A B Võlli tugevusarvutus väändele 3 5 Üliõpilane Üliõpilaskood Esitamise kuupäev Õppejõud 2015 Ühtlasele võllile on paigaldatud üks vedav ja neli veetavat rihmaratast. Teada on võlliga käitatavad võimsused P1 ... P4. Arvutada ühtlase võlli läbimõõt (kui võll on täis ja kui võll on õõnes), kui võll valmistatakse terasest E295 (voolepiir tõmbel y = 295 MPa) ja varuteguri nõutav väärtus [S] = 8. Painde ning võimalike pingekontsentraatorite ja väsimuse mõju on arvesse võetud nõutava varuteguri väärtuse valikul. -1 Võlli pöörlemissagedus on 500 min (pööret minutis). Võlli skeem valida vastavalt üliõpilaskoodi viimasele numbrile A. Koormused valida vastavalt üliõpilaskoodi eelviimasele
Variant Töö nimetus A B Võlli arvutus väändele Üliõpilane Üliõpilaskood Esitamise kuupäev Õppejõud Ühtlasele võllile on paigaldatud üks vedav ja neli veetavat rihmaratast. Teada on võlliga käitatavad võimsused P1 ... P4. Arvutada ühtlase võlli läbimõõt (kui võll on täis ja kui võll on õõnes), kui võll valmistatakse terasest E295 (voolepiir tõmbel y = 295 MPa) ja varuteguri nõutav väärtus [S] = 8. Painde ning võimalike pingekontsentraatorite ja väsimuse mõju on arvesse võetud nõutava varuteguri väärtuse valikul. Võlli pöörlemissagedus on 500 min-1 (pööret minutis). Võlli skeem valida vastavalt üliõpilaskoodi viimasele numbrile A. Koormused valida vastavalt üliõpilaskoodi eelviimasele numbrile B. Vajalikud etapid:
31 Tugevusanalüüsi alused 3. DETAILIDE TUGEVUS VÄÄNDEL 3. DETAILIDE TUGEVUS VÄÄNDEL 3.1. Varda arvutusskeem väändel Väände puhul on tihtipeale koormusteks detaili otseselt väänavad pöördemomendid või jõupaarid (Joon. 3.1): · koormust ülekandvad võllid; · keermesliited pingutamisel, jne.; või siis detaili telje ristsihis ekstsentriliselt mõjuvad koormused või nende komponendid: · keerdvedrud; · ruumilised raamid, jne.
7 2 Üliõpilane Üliõpilaskood Esitamise kuupäev Õppejõud Franz Mathias Ints 193527EANB 29.10.2020 Priit Põdra Ühtlasele võllile on paigaldatud üks vedav ja neli veetavat rihmaratast. Teada on võlliga käitatavad võimsused P1 ... P4. Arvutada ühtlase võlli läbimõõt (kui võll on täis ja kui võll on õõnes), kui võll valmistatakse terasest E295 (voolepiir tõmbel y = 295 MPa) ja varuteguri M1 Laagerdus nõutav väärtus [S] = 8. Painde ning M2 Vedav rihmaratas võimalike pingekontsentraatorite ja väsimuse mõju on arvesse võetud
A B Võlli arvutus väändele 8 2 Üliõpilane Üliõpilaskood Esitamise kuupäev Õppejõud Ühtlasele võllile on paigaldatud üks vedav ja neli veetavat rihmaratast. Teada on võlliga käitatavad võimsused P1 ... P4. Arvutada ühtlase võlli läbimõõt (kui võll on täis ja kui võll on õõnes), kui võll valmistatakse terasest E295 (voolepiir tõmbel y = 295 MPa) ja varuteguri nõutav väärtus [S] = 8. Painde ning võimalike pingekontsentraatorite ja väsimuse mõju on arvesse võetud nõutava varuteguri väärtuse valikul. Võlli pöörlemissagedus on 500 min-1 (pööret minutis). Võlli skeem valida vastavalt üliõpilaskoodi viimasele numbrile A. Koormused valida vastavalt üliõpilaskoodi eelviimasele numbrile B. Vajalikud etapid: 1
max suhteline nihkedeformatsioon (nihkenurk) varda pinnal (raadiusel R); l väänatud varda pikkus, [m]; R varda raadius, [m]; varda suhteline väändenurk, [rad/m]. Väänatud ümarvarras Ümar-ristlõike väändenurk ja väändepinge epüür M = max K R R C =0 T l
7 0 Üliõpilane Üliõpilaskood Esitamise kuupäev Õppejõud Ühtlasele võllile on paigaldatud üks vedav ja neli veetavat rihmaratast. Teada on võlliga käitatavad võimsused P1 ... P4. M1 Laagerdus Arvutada ühtlase võlli läbimõõt (kui võll on täis ja kui võll M2 Vedav rihmaratas on õõnes), kui võll valmistatakse terasest E295 (voolepiir tõmbel y = 295 MPa) ja varuteguri nõutav väärtus [S] = 8. Painde ning võimalike pingekontsentraatorite ja väsimuse M3 mõju on arvesse võetud nõutava varuteguri väärtuse
Väiksema rihmaratta efektiivläbimõõt: D1=140 mm Suurema rihmaratta efektiivläbimõõt: D2=2*D1=280 mm Võlli pöörlemissagedus: n=2400 p/min F1 ja f1 on väikse rihmaratta rihmade tõmbejõud ning F2 ja f2 on suure rihmaratta rihmade tõmbejõud, kusjuures F1≠f1 ja F2≠f2. Iga rihmaratta rihmade harud on paralleelsed. 2. Võlli aktiivsed koormused 2.1 Väänav koormus Väänav koormus = ülekantav (kasulik) pöördemoment. P Võlliga ülekantav pöördemoment: M= ω , kus P – võlliga ülekantav võimsus (W) ning ω – võlli pöörlemiskiirus (rad/s). 2 πn 2 π∗24 00 ω= = =251,33 ≈ 251,3 rad /s 60 60 Nüüd saan leida pöördemomendi, kusjuures on teada, et mida väiksem on võlli
83 Tugevusanalüüsi alused 6. DETAILIDE TUGEVUS PAINDEL 6. DETAILIDE TUGEVUS PAINDEL 6.1. Varda arvutusskeem paindel Paindeülesannetes käsitletakse koormustena varrast otseselt või teiste detailide kaudu painutavaid pöördemomente, põikkoormusi või muude koormuste põikkomponente (Joon. 6.1). Varda paindumine = varda telje kõverdumine koormuse toimel Arvutusskeemi koostamine paindel
83 Tugevusanalüüsi alused 6. DETAILIDE TUGEVUS PAINDEL 6. DETAILIDE TUGEVUS PAINDEL 6.1. Varda arvutusskeem paindel Paindeülesannetes käsitletakse koormustena varrast otseselt või teiste detailide kaudu painutavaid pöördemomente, põikkoormusi või muude koormuste põikkomponente (Joon. 6.1). Varda paindumine = varda telje kõverdumine koormuse toimel Arvutusskeemi koostamine paindel
Masinate koostisosadeks on mehhanismid, mis muudavad üht liiki liikumist teiseks. Mehhanism – kehade (lülide) tehissüsteem, mis muundab ühe või mitme keha (vedava lüli) etteantud liikumise süsteemi teiste kehade (veetavate lülide) soovitavaks liikumiseks. Iga mehhanism või seadis koosneb detailidest, mis on ühendatud koostuks. Detail - toode (masinaelement), mis valmistatud ühest materjalist koosteoperatsioone kasutamata (kruvi, võll, valatud korpus jne.). Element - kindlat funktsiooni täitev masina elementaarosa (näit. veerelaager, aga ka enamus detaile). Koost ehk sõlm - tootvas tehases elementidest koostatud toode (koostamisüksus). Liiteid kasutatakse detailide omavaheliseks ühendamiseks. Masinates esinevad liited jagatakse kahte põhigruppi- liikuvad ja liikumatud liited. Liikuvad liited (juhikud) tagavad detailide suhtelise pöörlemis-, translatoorse või liitliikumise. Liikumatuid liiteid
8.1. Detaili tugevus vildakpaindel 8.1.1. Vildakpainde tugevusanalüüs Vildakpaine = sama ristlõike mõlema peatelje suhtes mõjub paindemoment (My ja Mz) (võivad lisanduda ka põikjõud Qy ja Qz) Sirge ja ühtlane vardakujuline detail on "vildakpaindes" (Joon. 8.1): · põik-koormus F ei mõju kesk-peatelgede sihis, kuid on suunatud pinnakeskmesse (või koormav pöördemoment M ei mõju kumbagi kesk-peatelje suhtes, kuid tema telg läbib pinnakeset -- kui pinnakeskme läbimise nõue ei ole täidetud, tekib vardas lisaks veel väändemoment, kui F ei ole risti teljega, tekib lisaks veel pike); · see on ruumiline paindeülesanne, mis taandatakse tasapinnalisteks paindeülesanneteks peatasandites (ohtliku ristlõike kesk-peateljestik peab olema
TTÜ ehituskonstruktsioonide õppetool Raudbetoonkonstruktsioonide üldkursus I Vello Otsmaa Johannes Pello 2007.a Raudbetoonkonstruktsioonide üldkursus 1 SISSEJUHATUS 1 Raudbetooni olemus Raudbetoon on liitmaterjal (komposiitmaterjal), kus koos töötavad kaks väga erinevate oma- dustega materjali: teras ja betoon. Neist betoon on suhteliselt odav kohalik materjal, mis töö- tab hästi survel, kuid üsna halvasti tõmbel (betooni tõmbetugevus on 10-15 korda väiksem survetugevusest). Teras seevastu töötab ühteviisi hästi nii survel kui ka tõmbel, kuid tema hind on küllalt kõrge. Osutub, et survejõu vastuvõtmine betooniga on kordi odavam kui tera- sega, tõmbejõu vastuvõtmine on kordi odavam aga terasega. Siit tulenebki raudbetooni ma- janduslik olemus: võtta ühes ja samas konstruktsioonis esinevad survesisejõud v
V.Jaaniso Pinnasemehaanika 1. SISSEJUHATUS Kõik ehitised on ühel või teisel viisil seotud pinnasega. Need kas toetuvad pinnasele vundamendi kaudu, toetavad pinnast (tugiseinad), on rajatud pinnasesse (süvendid, tunnelid) või ehitatud pinnasest (tammid, paisud) (joonis 1.1). a) b) c) d) J o o n is 1 .1 P in n a s e g a s e o tu d e h i tis e d v õ i n e n d e o s a d .a ) p i n n a s e le t o e t u v a d ( m a d a l - j a v a iv u n d a m e n t) b ) p i n n a s t t o e t a v a d ( t u g is e in a d ) c ) p in n a s e s s e r a j a tu d ( tu n n e li d , s ü v e n d i d d ) p in n a s e s t r a j a tu d ( ta m m i d , p a is u d ) Ehitiste koormuste ja muude mõjurite tõttu pinnase pingeseisund muutub, pinnas deformeerub ja võib puruneda nagu kõik teisedki materjalid. See põhjustab
TALLINNA TEHNIKAKÕRGKOOL Arhitektuuri ja keskkonnatehnika teaduskond Tehnoökoloogia õppetool Villu Vares ENERGIA ja KESKKOND Konspekt 1 Villu Vares Energia ja keskkond Tallinn 2012 2(113) Villu Vares Energia ja keskkond SISUKORD SISUKORD.............................................................................................................................................................3 SISSEJUHATUS....................................................................................................................................................5 1 ENERGIAKASUTUS JA MAAILMAS JA EESTIS........................................................................................6 1.1 ENERGIAKASUTUS MAAILMAS JA EESTIS.
F jõud viga f sagedus kasutegur I vool elektriline nurk i ülekandesuhe ülereguleerimine J inertsmoment hõõre k tegur L induktiivsus haru L1,2,3 kolmefaasiline ahel lekketegur M pöördemoment magnetvoog m faaside arv, mass temperatuur n pöörlemissagedus nurk P võimsus aheldusvoog p pooluste arv nurkkiirus Q laeng 6 Lühendid A amper M mega = 106 (eesliide) ac vahelduvvool MMF magnetomotoorjõud
Eesti oludes, kus pinnasevesi on sageli maapinna lähedal, on see probleem suurem peenteristel ja tolmliivadel. Kapillaarjõud on põhjuseks, miks niiske liiv ja hulgast, ka vedeliku viskoossusest. Filtratsioonimooduli suurus sõltub palju ka väga oluline. halvasti tiheneb võrreldes kuivaga. Kapillaarjõududest tingitud teradevahelised pinnaseosakeste mõõtmetest, pinnase poorsus ja vee temp. V ei ole võrdne Sissejuhatus - Geotehnika - ehitustehnika haru, mis tegeleb pinnasega sidemed kaovad niipea kui pinnas küllastub veega (sademed, pinnasevee tegeliku vee liikumise kiirusega pinnases. Kuna tegelik voolamine toimub läbi seotud ehitiste või nende üksikosade projekteerimise ja ehitamisega, see taseme tõus). Pinnaseosakesed võivad olla liidetud looduslike tsementidega, pooride, siis tegelik voolukiirus on: vp=v(1+e)/e. Pinnase vee
Kui põikjõud talas puudub, on paindemoment konstantne. Epüüride koostamisel kanname sisejõu (Q, M) positiivsed väärtused y-teljest alla poole Ülesanne: tala Q ja M epüürimine lihtsa koormusskeemi korral. Põikjõud lõikes avaldub kõigi ühel pool lõiget olevate välisjõudude projektsioonide summana tala ristlõike pinnale. Paindemoment lõikes avaldub ühel pool lõiget olevate välisjõudude momentide summana tala lõike raskuskeskme suhtes. Vasakult poolt hakates epüüri koostama. 6 Q v ( x = a ) = Ra Q p ( x = a ) = R a - P1 Q v ( x = a + b) = R a - P1 Q p ( x = a + b) = R a - P1 - P2 Q ( x = L ) = R a - P1 - P2 + R b = 0 Liigendis paindemoment =0. M(x=0)=0; M(x=a)= Ra * a ; M(x=a+b)= Ra (a + b) - P1 * b Kontroll: M ( x =a +b ) = Rb * c = Ra (a + b) - P1 * b paremalt 1.7. Normaalpinge ja nihkepinge põikpaindel. Tala tugevusarvutused.