2. Kuidas jaguneb paralleelprojektsioon ja mille poolest need projektsioonid üksteisest erinevad? Paralleelprojektsioon jaguneb kaldprojekteerimiseks ja ristprojekteerimiseks vastavalt sellele, kas kiired langevad ekraanile kaldu või risti. 3. Mis juhtumil sirgjoone projektsiooniks tuleb punkt? Sirge projekteerub punktiks, kui ta ühtib kujutamiskiirega. 4. Mis juhtumil tasapinnalise kujundi paralleelprojektsiooniks tuleb sirglõik? Kui tasandilist kujundit projekteerivad kiired asetsevad kõik kujundi tasandis, siis see kujund projekteerub sirglõiguks. 5. Mis on sirglõigu moondetegur? Sirglõigu moondetegur näitab, mitu korda on lõi...
Deformatsiooniks laiemas mõistes nimetatakse keha osakeste vastastikuse asendi muutusi, mis tingivad selle keha kuju ja mõõtmete (mahu) muutuse. Deformatsiooniks kitsamas mõistes nimetatakse aga suurusi, mis iseloomustavad keha kuju ja mõõtmete muutumise intensiivsust. Kontekstist peab alati selguma, kas tegemist on laiema või kitsama tõlgendusega. Deformatsioonid jagunevad: 1.1 Plastilised deformatsioonid ehk jääkdeformatsioonid on deformatsioonid, mille korral pärast deformatsiooni esile kutsunud jõu kõrvaldamist keha esialgne kuju ja mõõtmed ei taastu (näiteks plastiliini voolimine, paberi kortsutamine). 1.2 Elastsed deformatsioonid on deformatsioonid, mille korral pärast deformatsiooni esile kutsunud jõu kõrvaldamist keha esialgne kuju ja mõõtmed taastuvad (näiteks vedru kokkusurumine). ...
Homogeenne elektriväli Asetades kaks ühesugust metallplaati paralleelselt ja nad võrdsete kuid erinimeliste laengutega, siis tekitavad nad homogeense elektrivälja. Jõujoonte tihedus on plaatide sisepindadel ühesugune, ainult plaatide äärtel on jõujooned kõverdunud ja nende tihedus on erinev. Laengud paiknevad ainult plaatide sisepinnal. Homogeenne väljatugevus on igas punktis nii suuruselt kui suunalt ühesugune , või homogeenne välja jõujooned on omavahel paralleelsed sirged , mille vahekaugus ei muutu. Homogeene elektriväljatugevus arvutatakse valemiga : E= Kui laetud liikuv osake satub homogeensesse elektrivälja risti jõujoontega , siis liigub ta edasi paraboolselt
Eesti Põllumajandusülikool Maaehituse instituut INSENERIGRAAFIKA Ainekursus MIT-7.307 Kujutava geomeetria põhivara Koostanud Harri Lille Keeletoimetaja Karin Rummo Tartu 2003 Sissejuhatus Kujutav geomeetria on see geomeetria eriharu, milles pitakse tasandil (joonisel) ruumiliste ülesannete lahendamise meetodeid ning positsiooni-, mte- ja konstruktiivsete ülesannete lahendamise vtteid. Positsiooniülesanneteks nimetatakse geomeetriliste kujundite vastastikuse kuuluvuse ja likumise määramist. Mteülesanded on geomeetriliste kujundite kauguste ja nende telise suuruse leidmine. Konstruktiivsete ülesannete sisuks on etteantud tingimustele vastavate geomeetriliste kujundite (nende kujutised joonisel) loomine. Kasutatud on järgmisi tähiseid: A,B,C,....; 1,2,3,... - ruumipunktid; a,b,c,.... - jooned; ,,,....,,...
Ande Andekas-Lammutaja Matemaatika Sirged ja tasandid ruumis Sin on vastaskaateti ja hüpotenuusi suhe, tan vastaskaateti ja lähiskaateti suhe ning cos lähiskaateti ja hüpotenuusi suhe. Paralleelseteks sirgeteks nimetatakse kaht üht tasandil asuvat sirget, millel ei ole ühtki ühist punkti. Lõikuvateks sirgeteks nimetatakse kaht sirget, millel on üks ühine punkt. Kiivsirgeteks nimetatakse kaht mitteparalleelset sirget ruumis, mis ei oma ühiseid punkte (s t). Kahe kiivsirge vaheliseks kauguseks nimetatakse vähimat kaugust nende sirgete selliste punktide vahel, millest üks asub ühel, teine teisel sirgel. Kahe sirge vaheliseks nurgaks nimetatakse väikseimat nende lõikumisel tekkinud kõrvunurkadest. Sirge on paralleelne tasandiga, kui sirge, mis ei asetse tasandil, on paralleelne mi...
Kinemaatika- teadus, mis tegeleb kehade punktmasside liikukumisega, ning liikumise geomeetrilisi seaduspärasid. Trajektoor- punktmassi liikumise tee kindlas taustsüsteemis. Liikumisseadus- Vektoriaalne määramisviis r=r(t) Koordinaatviisiline määramisviis (telef), Loomulik liikumisseadus s=f(t) Punktmass- materiaalne keha, mille mõõtmeid liikumise uurimisel ei arvestata. Punkti kiirendus- tema kohavektor esimese tuletise järgi. Kiirus- vektor, mis on suunatud piki trajektooripuutujat liikumissuunas ja isel. Kohavektori pikkuse kui ka suuna muutus. (telef) Punkti kiirendus- kiirusvektori I tuletis aja järgi ehk kohavektori II tuletist aja järgi. Kiirendus- isel. Kiiruse muutust (telef) Rööpliikumine- kui keha liigub ühest punktist teise ja sellel olevad sirged on paralleelsed. (telef) Jäiga keha selline liikumine, mille puhul iga kohaga muutumatult seotud sirge jääb kogu liikumise kestel oma algsihiga paralleelseks. Ühe punkti liikumine t...
1) mõisted Elektrilaeng- mingit keha iseloomustav füüsikaline suurus. Laeng näitab, kui tugevasti keha osaleb elektromagnetilises vastastikmõjus. Elementaarlaeng- vähima võimaliku laengu väärtus Elektrostaatika- tegeleb paigalseisvate laetud kehade vastastikmõju uurimisega Punktlaeng- selline keha, mille mõõtmeid ei arvestata ja elektrilaeng loetakse koondunuks ühte punkti Väli- välja mõiste kätkeb(sisaldab endas) jõu tekkimise võimalikkust Elektrostaatiline väli- Väli, mille tekitab paigalseisev elektrilaeng Ekvipotentsiaalpind- ühesugust elektrilist potentsiaali omavate väljapunktide kogum 2) laengu jäävuse seadus- elektriliselt isoleeritud süsteemi kogulaeng on jääv Isoleeritud süsteem on termodünaamiline süsteem, millel puudub ümbritsevaga energia- ja ainevahetus 3) Juhid on ained, milles vabade laengukandjate arv on väga suur (kraanivesi, metallid) 4) Dielektrikud on isoleerivad, ehk elektrit mitte juhtivad ained(kummi, klaas, õhk)...
04:57 projekteerimine - geomeetriline tegevus, mille käigus saadakse projektsioon. Osalevad: objekt, kujutamiskiired, ekraan. Liigitatakse tsentraal- ja paralleelprojekteerimine. Tsentraalprojekteerimine kõik kiired lähtuvad ühest punktist, Tulemuseks on perspektiiv ehk tsentraalprojektsioon. Paralleelprojekteerimine- kujutamiskiired on omavahel paralleelsed. Tulemiks on paralleelprojektsioon. See jaguneb kaheks kaldprojekteerimine ja ristprojekteerimine. Projektsioonide üldomadusi: # Punkti projektsioon ekraanil on seda punkti läbica kujutamiskiireja ekraani lõikepunkt # Sirgjoone projektsioon on üldjuhul jälle sirge, erijuhul punkt, kui sirge ühtib kujutamiskiirega # Kui punkt on miongil joonel, siis tema projektsioon on selle joone projektsioonil # Kui tasapinnalist kujutndit projekteerivad kiired asetsevad kõik kujundi tasapinnas, siis se...
Sirgete lõikumine ja paralleelsus Koostaja: Elsa Fedtšenko Pärnu Kuninga Tänava Põhikool Kordamine Kaks sirget, mis asetsevad tasandil võivad lõikuda või olla paralleelsed. Kaks sirget on paralleelsed, kui nad asetsevad ühel ja samal tasandil ega lõiku. t s s//t st= Märkus: Joonisel tähistame parallelseid sirgeid ühesuguse arvu nooltega. Kaht sirget , mis asuvad tasandil nimetatakse lõikuvateks, kui neil on üks ühine lõikepunkt. a ab=P P b · Kui sirged lõikumisel moodustavad täisnuga, siis neid nimetatakse ristuvateks. · 90° ut Kahe sirge lõikum...
PLANIMEETRIA KORDAMINE NELINURGAD RÖÖPKÜLIK Vastasküljed on paralleelsed ja võrdsed Vastasnurgad on võrdsed Diagonaalid poolitavad teineteist Diagonaal jaotab rööpküliku kaheks pindvõrdseks kolmnurgaks Lähisnurkade summa on 180º ( Diagonaalide ruutude summa on võrdne külgede ruutude summaga: d 12 + d 22 = 2 a 2 + b 2 ) Ümbermõõt. P = 2( a + b ) Pindala: S = ah S = a b sin ROMB On võrdsete külgedega rööpkülik, seega on rombil kõik rööpküliku omadused. Lisaks on rombi diagonaalid risti ja poolitavad rombi nurgad, Rombi kõrgused on pikkuselt võrdsed. 1 Rombi diagonaalide lõikepunkt on siseringjoone keskpunkt r = h 2 d 12 + d 22 = 4a 2 Ümbermõõt: P = 4a Pindala: S ...
1. Mis on magnetväli, kus tekib? 2. Magnetvälja omadused. 3. Mis on magnetiline induktsioon+ valem? Kuidas määratakse 4. Ampere seadus, valem, jõu suund. 5. Kus kasutatakse Ampere jõudu+1 näide. 6. Mis on Lorenzi jõud+ suund. 7. Magnetvälja jõujooned. 8. Mis on homogeenne magentväli ja kus tekib. 9. Mis on ferromagneetik ja nim mõni. 10. Millised on ferromagneetikute omadused ja kus neid kasutatakse. 1. Magnetväli on eriline mateeria vorm mis ümbritseb liikuvaid laenguid(vooluga juhte). 2. Omadused: 1) levib kiirusega 300000km/s 2) Mõjutab jõuga vooluga juhte või liikuvaid languid. 3) On pöörisväli. 3. Magnetiline induktsioon näitab, kui suur jõud mõjub magnetväljaga risti olevale 1m pikkusele juhtmele, milles on vool 1A. F B= I l Vooluga juhtmele mõjuva jõu suund(Ampere jõud) määratakse vasaku käe reegliga( kui B vektor suunatud peopessa ja sirged sõrmed näitavad voolusuunda, siis risti ...
Matemaatiline analüüs I (Vähendatud programmi teooria vastused) Lokaalse ekstreemumi mõiste. Öeldakse, et funktsioonil f on punktis x1 lokaalne maksimum, kui 1. funktsioon f on määratud punkti x1 mingis ümbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib võrratus f(x) f(x1). Öeldakse, et funktsioonil f on punktis x1 lokaalne miinimum, kui 1. funktsioon f on määratud punkti x1 mingis ¨umbruses (x1 - , x1 + ); 2. iga x (x1 - , x1 + ) korral kehtib v~orratus f(x) f(x1). Funktsiooni lokaalseid maksimume ja miinimume nimetatakse selle funktsiooni lokaalseteks ekstreemumiteks. Fermat' lemma. Kui funktsioonil f on punktis x1 lokaalne ekstreemum ja funktsioon on diferentseeruv selles punktis, siis f(x1) = 0. Rolle'i teoreem. Kui funktsioon f on lõigul [a, b] pidev, vahemikus (a, b) diferentseeruv ja rahuldab tingimust f(a) = f(b), siis leidub vahemikus (a, b) vähemalt üks punkt c nii, et f(c) = 0. Rolle'i teoreemil on lihtne g...
Kahetahuline nurk Kahetahulise nurga moodustavad kaks lõikuvat tasandit. Neid tasandeid nimetatakse kahetahulise nurga tahkudeks. Nende tasandite lõikesirget nimetatakse kahetahulise sirge servaks. Kahetahulist nurka mõõdab tema joonnurk. Joonnurk saadakse, kui kahetahulist nurka lõigatakse tasandiga, mis on nurga servaga risti. Joonnurga saame ka siis, kui nurga serval valitud punktist tõmbame mõlemale tahuleservaga ristuvad sirged. Kahe lõikuva tasandi vaheliseks nurgaks nimetatakse nende tasandite lõikumisel tekkivat väiksemat nurka. Kui tasandid on paralleelsed, siis tasanditevaheline nurk on 0o. Mitmetahuline nurk Kolme ühes punktis lõikuvat tasandit eraldavad ruumis kolmetahulised nurgad. Lõikuvate tasandite ühine punkt on kolmetahuliste nurkade tipp. Kui ühte punkti läbivate tasandite arv on 4, 5 ja 6...n, siis tekivad vastavalt nelja-, viie-, kuue-,...n-tahulised nurgad. Kõiki neid koos nimetatakse mitmetahulisteks nurkadeks. K...
elektrostaatika- tegeleb paigalseisvate laetud kehade vastastikmõju uurimisega. punktlaeng- laetud keha, mille kehad on tühised võrreldes kehade vahe kaugusega. Coulombi seadus- kahe laengu vahel mõjuv jõud on võrdeline kummagi laengu korrutisega ja pöördvõrdeline kehade vahekaugusega. F=k*q1*q2/r2elektrivälja tugevus- näitab, kui suur jõud mõjub selles väljas ühikulise positiivse laenguga kehale.E=F/q. elektrostaatiline väli- mateeria vorm, mis vahendab teineteiste suhtes paigal seisvate laengute vastastikmõju. potentsiaalne väli- väli, milles töö ei sõltu liikumistee kujust. elektrivälja jõujoon- mõtteline joon, milles igas punktis E vektor on suunatud piki selle joone puutujat. elektriline pinge-elektrivälja kahe punkti potentsiaalide vahe. U=A/q elektrivälja potentsiaal- füs. suurus, mis näitab kui suur on antud välja punktis asuva laengu potentsiaalne energia. roo= Es homogeenne elektriväli- elektriväli, kus kogu ruumis on E vektor...
Defineerimine ja tõestamine Raudvara 1. Hulgad Kui kahes hulgas A ja B on ühiseid elemente, siis need elemendid moodustavad hulkade A ja B ühisosa. Sümbolites: A B Näide: Olgu meil hulgad A = {1;5;7;4} ja B = {5;7;6}, siis A B = {5;7} Kui x A B, siis see tähendab x A ja x B. Sümbolites: x A x B Moodustades kahest hulgast A ja B uue hulga, millesse kuuluvad kõik hulga A ja B elemendid kordusteta saame hulkade A ja B ühendi. Sümbolites: A B (hulkade A ja B ühend) Näide: Olgu meil samad hulgad A ja B, siis A B ={1;4;5;6;7} Kui x A B, siis see tähendab, et x A või x B. Sümbolites: x A x B - kuuluvuse märk - ühisosa märk - sidesõna ,,ja" - ühendi märk - sidesõna ,,või" - 2. Defineerimine Defineerimiseks nimetatakse mõiste seletust või küsimusele vastuse andmist. Algmõisteid ei defineerita, me teame selle nende tähendust. Algmõisted on näitek...
Õppematerjalide loomist toetab AS Topauto/autod, markide Seat, Suzuki, Hyundai ning kasutatud autode müüja üle Eesti 3. Vektor tasandil. Joone võrrand Põhiteadmised · Punkti koordinaadid; · vektor, vektori koordinaadid; · vektorite summa ja vahe; · vektori korrutamine arvuga; · kahe vektori skalaarkorrutis; · vektori pikkus ja nurk vektorite vahel; · vektorite ristseisu ja kollineaarsuse tunnused; · joone võrrandi mõiste; · sirge võrrand tasandil; · kahe sirge vastastikused asendid; · ringjoone võrrand; · parabooli võrrand. Põhioskused · Tehete sooritamine vektoritega geomeetriliselt ja koordinaatkujul; · vektorite kasutamine geomeetriaülesannete lahendamisel; · sirge võrrandi koostamine, kui sirge on määratud punkti ja tõusuga, tõusu ja algordinaadiga, kahe punktiga, punkti ja sihivektoriga; · sirge tõusu määramine; · kahe sirge vahelise nurga...
Kaht sirget , millel on ainult üks ühine punkt nim. ___1___ . Sirgeid , mille lõikumisel tekib täisnurk nim . ___2___ . ______3_____ on sirged , millel ei ole ühtki ühist punkti . Kolmnurga tipust vastasküljeni tõmmatud ristlõiku nim. ___4___ . Kolmnurka , mille üks nurk on täisnurk nim . ____5____ kolmnurgaks . Kolmnurk , mille kõik küljed on erineva pikkusega nim __6_. Kolmnurk , mille kaks külge on ühe pikkusega on __7___ . Ruut on ___8___ , mille kõiik nurgad on __9__ . ___10___ on rööpkülik , mille kõik küljed on võrdsed. Ringjoone diameetriks nim lõiku , mis ühendab ringjoone__11___ ja ___12___ . Joon , mille iga punkt asetseb ringjoone keskpunktist võrdsel kaugusel on __13__ . Naturaalarvu , millel on ainult kaks tegurit ( 1 ja see arv ise ) nim ___14___ . Naturaalarvu , millel on enam kui kaks tegurit nim __15___ . Arv , millega antud arv jagub nim ___16___ . Arv , mis jagub antud arvuga on ___17___ . Murd , mille lugeja o...
Joonestada pcidrdkoonuse pdhjaring- Joonestada kruvijoone i/4-keeru (AB) kujut'is joon, kui koonuse moodust,aja kalde- ris tisoneetrias. nurk on rp ja t'ipp asub punkfis T. 3 @ a rl L I A'(5) -r ,o... -2- .. /j D j, ''- Joonesfada kaldpinna a horisont'aalide plaan, kui on ant'ud jdlqloon (0-horisonfaat) ja a) punkf A(5)...
Joonestada pcidrdkoonuse pdhjaring- Joonestada kruvijoone i/4-keeru (AB) kujut'is joon, kui koonuse moodust,aja kalde- ris tisoneetrias. nurk on rp ja t'ipp asub punkfis T. 3 @ a rl L I A'(5) -r ,o... -2- .. /j D j, ''- Joonesfada kaldpinna a horisont'aalide plaan, kui on ant'ud jdlqloon (0-horisonfaat) ja a) punkf A(5)...
¤Paralleelsed sirged- Kahte tasandil asuvat sirget nim. paralleelseteks kui neil ei ole ühiseid punkte ¤Kaasnurgad- Kahte nurka mis asuvad ühel pool lõikajat ja mille haarad lõikajal suunduvad ühtepidi nim. kaasnurkadeks. ¤Lähisnurgad- Kahte nurka, mis asuvad ühel pool lõikajat ja mille haarad lõikajal suunduvad vastamisi nim. lähisnurkadeks. ¤Põiknurgad- Kahte nurka, mis asuvad üks ühel ja teine teisel pool lõikajat ja mille haarad lõikajal suunduvad vastamisi nim. põiknurkadeks. ¤Kolmnurga välisnurk- kolmnurga välisnurgaks nim. kolmnurga sisenurga kõrvunurka. ¤Kolmnurga välisnurga teoreem- kolmnurga iga välisnurk on võrdne temaga mitte kõrvu olevate sisenurkade summaga. ¤Kolmnurga kesklõik- Lõiku, mis ühendab kahe külje keskpunkte, nim. selle kolmnurga kesklõiguks. ¤Kolmnurga kesklõigu teoreem- Kolmnurga kesklõik on paralleelne kolmnurga ühe küljega ja võrdub poolega sellest küljest. ¤Trapetsi kesklõik- Leitud haarade keskpunktid ja n...