Kui suur on tõenäosus, et kontsert toimub? Lahendus. Vastavalt ülesande tingimustele on vaja leida sündmuse tõenäosus. Kuna sündmused A ja B ei välista teineteist, siis kasutame valemit (2) /või läheme üle vastandsündmusele/: p ( A B ) = p( A) + p( B ) - p( A B) = 0,8 + 0,9 - 0,8 0,9 = 1,7 - 0,72 = 0,98 Kui lahendada vastandsündmuse kaudu (kontsert ei toimu), saaksime tulemuseks p ( A B) = 1 - p ( A B ) = 1 - 0,2 0,1 = 0,98 7. Peeter lahendab tõenäosusteooria ülesande tõenäosusega 0,3. Ants on veidi parem lahendaja, tema puhul on vastav tõenäosus 0,6. Lausa "kuldlahendaja" on aga Piret, kelle puhul on sama ülesande lahendamise tõenäosus 0,95. Kui eeldada, et õpilased istuvad kontrolltöö ajal hajutatult ning neil puudub võimalus üksteisega lahenduskäiku kooskõlastada, kui suur on siis tõenäosus, et a) kõik kolm õpilast lahendavad antud ülesande b) mitte ükski neist ülesannet ei lahenda c) ülesande lahendab vähemalt üks neist
Tõenäosusteooria ja matemaatiline statistika Ajaloost Tekkinud 17. saj. seoses hasartmängudes (kaardid, täringud) tekkinud probleemidega kuidas jaotada panuseid, kui mäng juhtuks mingil põhjusel pooleli jääma, milliste kaartide korral on mõtet edasi mängida jms Tuntumad teadlased, kellel on suuri teeneid tõenäosusteooria arendamisel: De Fermat, Pascal, Huygens, Bernoulli, Gauss, Laplace, Kolmogorov jt Tänapäeval on tõenäosusteooria ja matemaatiline statistika paljude ülikoolide mitmete erialade õppekavas. Põhimõisted katse põhimõtteliselt lõpmatult palju kordi teostatav toiming, mille korraldamise protseduur on fikseeritud; katse käigus jälgitakse, kas teatud sündmused toimuvad või mitte sündmus katse tulemus või erinevate tulemuste ühendamisel saadav tulemus Näit. Katseks on täringu viskamine, sündmusteks võivad olla järgmised: - saadakse 4 silma - saadakse 5 silma
kunagi ei toimu. Võimatuteks sündmusteks on näiteks täringul üheaegselt 6 ja 4 silma heitmine; vesi ei saa tahkes olekus olla, kui temperatuur on +10 kraadi. Kindla sündmuse vastandsündmus on võimatu sündmus. Juhuslik sündmus sündmus, mis antud vaatluse või katse korral võib toimuda, aga võib ka mitte toimuda. Juhuslikeks sündmusteks on 6 silma tulek täringu viskel, loteriiga võidu saamine, tuttava kohtamine tänaval. Juhuslik katse on tõenäosusteooria jaoks kirjeldatud, kui on loetletud tema võimalike tulemuste hulk. Seda hulka nimetatakse lühidalt elementaarsündmuste hulgaks ja tähistatakse sümboliga S. Näide 1. Katse võimalikuks tulemuseks täringu viskel loetakse teatava tahu peale langemist. Sellel katsel on 6 võimalikku tulemust ja vastav elementaarsündmuste hulk on: S = {1, 2, 3, 4, 5, 6 }. Katsetulemuste hulk moodustab elementaarsündmuste ruumi, tähistatakse . Eelnevas näites S =.
TÕENÄOSUSTEOORIA 1 Juhuslik sündmus 1.1 Juhusliku sündmuse mõiste. Mingi katse või vaatluse tulemusena toimub teatud sündmus. Sündmusi tähistatakse tähtedega A, B, C, … . Iga sündmust vaadeldakse teatud tingimuste kompleksi olemasolu korral. Näiteks lumi sulab 0 kraadi juures normaalrõhul. Sündmused võib jaotada kolme liiki: 1. Kindel sündmus , mis toimub alati antud tingimuste juures ( päike tõuseb idast ja loojub läände). 2. Võimatu sündmus , mis ei saa kunagi antud tingimuste kompleksi korral toimuda (rong sõidab maanteel, päike loojub itta). 3. Juhuslik sündmus, mis võib toimuda või mitte toimuda (paarisnumbrisaamine täringuviskel, mündi viskamisel saada kull või kiri). 1.2 Sündmuste vahelised seosed. Sündmuste vahelised seosed on nagu vastavate hulkade vahelised seosed. 1. AB, sündmus B järeldub sündmusest A ehk sündmus A sisaldub sündmuses B. Näiteks: A = (2) ja B = (2;4;6), siis
Klassikaline või geomeetriline tõenäosus μ(ΩA)=(2,25-2*0,5)=1,25 k V =k! Ck P(A)=1,25/2,25=5/9 Variatsioonid: n n Liitmislause, korrutamislause, tinglik 1) Karbis on 10 pooljuhti, neist 7 hiljuti testitut. Karbist tõenäosus, sõltumatud sündmused, võetakse huupi 5 pooljuhti. Leidke tõenäosus, et sõltumatute katsete seeria nende hulgas on täpselt 3 hiljuti testitut. Liitmislause: P(A1+A2)=P(A1)+P(A2)-P(A1A2) Lahendus: A=“3 pooljuhti 5-st on testitud“ P((A1+A2)+A3)= P(A1)+P(A2)+P(A3)-P(A1A2)- 5 P(A1A3)-P(A2A3)+P(A1A2A3) │Ω│=n= C10 =12 Tinglik tõenäosus: DEF. P(A/B)=P(AB)/P(B) ; 3 2
MATEMAATIKA ARVESTUS 1. Kombinatoorika põhiprintsiibid-liitmis ja korrutamisprintsiip. Liitmisprintsiip- ,,kas üks või teine" . kui mingit objekti A on võimalik valida n erineval viisil ja objekti B m erineval viisil ning valida tuleb kas objekt A või objekt B, siis kõigi erinevate võimalike valikute arv on n + m. Korrutamisprintsiip- ,, nii üks kui ka teine" kui mingit objekti A on võimalik valida n erineval viisil ja objekti B m erineval viisil ning valida tuleb nii objekt A kui ka objekt B, siis kõigi võimalike erinevate valikute arv on n · m. 2. Permutatsiooni permutatsioonideks n erinevast elemendist nimetatakse nende elementide kõikvõimalikke erinevaid järjestusi. Pn = n! 3. Variatsioonid Variatsioonideks n elemendist k-kaupa (k n) nimetatakse nelemendilise hulga kõigi k-elemendiliste osahulkade elementide erinevaid järjestusi. Vnk = n!/(n-k)! k 0! = 1 Variatsioonides on oluline liikmete järjestus erinevalt kombinatsioonidest. Variatsioone on 2x ro
ül.1 Münti visatak se 6 k orda. Leida tõenäosus, et vapp tuleb peale vähem, k ui k ak s k orda. võimalused: 0 ja 1 kord n= 6 p= 0,5 P(A)=P6(0) + P6(1) kasutame Bernoulli valemit: Pm,n=n! / m! *(n-m)! * p astmes m * q astmes n-m q=1-0-5= 0,5 P6(0)=6! / 0! * (6-0)! * 0,5 astmes 0 * 0,5 astmes 6= 0,0156 P6(1)=6! / 1! * (6-1)! * 0,5 astmes 1 * 0,5 astmes 5= 0,0938 P(A)= 0,1094 ül.2 Kak s k orvpallurit visk avad 3 k orda järjest k orvile. Tõenäosused tabada igal visk el on vastavalt 0,6 ja 0,7. Leida tõenäosus, et mõlemal on võrdne arv tabamusi. n= 3 m- tabamuste arv BINOMDIST I korvpalluri iga viske p= 0,6 II korvpalluri iga viske p= 0,7 p1=
Tõenäosusteooria. 1. Õpetaja kutsub kuuest nõrgast õpilasest kolm konsultatsiooni. Õpilane, kes pidi kutse edastama, unustas nimed ja saatis neist huupi kolm konsultatsiooni. Kui tõenäone on, et juhtusid kutsutud? 2. Õpilane oskab 25-st eksamiküsimusest vastata kahekümnele. Kui suur on tõenäosus, et pileti 3 küsimust on kõik nende kahekümne seast? 3. Kui suur on tõenäosus, et täringu viskamisel tuleb a. 5 silma, b. paaritu arv silmi, c. kolmega jaguv silmade arv. 4. Urnis on 3 punast ja 9 sinist ühesugust kuuli. Kui suur on tõenäosus, et kuuli juhuslikul võtmisel urnist saadakse d. sinine kuul, e. punane kuul, f. roheline kuul, g. kas punane või sinine kuul. 5. Lapse käes on neli kaarti, millest igaühele on kirjutatud üks number 1, 2, 3, 4. Laps laob need juhuslikus järjrkorras üksteise kõrvale. Kui suur on tõenäosus, et nii tekib a. arv 213
Kõik kommentaarid