Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Kontrolltöö majandusmatemaatika erikursuses (0)

5 VÄGA HEA
Punktid

Esitatud küsimused

  • Mitu ühikut õunu ja mitu ühikut banaane tuleks tarbida?

Lõik failist

Kontrolltöö majandusmatemaatika erikursuses
8.03.2010
  • (10) Firma müüb tooteid hinnaga 50 € . Firma kogukulud avalduvad funktsioonina , kus x on müüdav toodangukogus. Millist kogust peaks firma tootma (ja müüma), et saada maksimaalset kasumit?
    Tulufunktsioon on hinna ja koguse korrutis
    Kasumifunktsioon on
    Statsionaarne punkt (kus tuletis võrdub nulliga) on
    Ekstreemumi piisav tingimus (teist järku tuletise märgi järgi)
    Funktsioonil on statsionaarses punktis
    lokaalne maksimum.
  • (10) Leidke tulufunktsiooni kõik esimest ja teist järku osatuletised ( x ja y on müüdud kogused ). Leidke funktsiooni kõik statsionaarsed punktid.
    Funktsiooni statsionaarses punktis on kõik tema esimest järku osatuletised üheaegselt võrdsed nulliga
    Lahutades ühe võrrandi teisest saame
    , kust järeldub
    . Esimesest võrrandist
    Võrrandil on kolm lahendit
    Funktsioonil on seega kolm statsionaarset punkti
    Kui x ja y on müüdud kogused, siis nad peavad olema mittenegatiivsed
  • (10) Tarbija kasulikkuse funktsioon on , kus x on tarbitud õunte ja y tarbitud banaanide kogus. Kuna ühik õunu maksab 12 krooni ja ühik banaane 20 krooni ning õunte ja banaanide ostmiseks saab kulutada 180 krooni, siis leidke tarbija maksimaalne kasulikkus tingimusel . Mitu ühikut õunu ja mitu ühikut banaane tuleks tarbida?
    Lagrange ’i funktsioon on
    Lagrange’i funktsiooni statsionaarsete punktide leidmine
    Lagrange’i funktsiooni statsionaarsed punktid on
    Kasulikkuse funktsioon võib omada tinglikke ekstreemumeid punktides

  • Kontrolltöö majandusmatemaatika erikursuses #1 Kontrolltöö majandusmatemaatika erikursuses #2 Kontrolltöö majandusmatemaatika erikursuses #3
    Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
    Leheküljed ~ 3 lehte Lehekülgede arv dokumendis
    Aeg2011-04-27 Kuupäev, millal dokument üles laeti
    Allalaadimisi 201 laadimist Kokku alla laetud
    Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
    Autor Robert Murga Õppematerjali autor
    Õppejõuga läbi lahendatud kontrolltöö, ning hinne on kindlasti 5. Majandusmatemaatika ei ole liiga kerge ning selline lahendus on abiks.

    Sarnased õppematerjalid

    thumbnail
    14
    doc

    Matemaatiline analüüs II Teooria

    1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi x1 = 1(t)

    Matemaatiline analüüs 2
    thumbnail
    14
    doc

    Teooria vastused II

    1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi x1 = 1(t)

    Matemaatiline analüüs 2
    thumbnail
    78
    pdf

    Majandusmatemaatika

    MAJANDUSMATEMAATIKA I Ako Sauga Tallinn 2003 SISUKORD 1. MUDELID MAJANDUSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Mudeli mõiste. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Matemaatiliste mudelite liigitus ja elemendid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Matemaatilise mudeli struktuur ja sisu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. FUNKTSIOONID JA NENDE ALGEBRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Arvud ja nende hulgad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Funktsionaalne sõltuvus . . . . . . . . . .

    Raamatupidamise alused
    thumbnail
    7
    docx

    Matemaatiline analüüs 1 teooria

    1. Mitme muutuja funktsiooni definitsioon. Mitme muutuja funktsiooni määramispiirkonna definitsioon (kahe ja kolme muutuja funktsiooni määramispiirkond). Erinevad piirkonnad, piirkonna rajajoon. Tõkestatud piirkond. Kui kahe teineteisest sõltumatu muutuva suuruse x ja y igale väärtuspaarile (x;y) mingisugusest nende muutumispiirkonnast D vastab suuruse z väärtus, siis öeldakse, et z on kahe sõltumatu muutuja x ja y funktsioon, mis on määratud piirkonnas D. Kahe muutuja funktsiooni z märgitakse kujul z=f(x,y). Argumentide x ja y väärtuspaaride (x;y) hulka, mille puhul funktsioon z=f(x,y) on määratud, nim. selle funktsiooni määramispiirkonnaks. Kui x ja y iga väärtuspaari kujutada xy-tasapinna punktina M(x;y), siis funktsiooni määramispiirkonda kujutab teatud punktide hulk tasapinnal. Ka seda punktide hulka nim. funktsiooni määramispiirkonnaks. Funktsiooni määramispiirkonnaks võib olla ka kogu tasapind. Edaspidi tegeleme peamiselt niisuguste piirkondadega, m

    Matemaatiline analüüs 1
    thumbnail
    16
    doc

    Matemaatiline analüüs II, 1. kollokvium

    Contents Contents...................................................................................................................... 1 4.Mitme muutuja funktsiooni piirväärtus. Pidevus........................................................ 5 7) Liitfunktsiooni tuletise ja osatuletise valemid. Uks neist tuletada.............................. 6 8) Defineerida funktsiooni tuletis etteantud suunas. Tuletada suunatuletise valem funktsiooni osatuletiste kaudu. Gradient. Telgedesuunalised tuletised. Suunatuletise tõlgendus..................................................................................................................... 9 10. Olgu mitmemuutuja funktsioon u = f (x) antud ilmutamata kujul võrrandiga F(x,u)= 0. Tuletada valem funktsiooni f osatuletiste jaoks funktsiooni F osatuletiste kaudu. Valem tuletada kas kahe muutuja juhul (x = (x, y) R2) või üldjuhul (x Rn)...........11 12.Tuletada Taylori valem kahe- või mitmemuutuja funktsiooni jaoks. Jääklikme Lagra

    Matemaatiline analüüs 2
    thumbnail
    5
    doc

    Matemaatilise analüüsi 2.kollokviumi

    Mitmemuutuja funktsiooni mõiste. Mitmemuutuja funktsiooni piirväärtuse definitsioon. Pideva mitmemuutuja Kui funktsiooni z=f(x,y) on diferentseeruv kohal (x,y), siis funktsioon f on pidev sellel kohal. funktsiooni definitsioon. Kahemuutuja funktsiooni pidevuse geomeetriline sisu. Funktsioon z=f(x,y) on diferentseeruv kohal (x,y) siis, kui funktsioonil z=f(x,y) on pidevad osatuletised fx ja fy kohal (x,y). Kui hulga Rn igale punktile P(x1, . . . , xn) on vastavusse seatud muutuja u R kindel väärtus, siis öeldakse, et hulgal on Kui funktsiooni f(x,y) osatuletised fx(x,y) ja fy(x,y) on diferentseeruvad kohal (x,y), siis fxy = fyx kohal (x,y). defineeritud n-muutuja (skalaarväärtusega) funktsioon. Suurust df:=fx(x,y)dx + fy(x,y)dy, kus dx:= x ja dy:= y, nimetatakse funktsiooni f(x,y)

    Matemaatiline analüüs 2
    thumbnail
    14
    pdf

    Matemaatiline analüüs 2 - Janno - teooria

    Matemaatiline anal¨ uu¨ s II 1. osa 1) Mitmemõõtmelise ruumi ja selle punkti mõisted. Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. Mitmem~ o~ otmelise ruumi definitsioon. Hulka, mille elementideks on k~oik m reaalarvust koosnevad j¨arjestatud s¨ usteemid (a1 , a2 , . . . , am ), nimetatakse m- m~o~ otmeliseks ruumiks, s¨ usteemi A = (a1 , a2 , . . . , am ) selle ruumi punktiks ja arve a1 , a2 , . . . , am punkti A koordinaatideks. m-m~ o~ otmelist ruumi t¨ahistame umboliga Rm . s¨ Ruumi Rm punkte A = (a1 , a2 , . . . , am ) ja B = (b1 , b2 , . . . , bm ) nimetatakse v~ ordseteks ja kirjutatakse A = B, kui nende koordinaadid on v~ordsed, st a1 = b1 , a2 = b2 , . . . , am = bm . Nullpunktiks ehk koordinaatide alguspunktiks ruumis Rm nimetatakse punkti O = (0, 0, . . . , 0). Kaugus ruumis Rm . Olgu ruumis Rm antud kaks punkti A = (a1 , a2 ,

    Matemaatiline analüüs 2
    thumbnail
    4
    doc

    Matemaatiline analüüs kontrolltöö

    MITME MUUTUJ A FUNKTSIOON. PIIRV ÄÄRTUS. DIFERENTSEERIMINE Mitme muutuja funktsioon Mitme muutuja funktsiooni üldkuju: w = f ( x, y , z ,...) ( x, y, z ,...) D Kahe puntki vaheline kaugus: Puntkide P1 = ( x1 , y1 , z1 ,...) ja P2 = ( x2 , y 2 , z 2 ,...) vaheliseks kauguseks nimetatakse reaalarvu d ( P1 , P2 ) = ( x1 - x2 ) 2 + ( y1 - y2 ) 2 + ( z1 - z 2 ) 2 + ... . Punkti -ümbrus: Olgu mingi arv. Punkti P0 = ( x0 , y0 , z 0 ,...) -ümbruseks U ( P0 ) nim. kõigi selliste punktide P = ( x, y , z ,...) hulka, mille kaugused punktist P0 on väiksemad kui , s.t d ( P, P0 ) = ( x - x0 ) 2 + ( y - y0 ) 2 + ( z - z0 ) 2 + ... < . Hulga sisepunkt: Punkti P0 D nim. hulga D sisepunktiks kui leidub punkti P0 selline -ümbrus, mis kuulub hulka D, s.t U ( P0 ) D . Hulga rajapunkt: Punkti P0 nim. hulga D rajapunktiks, kui igas punkti P

    Matemaatiline analüüs




    Kommentaarid (0)

    Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



    Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun