Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Termodünaamika 1 - sarnased materjalid

steem, termod, ainekoguse, kont, ltuvus, imalik, nullile, rtus, steemis, kaootilise, sivad, naamilised, gaasides, ajavahemik, temperatuuridel, nullpunktiks, selliseks, seisundit, parameetrid, ljaspool
thumbnail
3
docx

TERMODÜNAAMIKA 1-3

TERMODÜNAAMIKA Võrdlus mehaanikaga · Keha-termodünaamiline keha · Kogu keha käitumine ühtemoodi ­ punktmass, keha oleku muutused (jää-vesi-aur) · Erinevused ­ mehaanikas vaatleme asukoha muutust ja seda põhjustavaid tegureid; termodünaamikas olekumuutuseid ja seda põhjustavaid tegureid · TDs ruumiline asukoht pigem sekundaarne, uuritakse olekumuutuseid · Oleku kirjeldamiseks võetud kasutusele 3 parameetrit ­ rõhk, ruumala, temperatuur Mida kirjeldavad parameetrid · Rõhk ­ pindala kohta tulev jõud, tekib molekulide põrgetel keha ümbritseva keskkonnaga · Temperatuur ­ keha siseenergiat iseloomustav suurus · Ruumala ­ aine hulka iseloomustav suurus Esimene süsteem Termodünaamilisi seoseid hakatakse kirjeldama ideaalse gaasi abil. Ideaalne gaas ­ 1) molekulidevahelised jõud puuduvad 2) molekulid on punktmassid Sellises süsteemis kirjeldatakse termodünaamiliste parameetrite vahelised seosed ja uuritakse miks

Füüsika
25 allalaadimist
thumbnail
4
doc

Termodünaamika tunnikonspekt

>0 selgu, et nüüd hõbeda molekulid sadestuvad punkti B ümbruses See tõestab, et kõik hõbeda molekulid ei liigu ühe ja sama kiirusega http://www.abiks.pri.ee AC=r; AB=l; AO=R molekul kiirusega v läbib kauguse t=r/v, selle ajaga on punkt A liikunud joonkiirusega R ja läbinud kaare pikkuse l >> t=l/R >> r/v= l/R >> v=Rr/l ÜLEKANDENÄHTUSED GAASIDES Difusiooniks nim molekulide kaootilise liikumise tõttu toimuvat ainete segunemist (gaasides, vedelikes, tahkistes) N: lõhnaõli lõhn levib ühest toanurgast teise Soojusjuhtivuseks nim soojusülekannet makroskoopiliselt paigalseisvas kohas ///soojuse levik keskkonnas kõrgema temperatuuriga piirkonnast madalama temp piirkonda (gaasides, vedelikes, tahkistes) N: defektse termospudelisse sooja vett valades tunneme mõne aja pärast termose väliskesta soojenemist.

Füüsika
138 allalaadimist
thumbnail
2
doc

Essee - Termodünaamika 2. printsiip

Termodünaamika 2. printsiip Termodünaamika teise printsiibi põhimõte seisneb looduslike protsesside kindlas suunas. Tõestada termodünaamika printsiipe ei saa, aga need põhinevad igapäevastest kogemustest tehtud järeldustel. Sisu seisneb looduslike protsesside kindlas suunas. Tihtipeale ei pane mõtle me nendele protsessidele sellise nurga alt, kuna tegu on väga loogilise asjade kulgemisega. Erinevad teadlased on seda printsiipi erinevalt ka sõnastanud ja selle kohta saab tuua mitmed näiteid. Rudolf Clausiuse sõnastus kõlab nii: soojus ei saa iseenesest üle minna külmemalt kehalt kuumemale. See sõnastus sobib soojuslikele protsessidele. Näiteks kui vanaisa kütab ahju soojaks, siis saavad ahjukividest antud süsteemis kuumemad kehad ja ülejäänud toas olevatest asjadest külmemad. Samas on toal samuti mingi soojus, hoolimata sellest, et see on madalam kui ahju soojus. Seetõttu tuleb soojust jälgida absoluutse temperatuurina ehk Ke

Füüsika
8 allalaadimist
thumbnail
5
doc

Termodünaamika alused ( kokkuvõte)

Termodünaamika alused Siseenergiaks nim. keha molekulide kineetilise ja potentsiaalse energia summat. Siseenergia levimist ühelt kehalt teisele nim. soojusülekandeks. Soojusülekandes levib siseenergia soojemalt kehalt või kehaosalt külmemale. Seejuures soojema keha siseenergia väheneb ja külmema keha siseenergia suureneb. Soojusülekanne kestab seni, kuni kehade temp. saavad võrdseks. Soojusülekande liigutus: ¤Soojusjuhtivuseks nim. soojusülekannet, kus energia levib ühelt aineosakeselt teisele molekulidevaheliste põrgete tõttu, ilma et aine ümber paikneks. ¤Konvektsiooniks nim. soojusülekannet, kus energia levib gaasi-või vedeliku liikumise tõttu. ¤Soojuskiirguseks nim. soojusülekannet, kus energia levib elektromagnetlainete kiirgamise ja neelamise tõttu. Kui kontaktis olevate kehade makroparameetrid ei muutu, nim. kehi soojuslikus ehk termodünaamilises tasakaalus olevaiks. Soojusülekandel üleantavat energiahulka iseloomustab soojushulk Q= c

Füüsika
39 allalaadimist
thumbnail
18
docx

Termodünaamika

KOOL 12 s klass Nimi TERMODÜNAAMIKA Referaat õppeaines füüsika Juhendaja: Koht ja aasta SISUKORD SISSEJUHATUS........................................................................................................ 3 1.TERMODÜNAAMIKA ESIMENE SEADUS................................................................4 2.TERMODÜNAAMIKA TEINE SEADUS.....................................................................6 3.TERMODÜNAAMIKA KOLMAS SEADUS.................................................................7 4.TÖÖ JA ENERGIA.................................................................................................. 8 KOKKUVÕTE........................................................................................................... 9 2 SISSEJUHATUS Ter

Termodünaamika
6 allalaadimist
thumbnail
57
rtf

TEHNILINE TERMODÜNAAMIKA

TEHNILINE TERMODÜNAAMIKA SISSEJUHATUS Termodünaamika on teadus energiate vastastikustest seostest ja muundumistest, kus üheks komponendiks on soojus. Tehniline termodünaamika on eelmainitu alaliigiks, mis uurib soojuse ja mehaanilise töö vastastikuseid seoseid. Tehniline termodünaamika annab alused soojustehniliste seadmete ja aparaatide (näiteks katelseadmete, gaasiturbiinide, sisepõlemismootorite, kompressorite, reaktiivmootorite, soojusvahetusseadmete, kuivatite jne.) arvutamiseks ja projekteerimiseks. Tehniline termodünaamika nagu termodünaamika üldse tugineb kahele põhiseadusele. Termodünaamika esimene seadus on energia jäävuse seadus, rakendatuna soojuslikele protsessidele, teine seadus aga määrab kindlaks vahekorra olemasoleva soojuse ja temast saadava mehaanilise töö vahel, st määrab kindlaks soojuse mehaaniliseks tööks muundamise tingimused. Termodünaamika kui teadus hakkas hoogsalt arenem

Termodünaamika
16 allalaadimist
thumbnail
9
pdf

Termodünaamika alused

Keemia alused. Põhimõisted ja -seaduspärasused I. Termodünaamika alused 1. Termodünaamika põhimõisted Süsteem ­ vaadeldav universumi osa (liigitus: avatud, suletud, isoleeritud); faas ­ ühtlane süsteemi osa, mis on teistest osadest eralduspinnaga lahutatud ja erineb teistest osadest oma füüsikalis-keemiliste omaduste poolest; olekuparameetrid ­ iseloomustavad süsteemi termodünaamilist olekut: temperatuur (T), rõhk (p), ruumala (V), aine hulk (koostis) (n); olekuvõrrandid ­ olekuparameetrite vahelised seosed. Ideaalse gaasi olekuvõrrand (Clapeyroni-Mendelejevi võrrand): pV = nRT , R ­ gaasi universaalkonstant; R = 8.314 J/molK (ehk 0.0820 dm atm/molK); 3 R = poVo/To; po ­ normaalrõhk (1 atm. ehk 101 325 Pa), To ­ normaaltemperatuur (0 °C ehk 273.15 K), Vo ­ molaarruumala normaaltingimustel (22.4 dm3/mol). Olekufunktsioonid ­ funktsioonid, mis sõltuvad ol

Keemia alused
144 allalaadimist
thumbnail
2
odt

Termodünaamika KT (10.klass)

Termodünaamika KT 1. Gaas koosneb molekulidest; Molekulid on pidevas kaootilises liikumises; Molekulide vahel on vastastikmõju 2. Mikroparameetrid – iseloomustavad ainet molekulaarsena, ei ole vahetult mõõdetavad vaid määratakse makroparameetrite kaudu[m0, V, n, p0, E], olulised aine ehituse ja aines asetleidvate protsesside mõistmise seisukohalt. Makroparameetrid – iseloomustavad gaasi kui tervikut, suurused, mis ei eelda aine koosnemist osakestest[m, p, V, t, p,T), olulised praktiliste ülesannete lahendamisel(nt balloonis) 3. Olekuparameetrid – p, V, T, määravad gaasi oleku 4. Ideaalse gaasi mudel – lihtsaim mudel gaasi kirjeldamiseks, milles ei arvestata molekulide mõõtmeid ja vastastikmõju. Molekulid on punktmassid; molekulide põrked anuma seintega on elastsed; molekulide vahel ei ole vastastikmõjusid, puuduvad tõmbe ja tõukejõud 5. Temperatuur makrokäsitluses – suurus, mis iseloomustab keha sooj

Termodünaamika
8 allalaadimist
thumbnail
6
doc

Keemia alused: Termodünaamika

Energia voolab elektrilampi elektri kujul. Kui elektrivool läheb läbi lambi, annab lamp soojust ja valgust, ning koguenergia, mille lamp soojuse ja valgusena välja annab, on võrdeline selle elektrienergia hulgaga, mida lamp ära tarvitab. Teiste sõnadega, energiahulk ei muutu, kui lamp põleb ­ energia lihtsalt muutub ühest liigist teise. 7. Mis on aine soojusmahtuvus? Kuidas see sõltub aine ehitusest? - Soojusmahtuvuseks nimetatakse soojushulka, mis on vajalik antud ainekoguse temperatuuri tõstmiseks 1 kraadi võrra (J/K). Kuna suurema ainehulga soojusmahtuvus on suurem, tuleb aine soojusmahtuvus anda kas massiühiku või mooli aine kohta. Aine molaarne soojusmahtuvus sõltub tema ehituse keerukusest ­ keerukamate ainete soojusmahtuvus on suurem, kuna neis on rohkem võimalusi energia alvestamiseks. Vedelike soojuskahtuvused on reeglina suuremad kui vastavatel tahkistel. Molekulid saavad rohkem liikuda ja pöörelda. 9. Defineerige entalpia

Keemia alused
14 allalaadimist
thumbnail
25
doc

Termodünaamika õppematerjal

Vektor v1 kujutab kiiruse suuna muutumist, v2 aga mooduli muutumist. Analoogiliselt hetkkiirusega (valem (2.4)) defineerime hetkkiirenduse: v v v a = lim = lim 1 + lim 2 . (2.6) t 0 t t 0 t t 0 t Kui me vaatame järjest väiksemaid ajavahemikke, siis punkt B läheneb A-le, võrdhaarse kolmnurga DAE tipunurk läheneb nullile, kolmnurga alus DE on peaaegu risti mõlema haaraga. Seega valemis (2.6) pärast viimast võrdusmärki esimene piirväärtus defineerib kiirenduse kiirusega ristuva komponendi ­ normaalkiirenduse a n , teine liige aga kiirusesihilise komponendi ­ tangentsiaalkiirenduse a : a = a n + a . (2.7)

172 allalaadimist
thumbnail
6
doc

Keemia termodünaamika alused

Keemia termodünaamika alused 1. Ideaalse gaasi definitsioon. Ideaalse gaasi olekuvõrrand. Ideaalse gaasi olekufunktsioonid ­ p, T, V, U (siseenergia). Ideaalse gaasi kineetilise teooria alused ­ rõhu, temperatuuri ja siseenergia avaldised osakeste liikumisolekute kaudu. 1) Ideaalne gaas on reaalse gaasi lihtsaim mudel, kus lihtsuse mõttes oletatakse, et : · Molekulidel on lõpmata väikeste elastsete kerakeste omadused · Molekulide liikumine on kulgliikumine · Ideaalne gaas on lõpmatult kokkusurutav · Molekulide vastasmõju seisneb ainult nende omavahelistes elastsetes põrgetes · Ideaalset gaasi pole võimalik veeldada Reaalsed gaasid käituvad ideaalsetena suurtel hõrendustel.; Ideaalne gaas on kõige lihtsam termodünaamiline süsteem. Gaas, mis koosneb täielikult elastsetest punktmassidest (millel pole sisemist struktuuri). 2) Siseenergia on: 1. makrokäsitluses keha või süsteemi energia, mis on määratud se

Üldloodusteadus
31 allalaadimist
thumbnail
11
pdf

Termodünaamika eksamiküsimused 2013

Termodünaamika I kordamisküsimused 2013 1. Nimetada termodünaamika kolm printsiipi. Esimene printsiip on energia jäävuse seadus, millest järeldub siseenergia U kui olekufunktsiooni olemasolu. Kui ainehulk on jääv, siis siseenergia muutus U=Q-W, kus Q on süsteemi sisestatud soojushulk ja W süsteemi tehtud töö. Teine printsiip määrab iseeneslike protsesside suuna. Klassikalised sõnastused, mille kohaselt soojus ei saa iseenesest minna külmemalt kehalt soojemale ja ei ole võimalik ehitada perioodiliselt töötavat soojusjõumasinat, mille tegevuse ainus tulemus on soojuse muundumine tööks Kolmas printsiip määrab termodünaamilises tasakaalus olevate süsteemide käitumise absoluutse nullpunkti ligidal: tasakaalulises süsteemis on entroopia absoluutse nullpunkti juures süsteemi olekust sõltumatu 2. Mida uurib statistiline , klassikaline ja tehniline termodünaamika Statistiline füüsika seostab termodünaamika põhimõisted ja printsiibid aine

Masinamehaanika
30 allalaadimist
thumbnail
105
doc

Füüsika konspekt

11.1.INERTSIAALNE TAUSTSÜSTEEM EINSTEIN JA MEIE Albert Einstein kui relatiivsusteooria rajaja MART KUURME Liikumise uurimine algab taustkeha valikust ­ leitakse mõni teine keha või koht, mille suhtes liikumist kirjeldada. Nii pole aga alati tehtud. Kaks ja pool tuhat aastat tagasi arvas eleaatidena tuntud kildkond mõtlejaid, et liikumist pole üldse olemas. Neid võib osaliselt mõistagi. Sest kas keegi meist tunnetab, et kihutame koos maakera ja kõige temale kuuluvaga igas sekundis umbes 30 kilomeetrit, et aastaga tiir Päikesele peale teha? Eleaatide järeldused olid muidugi rajatud hoopis teistele alustele. Nende neljast apooriast on köitvalt kirjutanud mullu meie hulgast lahkunud Harri Õiglane oma raamatus "Vestlus relatiivsusteooriast". Elease meeste arutlused on küll väga põnevad, kuid tõestavad ilmekalt, et palja mõtlemisega looduses toimuvat tõepäraselt kirjeldada ei õnnestu. Aeg on näidanud, et ka nn. terve mõistusega ei jõua tõe täide sügavusse. E

Füüsika
282 allalaadimist
thumbnail
26
doc

Tahke keha mehhaanika.

Analoogiliselt hetk- kiirusega (valem (2.4)) defineerime hetkkiirenduse: v v1 v2 a = lim = lim + lim . (2.6) t 0 t t 0 t t 0 t Kui me vaatame järjest väiksemaid ajavahemikke, siis punkt B läheneb A-le, võrdhaarse kolmnurga DAE tipunurk läheneb nullile, kolmnurga alus DE on peaaegu risti mõlema haaraga. Seega valemis (2.6) pärast viimast võrdusmärki esimene piirväärtus defineerib kiirenduse kiirusega ristuva komponendi ­ normaalkiirenduse a n , teine liige aga kiirusesihilise komponendi ­ tangentsiaalkiirenduse a : a = a n + a . (2.7)

Füüsika
99 allalaadimist
thumbnail
76
pdf

Soojusõpetuse konspekt

5 Antud kursuse raames käsitletav teooria on rangelt võttes rakendatav ainult tasakaauliste protsesside korral. Termodünaamika nullis printsiip: Kui kaks keha on soojuslikus tasakaalus kolmandaga, siis on nad tasakaalus ka omavahel. Süsteemi siseenergia U saame, kui lahutame süsteemi koguenergiast keha kui terviku kineetilise energia ja potentsiaalse energia välisjõudude väljas. Siseenergia sõltub molekulide kaootilise liikumise kineetilisest energiast, molekulide vahelisest potentsiaalsest energiast ning molekulidesisesest energiast. Liitsüsteemi siseenergia on alamsüsteemide siseenergiate summa pluss alamsüsteemide vastastikune potentsiaalne energia: U =∑i U i E p . (1.3) Ep on sisuliselt kahe keha pinnal olevate molekulide vastastikune potentsiaalne energia.

Füüsika
31 allalaadimist
thumbnail
13
doc

Soojusfüüsika

toimuda soojusvahetus. Neid kogumeid nimetatakse termodünaamilisteks süsteemideks. Kui süsteemi parameetrid muutuvad, siis süsteem läheb ühest olekust teise, st süsteemi parameetrid muutuvad. Sellist üleminekut nimetatakse protsessiks. Ajalooliselt on vanimtermodünaamika ja sellepärast alustamegi sellest. 4.1. Termodünaamika Termodünaamika kasutab nähtuste kirjeldamiseks makroparameetreid, milleks on füüsikalised suurused, mida kasutatakse ainekoguse kui terviku soojusliku oleku kirjeldamisel. Nendeks on suurused, mida on võimalik hõlpsasti mõõta, näiteks ainekoguse mass, rõhk, ruumala, temperatuur . Suurusi rõhk, ruumala ja temperatuur nimetatakse ka olekuparameetriteks. Olek ei tähenda siin mitte agregaatolekut, vaid ainekoguse seisundit, mis on määratud olekuparameetrite p, V ja T konkreetsete väärtuste kogumiga. Kui ühte olekuparameetrit muuta, muutub ka vähemalt üks teine olekuparameeter. 4.1.1

Füüsika
27 allalaadimist
thumbnail
1
docx

Aineosakeste kineetiline potensiaalne energia

Aineosakeste kineetilist potensiaalset energiat nim. Siseenergiaks.Temperatuur näitab keha soojustaset. 1)Celsiuse skaala, võttis kasutusele A.Celsius, tähistatakse sümboliga °C.Soojuspaisumisel põhinev termomeetril tähistas vee keemispunkti 0 ja jää sulamispunkti 100 kraadi. Nende vahe oli jaotatud 100 võrdseks osaks. Ebamugav oli praktikas seda kasutada, mille tulemusel C.Linne keeras skaala ringi, võttes jää sulamistemperatuuri võrdseks 0 kraadiga ja vee keemispunkti +100 kraadiga, millest sai kõige enam kasutatava skaalaga termomeeter. 2)Fahrenheiti skaala võttis kasutusele füüsik D.G.Fahrenheit. Loodud soojuspaisumisel põhineva termomeetri üks skaalajaotis, Fahrenheiti kraad, võrdub 1/180 vee keemispunkti ja jää sulamispunkti temperatuuride vahest normaalrõhul. °F.Skaala koostamise kohta on erinevaid versioone.Jää sulamispunkt on 32 ja vee keemispunkt 212.3)Kelvini temperatuuriskaala ehk absoluutne, termodünaamiline temp.s. võttis kasutusele i.k. Willi

Füüsika
3 allalaadimist
thumbnail
66
docx

Füüsika I konspekt

Näitab soojushulka, mida on vaja, et muuta 1 kg tahkist vedelikuks sulamistemperatuuril. Ühik 1J/kg. Aurustumissoojus: on võrdne soojushulgaga, mida on tarvis, et muuta 1 kg vedelikku auruks antud temperatuuril. Mõõtühikuks on 1 J/kg. Aurustumise pöördprotsess on kondenseerumine. Kütteväärtus: (kütuse eripõlemissoojus) on ühe massi- või mahuühiku kohta kütuse täielikul põlemisel eralduv soojushulk. Soojusmahtuvus: väljendab soojushulka, mis on vajalik kogu vaadeldava ainekoguse tõstmiseks 1 kraadi võrra. Mida suurem on keha mass, seda suurem on soojusmahtuvus ja seda enam on soojust vaja tema soojendamiseks 1 kraadi võrra. Keha soojusmahtuvus võib sõltuda keha massist ja ainest, milles keha osaleb. 9. TERMODÜNAAMIKA 1. SEADUS. ADIABAATILINE PROTSESS. TERMODÜNAAMIKA 2.SEADUS. Termodünaamika I seadus: süsteemile juurdeantav soojushulk kulub süsteemi siseenergia suurendamiseks ja mehaaniliseks tööks, mida tehakse välisjõudude vastu: Q=∆U+A

Füüsika
72 allalaadimist
thumbnail
41
doc

10. klassi arvestused

ARVESTUSED Õppeaines: FÜÜSIKA Õpilane: Klass: 10 Õpetaja: 2005 2 SISUKORD I ARVESTUS MEHAANIKA .................................................................................................5 1. SI süsteemi põhimõõtühikud ....................................................................................................5 2. Ühikute teisendamine ja eesliite väljendamine kümne astmetena .......................................................................................................................................................6 3. Kulgliikumine............................................................................................................................6 4. Taustsüsteem..............................................................................................................................7 5. Nihe..........................................................................................................................

Füüsika
1117 allalaadimist
thumbnail
5
doc

Soojus õpetus

tuginedes kolmele eeldusele: a) kõik ained koosnevad molekulidest b) molekulid on pidevas kaootilises liikumises c) molekulide vahel on vastastikmõju (tõmbe ja tõukejõud). Aine omadusi kirjeldatakse parameetrite abil. Parameeter on mingi füüsikaline suurus, mis kirjeldab aine olekut või omadusi (nt vedeliku ruumala, molekuli mass). Makroparameetrid on füüsikalised suurused, mida kasutatakse ainekoguse kui terviku soojusliku oleku kirjeldamisel (nt ainekoguse mass, rõhk, ruumala, temperatuur). Suurusi rõhk, ruumala ja temperatuur nim ka oleku- parameetriteks. Olek on ainekoguse seisund, mis on määratud olekuparameetrite konkreetsete väärtuste kogumiga. Kui ühte olekuparameetrit muuta, muutub ka vähemalt üks teine olekuparameeter. Mikroparameetrid on füüsikalised suurused, mida kasutatakse aine üksiku molekuli kirjeldamisel (nt molekuli mass, molekuli kiirus, molekulide keskmine kiirus, molekulide keskmine kineetiline energia ja

Füüsika
81 allalaadimist
thumbnail
29
doc

Füüsika

juhul, kui tema ruumala muutub. PARAMEETRID Termodünaamilise süsteemi olek on iseloomustatud kolme parameetriga. Nendeks parameetriteks on rõhk (p), ruumala (V) ja temperatuur (T). Kui need parameetrid omavad välismõjude puudumisel konstantseid väärtusi, on süsteem tasakaaluolekus. Tasakaalulise protsessi puhul tuleb rääkida tasakaaluolekute pidevast jadast. Gaasi siseenergia koosneb molekulide kaootilise liikumise kineetilisest energiast. Molekulisisene energia ei tule antud juhul arvesse võtta. TERMODÜNAAMILISE SÜSTEEMI OLEKUFUNKTSIOON Termodünaamilise süsteemi olekufunktsiooniks nimetatakse süsteemi olekut iseloomustavat funktsiooni, mille muudu väärtus sõltub ainult süsteemi alg-ja lõppolekust, mille viisist, kuidas süsteem ühest olekust teise viidi. Termodünaamilise süsteemi olekufunktsiooni näiteks on siseenergia ja entroopia

Füüsika
354 allalaadimist
thumbnail
4
doc

FKI- eksami küsimused/ vastused

w rev - w 0 1. Selgitage järgmisi keemilise termodünaamika kuumemalt kehale külmemale. Kui gaas paisub mahust põhimõisted:termodünaamiline süsteem, vaakumisse siis x suureneb , q paisub, saabub tasakaal. tasakaal,temperatuur. 5. Töö, soojuse ja siseenergia arvutamine ideaalgaasile , kokkusurumisel: Kuidas on defineeritud absoluutne temperatuuriskaala? isotermilise, isokoorilise ja isobaarilise protsessi korral. Termodünaamiline süsteem ­ süsteem eeldab et ta oleks V2 V1 piiritletud. Piiritletud ümbritseva

Füüsikaline keemia
236 allalaadimist
thumbnail
29
doc

Põhivara füüsikas

seoste võrku rõhutav teooria võimaldab aga hinnata ühe või teise sündmuse esinemise tõenäosust. Põhjuslikkus on liigitatav võimalike tagajärgede arvu järgi. Fatalistliku põhjuslikkuse korral tundub olevat võimalik ainult üks tagajärg. Juhusliku põhjuslikkuse korral on võimalikke tagajärgi üle ühe, kuid siiski lõplik arv ning me saame hinnata ühe või teise tagajärje esinemise tõenäosust (nt täringuvise). Kaootilise põhjuslikkuse korral on võimalikke tagajärgi lõpmatu arv (nt "õnnevalamine"). Tahtelise põhjuslikkuse korral realiseerub kellegi tahte rakendumise tulemusena üks kindel tagajärg. Näiva põhjuslikkuse korral on nii põhjuse kui tagajärjena vaadeldav sündmus tegelikult põhjustatud mingist kolmandast, esialgu märkamatuks jäänud sündmusest (nt astroloogia). Põhjuslikkuse avaldumise vormi määrab varjatud parameeter.

Füüsika
121 allalaadimist
thumbnail
2
rtf

Soojusõpetus

* peamised makroskoopilised parameetrid-ruumala, rõhk, temperatuur-suurusi saab mõõta *makroskoopilisi suurusi, mis üheselt iseloomustavad gaasi olekut, nim gaasi termodünaamiliseks parameetriks-kui vaadelda selle puhul mingi gaasi massi, siis V,p,T=const. *termodünaam. tasakaal- olek, mille puhul term.dünaam. parameetrid enam ei muutu, vt temp teemat *temperatuur-iseloomustab makrokeha kui süsteemi soojuslikku olekut ehk soojusastet.Termodünaamilise tasakaalu puhul on süsteemi kõigi osade temperatuur ühesugune. Temperatuuride erinevuse korral siirdub soojus kõrgema temperatuuriga osadelt madalama temperatuuriga osadele, kuni temperatuuride ühtlustumiseni. *Termodünaamiliseks süsteemiks nimetatakse reaalse või kujuteldava piirpinnaga piiritletud füüsikalist keha või kehade süsteemi, mis on termodünaamilise käsitluse aineks(elusorganism, planeet). Termodünaamilisi süsteeme on võimalik liigitada vastavalt sellele, millises vastastikmõjus nad on oma ümbrusega (

Füüsika
36 allalaadimist
thumbnail
15
doc

Soojusõpetus

Soojusõpetus. 1. Mikroparameetrid, makroparameetrid. Soojusliikumine. Soojusnähtusi kirjeldatakse parameetrite abil. Parameetriks nimetatakse ühelaadseid, olekuid või protsesse kirjeldavat suurust, mille iga väärtus määrab mingi kindla objekti, oleku või protsessi. Makroparameetrid on füüsikalised suurused, mida kasutatakse ainekoguse kui terviku kirjeldamisel. Nendeks on näiteks ainekoguse mass, rõhk, ruumala, temperatuur. Mikroparameetrid on füüsikalised suurused, mida kasutatakse aine üksiku molekuli kirjeldamisel. Nendeks onnäiteks molekuli mass, molekuli kiirus. Soojusnähtusi seletatakse molekulaarkineetilise teooria või termodünaamika abil. Esimene kasutab peamiselt mikroparameetreid, teine makroparameetreid. Molekulaarkineetilise teooria põhialused põhinevad kolmel väitel: a) Aine koosneb molekulidest.

Füüsika
176 allalaadimist
thumbnail
414
pdf

TTÜ üldfüüsika konspekt

1. Punktmassi kinemaatika. 1.1 Kulgliikumine 1.2 Vaba langemine 1.3 Kõverjooneline liikumine 1.4a Horisontaalselt visatud keha liikumine 1.4b Kaldu horisondiga visatud keha liikumine. 2. Pöördliikumine 2.1 Ühtlase pöördliikumisega seotud mõisted 2.2 Kiirendus ühtlasel pöördliikumisel 2.3 Mitteühtlane pöördliikumine. Nurkkiirendus 2.4 Pöördenurga, nurkkiiruse ja nurkkiirenduse vektorid. 3. Punktmassi dünaamika 3.1. Inerts. Newtoni I seadus. Mass. Tihedus. 3.2 Jõu mõiste. Newtoni II ja III seadus 3.3 Inertsijõud 4. Jõudude liigid 4.1 Gravitatsioonijõud 4.1a Esimene kosmiline kiirus. 4.2 Hõõrdejõud 4.2a Keha kaldpinnal püsimise tingimus. 4.2b Liikumine kurvidel 4.3 Elastsusjõud 4.3a Keha kaal 5 JÄÄVUSSEADUSED 5.1 Impulss 5.1a Impulsi jäävuse seadus. 5.1b Masskeskme liikumise teoreem 5.1c Reaktiivliikumine (iseseisvalt) 5.2 Töö, võimsus, kasutegur 5.3 Energia, selle liigid 5.3 Energia

Füüsika
177 allalaadimist
thumbnail
31
rtf

Põhivara aines Füüsikaline maailmapilt

Matemaatikas tegelevad kronoloogilise põhjuslikkusega matemaatiline analüüs ja funktsionaalanalüüs. Põhjuslikkus on liigitatav võimalike tagajärgede arvu järgi. Fatalistliku põhjuslikkuse korral tundub olevat võimalik ainult üks tagajärg. Juhusliku põhjuslikkuse korral on võimalikke tagajärgi üle ühe, kuid siiski lõplik arv ning me saame hinnata ühe või teise tagajärje esinemise tõenäosust (nt täringuvise). Kaootilise põhjuslikkuse korral on võimalikke tagajärgi lõpmatu arv (nt "õnnevalamine"). Tahtelise põhjuslikkuse korral realiseerub kellegi tahte rakendumise tulemusena üks kindel tagajärg. Näiva põhjuslikkuse korral on nii põhjuse kui tagajärjena vaadeldav sündmus tegelikult põhjustatud mingist kolmandast, esialgu märkamatuks jäänud sündmusest (nt astroloogia). Põhjuslikkuse avaldumise vormi määrab varjatud parameeter.

Füüsika
35 allalaadimist
thumbnail
10
docx

Keskkonnafüüsika

Keskkonnafüüsika Taustsüsteem · Üldisemalt määratletakse taustsüsteem n-mõõtmeliseks. · Igasugused nähtused toimuvad ajas- seega oluline taustsüsteemi osa on aeg. · Liikumise kirjeldamisel moodustavad taustsüsteemi taustkeha, ruumikoordinaadid ja aja koordinaat. Liikumise vormid · Kulgliikumine · Pöördliikumine · Nende kombinatsioonid Liikumise viisid · Ühtlane- mitteühtlane liikumine · Kiirendusega- aeglustusega liikumine (ringliikumine) · Nende kombinatsioonid · Ühtlaselt muutuv pole sama mis ühtlane, näitab vaid et kiirendus ajas on jääv. Liikumine · Kinemaatika- kirjeldab, ei otsi põhjusi, vanim ja enamlevinud mehaanika osa · Dünaamika- vaatleb põhjusi ja hindab tagajärgi. · Staatika- tasakaalutingimuste määratlemine, spetsiifiline mehaanika osa. Liikumise põhimõisted · Oluline nii ruumiline kui ajaline asukoht · Asukoha muutuse kirjeldamiseks võetakse kasutusele kiiruse mõiste- asukoh

Keskkonafüüsika
27 allalaadimist
thumbnail
34
doc

Füüsika eksam inseneri erialadele

hulk C korpus (kompleksarvude korpus), mis sisaldab reaalarvude korpust R. · Tuletis ja integraal. Tuletis on matemaatilise analüüsi üks põhimõisteid. Funktsiooni tuletis mingil kohal näitab selle funktsiooni väärtuse muutumise kiirust funktsiooni argumendi muutumisel -- täpsemalt, funktsiooni tuletis on funktsiooni väärtuse muudu ja argumendi muudu suhte piirväärtus argumendi muudu lähenemisel nullile. Ühe reaalarvulise parameetriga ning reaalarvuliste väärtustega funktsiooni korral on selle funktsiooni tuletiseks mingil kohal selle funktsiooni graafiku puutuja tõus sellel kohal. Füüsikas on nihke tuletiseks aja järgi hetkkiirus, kiiruse tuletiseks omakorda kiirendus. Integraal ­ määramata integraaliks nimetatakse funktsiooni algfunktsiooni leidmist ehk tuletise pöördfunktsiooni

Füüsika
379 allalaadimist
thumbnail
28
doc

põhivara aines füüsikaline maailmapilt

Põhivara aines Füüsikaline maailmapilt Maailm on kõik see, mis on olemas ning ümbritseb konkreetset inimest (indiviidi). Indiviidi põhiproblee- miks on tunnetada oma suhet maailmaga ­ omada adekvaatset infot maailma kohta ehk maailma- pilti. Selle info mastaabihorisondi rõhutamisel kasutatakse maailmaga samatähenduslikku mõistet universum. Maailma käsitleva info mitmekesisuse rõhutamisel kasutatakse maailma kohta mõistet loodus. Religioosses käsitluses kasutatakse samatähenduslikku mõistet ­ (Jumala poolt) loodu. Inimene koosneb ümbritseva reaalsuse (mateeria) objektidest (aine ja välja osakestest) ning infost nende objektide paigutuse ning vastastikmõju viiside kohta. Selle info põhiliike nimetatakse religioossetes tekstides hingeks ja vaimuks. Hing on inimeses sisalduva info see osa, mis on omane kõigile indiviididele (laiemas tähenduses ­ kõigile elusolenditele). Hinge olem

Füüsika
212 allalaadimist
thumbnail
46
docx

Füüsikalised suurused ja nende etalonid

1.FÜÜSIKALISED SUURUSED JA NENDE ETALONID 1.Füüsikalised suurused ja nende etalonid – SI süsteemi 7 põhiühikut ja nende definitsioonid (+etalonid) Suurus Mõõtühik Tähis Hetkel kehtiv etalon Pikkus meeter 1 m tee pikkus, mille valgus läbib vaakumis 1/299 792 458 sekundi jooksul 133 Aeg sekund 1s Cs aatomi (tseesium-133) põhiseisundi kahe ülipeen(struktuuri)-nivoo vahelisele üleminekule vastava kiirguse ca 9 miljardi võnkeperioodi kestusega Mass kilogramm 1 kg massiühik, mis on võrdne rahvusvahelise kilogrammi prototüübi massiga 1 Temperatuur kelvin 1K /273,1

Füüsika
36 allalaadimist
thumbnail
24
docx

Keskkonnafüüsika arvestuse materjal

muutu, muutub suund o Molekulide vastastikmõju ei arvestata  Reaalsed gaasid sarnanevad ideaalsele gaasile suurtel hõrendustel, kus molekulide mõõtmed on väikesed võrreldes nende vahelise kaugusega Ideaalse gaasi olekuvõrrand:  PV/T = konstantne  Kirjeldab gaasi rõhu sõltuvust temperatuurist ja ruumalast  PV = nR(8,31)T Difusioon:  Molekulide laialivalgumine juhusliku, kaootilise soojusliikumise tõttu, mille käigus molekulid jaotuvad ruumis ühtlaselt  Aeglane  Liikumine toimub suurema kontsentratsiooniga alalt väiksema kontsentratsiooniga ala poole  Difusioon on aeglasem kui molekulide keskmine kiirus Osmoos:  Lahuses olevate erinevate molekulide erinev imbumine läbi poolläbilaskva vaheseina/membraani. Selektiivne difusioon  Toimub täna soojusliikumisele  Tekib lisarõhk Termodünaamika

Füüsika
20 allalaadimist
thumbnail
10
doc

Füüsika eksami konspekt

TEST Loeng 1 - Naturaalarv ­ loendamiseks ja järjestamiseks kasutatavad arvud (0), 1, 2, 3, .... Mõnikord jäetakse 0 naturaalarvude hulgast välja. - Täisarv ­ kõik naturaalarvud ja nende negatiivsed vastandarvud. - Ratsionaalarv ­ reaalarvud, mida saab kasutada kahe täisarvu m ja n jagatisena m/n. Igal ratsionaalarvul on ka lõpmatu kümnendarendus ja see on alati perioodiline. - Reaalarv ­ kõik ratsionaal- ja irratsionaalarvud (mitteperioodilised lõppmatud kümnendmurrud) kokku. Täidavad lünkadeta kogu arvsirge. - Kompleksarv ­ arv kujul a + ib, kus a ja b on reaalarvud ning i imaginaarühik. Reaalarvu a nimetatakse kompleksarvu a + ib reaalosaks ja reaalarvu b selle kompleksarvu imaginaarosaks. Iga kompleksarv z = a + ib on määratud oma reaal- ja imaginaarosaga, st. reaalarvude järjestatud paariga (a;b). Sellise paariga on määratud ka tasandi punkt. Seega on vastavus tasandi punktide või

Füüsika
274 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun