Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Defineerimine ja tõestamine. Planimeetria elemente. (0)

1 Hindamata
Punktid

Esitatud küsimused

  • Kui pikk on kesklõik?
Vasakule Paremale
Defineerimine ja tõestamine-Planimeetria elemente #1 Defineerimine ja tõestamine-Planimeetria elemente #2 Defineerimine ja tõestamine-Planimeetria elemente #3 Defineerimine ja tõestamine-Planimeetria elemente #4 Defineerimine ja tõestamine-Planimeetria elemente #5 Defineerimine ja tõestamine-Planimeetria elemente #6 Defineerimine ja tõestamine-Planimeetria elemente #7 Defineerimine ja tõestamine-Planimeetria elemente #8 Defineerimine ja tõestamine-Planimeetria elemente #9 Defineerimine ja tõestamine-Planimeetria elemente #10 Defineerimine ja tõestamine-Planimeetria elemente #11 Defineerimine ja tõestamine-Planimeetria elemente #12 Defineerimine ja tõestamine-Planimeetria elemente #13 Defineerimine ja tõestamine-Planimeetria elemente #14 Defineerimine ja tõestamine-Planimeetria elemente #15
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 15 lehte Lehekülgede arv dokumendis
Aeg2018-06-18 Kuupäev, millal dokument üles laeti
Allalaadimisi 17 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor envo2212 Õppematerjali autor

Sarnased õppematerjalid

thumbnail
9
pdf

8. klassi raudvara: PTK 3

järeldusmärk "parajasti siis" ehk tunnus: eeldusest järeldub väide ja vastupidi 4.Hulgateooria ajaloost - matemaatika haru, mis tegeleb hulkade üldiste omaduste uurimisega; siia alla paigutatakse ka järjestuste ning muude seoste uurimine ja mõningaid muid valdkondi; aluse pani Georg Cantor (1845-1918) 5.Defineerimine - mõistele definitsiooni Defineerimine tähendab näiteks vastata andmine; kasutatakse algmõisteid täpselt ja lühidalt küsimusele: "Mida nimetatakse trapetsiks?" NB vaja selleks, et küsimustele võmalikult lihtsalt ja selgelt vastata 6.Definitsioon - lause; annab täpse ja Ül.585,588 lühikese vastuse küsimusele "Mida Lõikuvateks sirgeteks nimetatakse sirgeid, nimetatakse...?" või "Mis on...?" millel on ainult üks ühine punkt.

Matemaatika
thumbnail
3
docx

Defineerimine ja Tõestamine

Raudvara ptk.3 Defineerimine ja tõestamine Hulkade ühisosa ja ühend Kui kahes hulgas on ühiseid elemente, siis öeldakse, et need elemendid moodustavad hulkade ühisosa. A = {a; b; c; d; e} B = {c; d; e; f} Hulkade A ja B ühisosa on c, d ja e. Ühend on kahe hulga kõik elemendid kokkupandult. A = {a; b; c; d; e} B = {c; d; e; f} Hulkade A ja B ühend on a, b, c, d, e ja f. Defineerimine Defineerimine on mõiste lahti seletamine võimalikult täpselt ja lühidalt. Algmõiste ­ Ei defineerita, aga teame. Mõisted ­ Defineerime algmõiste abil. Teoreem

Matemaatika
thumbnail
2
doc

Defineerimine ja tõestamine

Defineerimine ja tõestamine Raudvara 1. Hulgad Kui kahes hulgas A ja B on ühiseid elemente, siis need elemendid moodustavad hulkade A ja B ühisosa. Sümbolites: A B Näide: Olgu meil hulgad A = {1;5;7;4} ja B = {5;7;6}, siis A B = {5;7} Kui x A B, siis see tähendab x A ja x B. Sümbolites: x A x B Moodustades kahest hulgast A ja B uue hulga, millesse kuuluvad kõik hulga A ja B elemendid kordusteta saame hulkade A ja B ühendi. Sümbolites: A B (hulkade A ja B ühend) Näide: Olgu meil samad hulgad A ja B, siis A B ={1;4;5;6;7} Kui x A B, siis see tähendab, et x A või x B

Matemaatika
thumbnail
2
doc

Definitsioonid ja teoreemid

Lõikuvad sirged ­ Sirged, millele on üks ühine punkt. Ristuvad sirged ­ Sirged, mi,s lõikuvad 90 kraadise nurga all. Kolmnurga kõrgus ­ Lõik, mis on joonestatud kolmnurga tipust vastasküljeni ja mis on sellega risti. Ruut ­ Nelinurk, mille kõik nurgad on täisnurgad ja küljed on võrdsed. Ringjoone diameeter ­ Lõik, mis läbib kahte punkti ringjoonel ja keskpunkti. Täisnurkne kolmnurk ­ Kolmnurk, mille üks nurk on täisnurk. Algarv ­ Arv, mis jagub ainult 1 ja iseendaga. Kordarv ­ Arv, millel on rohkem kui kaks tegurit. Liigmurd ­ Murd, mille lugeja on nimetajast suurem Lihtmurd ­ Murd, mille nimetaja on lugejast suurem Sirgnurk ­ Nurk, mis on 180 kraadi Paralleelsed sirged ­ Sirged, millel puudub ühine punkt Romb ­ Nelinurk, mille küljed on võrdsed. Naturaalarvu tegur ­ Arv, millega naturaalarv jagub Naturaalarvu kordne ­ Arv, mis jagub naturaalarvuga. Taandamine ­ Lugeja ja nimetaja jagamine ühe ja sama nullist erineva arvuga. Laiendamine ­Lugeja ja n

Matemaatika
thumbnail
4
doc

Defineerimine ja tõestamine

RAUDVARA 3. PEATÜKK DEFINEERIMINE JA TÕESTAMINE 1. HULKADE ÜHISOSA JA ÜHEND *Kui kahes hulgas A ja B on ühiseid elemente, siis öeldakse, et need elemendid moodustavad hulkade A ja B ühisosa. Sümbolites : A B *Ühendi saame siis, kui võtame mõlemast osapooles olevad arvud või tähed. Märk tähendab sidesõna ,,ja" Märk tähendab ,,ühisosa" Märk U tähendab ,,ühend" Märk V tähendab sidesõna ,, või" 2. DEFINEERIMINE * Defineerimine ­ Küsimusele vastamine on mõistele definitsiooni andmine.

Matemaatika
thumbnail
2
docx

Raudvara: defineerimine ja tõestamine

1.hulkade ühisosa ja ühend. Hulka B kuuluvad elemendid: h,i,j,k,l,X,Y. elemendid X ja Y on hulkade A ja B ühisosa: ja märk tähendab sõna ,,ja". Hulka Akuuluvad elemendid: c,d,e,f,g,X,Y. Kulkade A ja B ühendi moodustuvad kõik elemendid, mis kuuluvad nendesse hulkadesse: c,d,e,f,g,h,i,j,k,l,X JA Y. Kuna hulgad A ja B on geomeetrilised kujundid, mis asetsevad tasapinnal, võib nende kohta öelda ka punktikulk 2. Defineerimine. Mõistete seletamist lihtsamate ja tuntumate mõistete abil nimetatakse mõiste defineerimiseks ja mõiste seletust nimetatakse definitsiooniks. Mõisteid mida ei ole vaja defineerida ning nende tõesuse üle ei saa vaielda nimetatakse algmõisteteks. Algmõisted on näiteks: punkt, sirge, tasand, ruum jne. Mõitet defineeritakse mõiste eritunnuse kaudu. Näiteks ruudu definitsiooni: ruut on nelinurk, mille kõik nurgad ja küljed on võrdsed eritunnus on nelinurk. 3

Matemaatika
thumbnail
9
doc

Mõisted, valemid ja joonised

1. harilik murd Harilik murd näitab, mitmeks võrdseks osaks on tervik jaotatud ja mitu sellist osa on võetud. 2. kümnendmurd Kümnendmurd on komaga arv. N: 23,4 ;14,1 ; 3,8 ; 10,5 3.murru taandamine Hariliku murru taandamiseks nimetatakse murru lugeja ja nimetaja jagamist ühe ja sama nullist erineva arvuga. 4.Astmete korrutamine Ühe ja sama arvu astmete korrutamisel astendajad liidetakse. 32 · 31 = 32 + 1 = 33 = 3 · 3 · 3 = 27 5.Astmete astendamine Astme astendamisel astendajad korrutatakse. 6.Astmete jagamine Ühe ja sama arvu astmete jagamisel astendajad lahutatakse. a m : a n = a m-n 7.Negatiivne astendaja Murd, mille lugejaks on arv 1 nimetajaks sama aste positiivse astendajaga. 1 a -n = n , kus a 0 a 8.Arvu standardkuju Kui arv on esitatud kahe teguri korrutisena, millest üks jääb arvude 1 ja 10 vahele ning teine arvu 10 aste, siis öeldakse, et arv on kirjutatud standardkujul. N: 20000 = 2 *10 4 5000000000 = 5 * 10 9 9.Ligikaudse arvu tü

Matemaatika
thumbnail
28
docx

Põhikooli lõpueksam matemaatikast

Leitud lahendit tuleb osata vajadusel kontrollida. Näide 1. Lahendame võrrandi 2(2x - 5) = 20 - x Avame sulud 4x - 10 = 20 - x 4x + x = 20 + 10 5x = 30|: 5 x = 6. Selle võrrandi lahend on x = 6. 11. Kahe tundmatuga lineaarvõrrandi lahendamine (Graafiline, liitmisvõte, asendusvõte) 12. Tekstülesannete lahendamine lineaarvõrrandsüsteemi abil. 13. Defineerimine ja algmõisted. Definitsioon on mõiste lühike ja täpne seletus. Mõisted, mida ei saa seletada nimetatakse algmõisteteks. Algmõisteid ei defineerita, vaid neile antakse nii täpne kirjeldus, kui see võimalik on ja tuuakse selgituseks näiteid 14. Teoreem ja aksioom. Eeldus ja väide. Pöördteoreem. Põhitõdesid, mida ei saa tõestada, nimetatakse aksioomideks. Teoreem on lause, mille õigsust tõestatakse arutluse abil. Teoreem koosned eeldusest ja väitest.

Matemaatika




Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun