Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Kategooria dif.võrrandid - 10 õppematerjali

Matemaatika >> Dif.võrrandid
thumbnail
0
zip

Dif- kontrolltööd

docstxt/12336942976461.txt...

Dif.võrrandid
360 allalaadimist
thumbnail
1
doc

DV võrrandid 1 kontrolltöö Spikker

­ Olgu F-n F(x,y,z) määratud xyz ruumi piirkonnas G. Vahemikus (a,b) määratud funktsioon y=y(x) nim. Võrrandi F(x,y,y`)=0 lahendiks, selles vahemikus, kui ta on pidevalt dif-uv ning (x,y(x),y`(x)) kuulub hulka G ja F(x,y(x),Y`(x))=0 x (a , b) Cauchy ülesanne 1-järku võrrandi jaoks seisneb sellise lahendi y(x) leidmises, mis rahuldab algtingimust y( x0 ) = y0 Peano teoreem ­ Olgu f(x,y) pidev kahemuutuja f-n piirkonnas D. Siis läbi iga punkti (x0,y0) D kulgev vähemalt 1 DV integraalkõver. On tuntud ka Dv lahendi olemasomu teoreemina. Cauchy teoreem - Olgu f(x,y) pidev piirkonnas D ning olgu tal selles piirkonnas f ( x, y ) olemas pidev osatuletis y . Siis läbib igat punkti (x0,y0) kuulub hulka D kulgeb parajasti üks DV integraalkõver. On tuntud DV lahendi ühesuse teoreemina. Kasvamine ja kahanemine ­ tüüpiline võrrand kujul dx/dt=kx, kus otsitav on x=x(t), tema tuletis dx/dt, t sõltumat...

Dif.võrrandid
219 allalaadimist
thumbnail
67
pdf

Konspekt

r D t} TL0F$.,x. AALDA',JDM0(]T0)ATS6A DV o v r ( * ) d x "s ( X ) = O ( . ) t-.,-^ u(") rb st) * o,&-d {r-.-r"l.,tv'cor^- cl- . _Nt Jrct++ .i q=o JSSf a!-hl v-t As&.rpsl,$.Bt (.rfn,t")a* -!ffln,= J6q-+^s I Nodor^rr r e ("r) o,w l,) l.,o-t.,q4d^L-" = (r) ro-tq^'d a o.- t(') M x )d r + l . l ( 1 ( * ) ) d f u = _ 9=++ t "O t) ! x g'(x&...

Dif.võrrandid
234 allalaadimist
thumbnail
3
doc

Diferentsiaalvõrrandite 1 Kollokviumi spikker

Diferentsiaalvõrrandi mõiste ­ DV nim võrrandit, mis seob sõltumatut muutujat x, otsitavat funktsiooni y=f(x) ja selle tuletisi y', y'',...yn HDV üldkuju: F(x,y,y')=0 ; x-sõltumatu muutuja, y=y(x) otsitav f ja y'=dy/dx otsitava f-i tuletis. Esimest järku HDV normaalkuju: y'=f(x.y) (edasi sama mis üldkujul). Esimest järku HDV sümmeetriline kuju: M(x,y)dx + N(x,y)dy=0. Cauchy ülesanne: {y'=f(x,y) {y(Xo)=Yo * esimest järku HDV jaoks f(x,y) on pidev piirkonnas D=> eksisteerib (Xo; Yo). Kui y=y(x) on teada, siis y'(x) = f(x, y(x)) iga xD korral ; y'(Xo)=f(Xo,y(Xo)) ; y'(Xo)=f(Xo,Yo) ; tan=y'(Xo)=f(Xo;Yo) 2.I järku DV lahend: DV lahend on funktsioon, mille asetamisel võrrandisse same samasuse sõltumatute muutujate suhtes. *Esimest järku DV üldlahendiks nim f-i: y(Xo)=Yo. Lahendi olemasolu ja ühesus: Cauchy teoreem: Olgu f(x;y) pidev piirkonnas D ning olgu tal selles piirkonnas olemas pidev osatuletis f(x,y)/y. Siis läbi iga punkti (Xo;Yo)D...

Dif.võrrandid
393 allalaadimist
thumbnail
14
docx

Diferentsiaalvõrrandite eksami konspekt

Diferentsiaalvõrrandi üld- ja erilahend. Väärtus ja raja ülesanne Def 1.1 Võrrandit, milles osalevad sõltumatu muutuja, tundmatu funktsioon ja selle tuletised nim diferentsiaalvõrrandiks. (1.1) F(x, y(), y'(), ...)=0 Kui otsitav funktsioon y sõltub ainult ühest muutujast, siis seda nim harilikuks diferentsiaalvõrrandiks. Kui otsitav funktsioon sõltub mitmest muutujast, siis on tegemist osatuletistega diferentsiaalvõrranditega. Kõrgema järguga tuletis dif.võr määrab ära selle võrrandi järgu. Esimest järku dif võrrand on (1.2) Def 1.2 N-järku dif.võr (1.1) üldlahendiks nim n-parameetrilist lähtuvat funktsioonide parve või peret, mis muudab võrrandi samasuseks sõltumata parameetrite väärtustest. (1.3) Dif.võr lahendamist nim selle võrrandi integreerimiseks ja selle lahendid integraaliks, lahendi graafikut nim integraaljooneks. Kui n-järku võrrandile lisada n-algtingimust: (1.4) Siis saame algväärtuseks ülesande (1.1). esimest järku...

Dif.võrrandid
416 allalaadimist
thumbnail
3
doc

SISSEJUHATUS DIGITAALTEHNIKASSE

Tallinna Tehnikaülikool Elektriajamite ja jõuelektroonika instituut SISSEJUHATUS DIGITAALTEHNIKASSE Loendur Juhendaja: Üliõpilane: Tallinn AAR0110 ­ Sissejuhatus digitaaltehnikasse 2012 1. Ülesanne Koostada ette antud jadaloenduri loogikaskeem koos 7-segmendilise indikaatoriga ning testida selle tööd Multisim tarkvaraga. Loendur peab lugema 10nd süsteemi arvuni 11 ning kuvama numbrid indikaatoril 16nd süsteemis. Reset peab toimuma arvul 12. 2. Lahendus Joonis 2. Jadaloenduri skeem. Skeem on koostatud programmiga Multisim 11. 3. Tööpõhimõte Lüliti U5 annab impulsse skeemi vastavalt kasutaja poolsele sisendile. Impulsid lähevad trigeritesse. Lülitist lähevad impulsid U1 trigeri Clock sisendile, mis määr...

Dif.võrrandid
64 allalaadimist
thumbnail
17
pdf

Diferentsiaalvõrrandite vihik

...

Dif.võrrandid
172 allalaadimist
thumbnail
8
docx

Dif 2. kollokvium

, y ),kus x-sõltumatu muutuja,y=y(x) otsitav funkt ja y’.. ' n x , y , y , .. y on otsitava fun tuletised.Lahendiks y=y(x)>y=y(x,C1,C2,..,Cn). Normkuju: y =f ¿ , (n ) y (n−1) ¿(1) . Algtingimused y( x 0 ¿= y 0 ; y( x 0 ¿= y 0 ' ;...

Dif.võrrandid
88 allalaadimist
thumbnail
14
odt

DV II KT vastused

Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. V: Kõrgemat järku harilikud diferentsiaalvõrrandid: Üldkuju: F(x, y, y', y'', ..., y(n)) = 0, kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y(n-1)) (1) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. {y(x0) = y0 {y'(x0) = y0(1) {... (2) (n-1) (n-1)...

Dif.võrrandid
73 allalaadimist
thumbnail
1
docx

Diferntsiaalvõrrandidte teooria nr. 2

Kõrgemat järku harilik DV. Lahendi olemasolu, ühesuse tingimused, üldlahend, erilahend. Kõrgemat jär harilikud dvid: Üldkuju: F(x, y, y', y'', ..., y (n)) = 0 (1), kus x on sõltumatu muutuja, y = y(x) on otsitav funktsioon ja y', ..., y (n) on otsitava funktsiooni tuletised. Normaalkuju: y(n) = f(x, y, y', ..., y (n-1))(2) (( F(x,y, y')=0 (1) ja y' =f(x;y) (2))) Eksaktne lahend: x0, y0, y01, ..., y0n-1, Algtingimused: nii mitu konstanti kui suur on DV järku konstant. ***{y(x0) = y0 {y'(x0) = y0(1) {... {y(n-1)(x0) = y0(n-1) ***Lahendi olemasolu : kõrgemat järku DV lahend ­ funktsioon, mille asendamisel võrrandisse saame samasuse F(x, y(x), y'(x), y''(x), ..., y(n)) 0 x. Peano teoreem e. olemasolu teoreem: olgu funktsioon f pidev muutujate x, y, y', y'', ..., y(n-1) piirkonnas D, siis iga punkt (x0, y0, y0(n-1) ) D korral on Cauchy ülesanne {(1);(2)} vähemalt 1 lahend. Ca...

Dif.võrrandid
6 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun