Tuletiste tabel 1. (xα ) = αxα−1 c =0 c-konstant, x =1 α = 1, √ 1 ( x) = √ α = 12 , 2 x 1 1 =− α = −1. x x2 2. (sin x) = cos x. 3. (cos x) = − sin x. 1 4. (tan x) = . cos2 x 1 5. (cot x) = − . sin2 x 6. (ax ) = ax ln a a > 0, a = 1. 7. (ex ) = ex . 1 8. (loga x) = a > 0, a = 1. x ln a 1 9. (ln x) = . x 1 10. (arcsin x) = √ 1 − x2 1 11. (arccos x) = − √ 1 − x2 1 12. (arctan x) = 1 + x2
DIFERENTSEERIMISE ja INTEGREERIMISE VALEMID y dy Tuletis y = lim = = f ( x) x 0 x dx Integraal f ( x)dx = F ( x) +c , kus d [ F ( x) + c ] = f ( x)dx Diferentseerimise reeglid Diferentseerimise reeglid Integreerimise reeglid Lihtfunktsioon y=(x) Liitfunktsioon y=(u), u=(x) (u +v)'=u'+v', kus u,v=(x) (ux +vx)'=ux'+ vx' (u + v)dx = u dx + v dx
DIFERENTSEERIMISE ja INTEGREERIMISE VALEMID y dy Tuletis y = lim = = f ( x) x 0 x dx Integraal f ( x)dx = F ( x) +c , kus d [ F ( x) + c ] = f ( x)dx Diferentseerimise reeglid Diferentseerimise reeglid Integreerimise reeglid Lihtfunktsioon y=(x) Liitfunktsioon y=(u), u=(x) (u +v)'=u'+v', kus u,v=(x) (ux +vx)'=ux'+ vx' (u + v)dx = u dx + v dx
Määramatused Tähtsamad tuletised y = f ( u ) u = g( x) y = f u g x - 0 0 0 0 1 0 c = 0 0 x = 1 [ f ( x ) ] = f ( x ) ( ln f ( x ) ) Piirväärtus ( x ) = ax a n -1 [ f ( x ) ( ) ] = f ( x ) ( ) [ g ( x ) ln f ( x) ]
11. Funktsiooni pidevuse m~oiste. Tarvilik ja piisav tingimus funktsiooni pidevuseks 12. Elementaarfunktsioonide pidevus 13. L~oigul pidevate funktsioonide omadused 14. Funktsiooni katkevuspunktid 15. Funktsiooni tuletise m~oiste, selle geomeetriline ja mehhaaniline t~olgendus 1 16. Pidevus ja diferentseeruvus 17. M~onede p~ohiliste elementaarfunktsioonide tuletised 18. Diferentseerimisreeglid 19. P¨o¨ordfunktsiooni tuletis 20. Liitfunktsiooni tuletis 21. Logaritmiline diferentseerimine 22. Ilmutamata funktsiooni tuletis 23. Parameetrilisel kujul esitatud funktsiooni tuletis 24. Funktsiooni diferentsiaal 25. K~orgemat j¨arku tuletised 26. Joone puutuja ja normaali v~orrandid 27. Rolle'i teoreem 28. Cauchy teoreem 29. Lagrange'i teoreem 30. L'Hospitali reegel 31. L'Hospitali reegel teistel m¨aa¨ramatuse juhtudel 32. Taylori valem 33
Funktsiooni tuletis (jätk) - + sin - sin = 2 sin cos 2 2 Funktsiooni y = sin x tuletis Teoreem: Funktsiooni y = sin x tuletis on cos x. x + x - x x + x + x Tõestus: y = sin( x + x) - sin x = 2 sin cos 2 2 x x = 2 sin cos x + 2 2 x x x 2 sin cos x + sin y 2 2 2 cos x + x
Funktsioon Funktsiooni definitsioon Olgu X mingi reaalarvude hulk. Kui muutuja x igale väärtusele hulgas X vastab muutuja y üks kindel väärtus, siis öeldakse, et y on muutuja x funktsioon. Asjaolu, et üks muutuja on teise funktsioon, tähistatakse y = f (x), y = y (x), y = (x) jne. Muutujat x nimetatakse seejuures sõltumatuks muutujaks e. argumendiks. Muutujat y, mille väärtused leitakse vastavalt sõltumatu muutuja väärtustele, nimetatakse sõltuvaks muutujaks. Argumendi x väärtuste hulka, mille puhul saab määrata funktsiooni y väärtusi vastavalt eeskirjale f (x), nimetatakse funktsiooni määramispiirkonnaks. Määramispiirkonnale vastavat funktsiooni väärtuste hulka nim. funktsiooni muutumispiirkonnaks. 2 Funktsiooni esitusviise Funktsiooni esitus tabelina x x1 x2 ....... xn y y1 y2 ...... yn Funktsiooni graafiline esitusviis y
log b a log b a Paarisfunktsioon: f ( -x) = f ( x) , x X Paaritu funktsioon: f (-x) = - f ( x) , x X Perioodiline funktsioon: f ( x + T ) = f ( x) , x X b 4ac - b 2 Parabooli y = ax 2 + bx + c haripunkt P - ; 2a 4a Trigonomeetria põhi valemid: sin sin sin 2 + cos 2 = 1 = tan cot = cos cos 1 1
Hea .
Kõik kommentaarid