Matemaatika nuputamisülesandeid 4. ja 5. kl õpilastele Panin siia kirja 325 ülesannet, mida võiks anda nuputamiseks 4. ja 5. kl matemaatikahuvilistele õpilastele. Olen nuputamisülesanded väga erinevatest allikatest juba mitu aastat kogunud ja olümpiaadiks ettevalmistamisel praktikas kasutanud. Praegune valik on selline. Võib-olla on need ülesanded natukene abiks ka mõnele kolleegile. On lisatud ka vastused ja üks võimalikest lahenduskäikudest. 1. Ühe staadioniringi läbimiseks kulub Sassil 3 minutit ja Reinul 4 minutit. Poisid alustasid jooksu samal ajal samalt stardijoonelt. Leia vähim aeg, mis kulub poistel, et ületada jälle samaaegselt seda stardijoont. VASTUS: 12 minutit, sest see on väikseim arv, mis jagub nii 3-ga kui ka 4- ga. 2. Mitu kolmnurka on joonisel? VASTUS: 20 3. Mari elab koos ema, isa ja vennaga. Neil on kodus üks koer, kaks kassi, kaks papagoid ja akvaariumis neli kuldkala. Mitu jalga on neil kõigil kokk
Protsent A Protsent B 1. Esita antud protsendid kümnendmurdudes 1. Esita antud kümnendmurrud protsentides a) 56 % c) 80 % a) 0,57 c) 0,8 b) 3,4 % d) 0,6 % b) 0,034 d) 1,24 2. Esita antud protsendid 2. Esita antud harilikud murrud protsentides hariliku murru kujul ( võimaluse korral taanda) 3 22 9 1 a) b) c) d) a) 30 % c) 75 % 10 50 25 5 b) 4% d) 74 % 3. Esita antud protsendid kümnendmurdudes
1. Arvud, mis väljendavad risttahuka mõõtmeid moodustavad geomeetrilise jada. Risttahuka põhja pindala on 108 m² ja täispindala 888 m². Leia risttahuka mõõtmed. 2. Urnis on 5 musta, 7 kollast ja 4 punast palli. Leia tõenäosus, et juhuslikult võetud kolme palli hulgas on. 1) vähemalt 2 kollast palli; 2) Kõik erinevat värvi pallid; 3) kõik ühtevärvi pallid. 3. Leia kõik reaalarvude paarid (x;y), mis rahuldavad võrrandit 2 x +1 = 4 y 2 +1 ja võrratust 2 x 2 y . 4. Kahe positiivse arvu vahe moodustab 1/19 nende kuupide vahest, nend4e korrutis on aga ½ võrra väiksem nende ruutude poolsummast. Leia need arvud. 5. Lahenda võrrand 3sin 9 + 3 = 3 vahemikus (-2; 2). 6. Võrdkülgsesse kolmnurka küljega a on kujundatud teine võrdkülgne kolmnurk, mille tipud asuvad esimese kolmnurga külgedel jaotades need suhtes 1:2. Leia väiksema kolmnurga pindala. 7. Koonusekujulise veiniklaasi kõrgus on h
GEOMEETRIA Eksam 9.klass 1. (1996) Võrdhaarse kolmnurga haar on 1,3 dm ja alusele tõmmatud kõrgus 0,5 dm. Arvuta kolmnurga ümbermõõt. 2. (1996) Täisnurkse trapetsi teravnurk on 71° ning alused 35 cm ja 28 cm. Arvuta trapetsi pindala. 3. (1997) Ristküliku diagonaal on 25 cm ja ta moodustab ristküliku ühe küljega nurga 650. Arvuta ristküliku ümbermõõt. 4. (1997) Ristküliku diagonaal on 15 cm ja ta moodustab ristküliku ühe küljega nurga 350. Arvuta ristküliku pindala. 5. (1997) Täisnurkse kolmnurga kaatetid on 2,4 cm ja 3,2 cm. Arvuta kolmnurga ümbermõõt ja pindala. 6. (1997) Täisnurkse kolmnurga hüpotenuus on 1,5 dm ja kaatet 1,2 dm. Arvuta kolmnurga ümbermõõt ja pindala. 7. (1998) Kahe sarnase ristküliku ümbermõõdud on 54 cm ja 10,8 cm. Suurema ristküliku üks külg on 10 cm. Arvuta väiksema ristküliku pindala. 8. (1998) Võrdhaarse kolmnurga ümbermõ
Kordamine II 5 x + 6 12 - x x 33. - = Lahenda võrrandid ja tee kontroll 9 6 2 1. 5 - 2( 3x +1) = 3( 2 - 3x ) + 6 Lahenda võrrandisüsteem 2. ( x + 3) - 2 x = ( x - 2 )( x + 2 ) + 1 2 3. ( 2 y - 3) + 4 = ( 2 y - 3)( 2 y + 1) 2 ( x + 2) 2 - ( y + x ) = ( x + 1)( x - 1) + 13 34. 4. ( x - 2 ) 2 + ( 3 x -1)( x + 3) = ( 2 x -1)( 2 x + 1) + 6 ( x + 3)( x - 2) - ( x - y )( x + y ) = ( y + 1) 2 - 9 5. 12 x 2 - ( 3 x +1) 2 = ( 3 x - 2 )( x +1) - 6 6. ( 2 x -1) 2 + x = x( x - 3) +13 ( u - 1) 2 + 3v = ( u -
% on ks sajandik tervest, siis ilmselt k% on k sajandikku tervest. Nide 1. Leiame 67% 420-st. Eelneva phjal tuleb leida korrutis Nide 2. Lattu veeti sgisel 420 tonni kartuleid ja neist oli kevadeks mdanenud 33%. lejnud kartulid nnetus omanikul maha ma. Mitu kilogrammi kartuleid mdi? Kui kartulitest mdanes 33%, siis mgiks klbulikke oli jrelikult 100% - 33% = 67%. Seega leiame 67% 420-st. See on aga juba eelmises lesandes vlja arvutatud. Seega oli mgiklbulikke kartuleid 281,4 tonni. Terve leidmisel osa jrgi pannakse andmed tihtipeale kirja vrde kujul (saab ka teisiti). Nide 3. Leiame arvu, millest 34% on 77. Kui 34% on 77, siis 100% on x, seega Nide 4. On teada, et 34% mingist arvust x on 68. Leia 71% sellest arvust. Selle lesande lahendamisel polegi tarvis teada, kui suur x on, sest lesande saame lahendada jllegi vrde abil. 34% 68 71%
Ülesanded Arvvavaldised Ruutvõrrandi lahendamine Rakendus "Detail" Detaili kujud Materjalid Värvid Ideaalne inimene Laenuintress Viktoriin Lisad Matemaatikafunktsioonid Tekstifunktsioonid Loogikafunktsioonid Ajafunktsioonid Sisestage siia matrikli viimane (a) ja viimane nr eelviimane eelviimane (b) number. Valemid annavad c a b c y nr z nr väärtuse ja funktsioonide numbrid 4 7 1 2 5 Funktsioonide väärtused Variandid a y nr
134 1 18. Arvutusülesanded Aine hulk väljendab osakeste arvu. Aine hulga ühik on mool. Üks mool = 6,02 • 1023 osakest. molaar- n— osakeste mass mass ruumala molaarruumala ainehulk tihedus arv 3 g/mol dm = I dm3/mol mol g/cm g kg kg/kmol m3/kmol kmol kg/m IV n Molaarmass on ühe mooli aine mass. Molaarmassi arvutamiseks tuleb liita kokku aatommassid, arvestades indekseid. Näide = 24 • 3 + 31 • 2 + 16 • 8 = 262 g/mol Gaaside molaarruumala (ühe mooli mis tahes gaasi ruumala normaaltingimustel) 22,4 dm3/mol Normaaltingimused (nt.) on t = O oc ja p = I atm (101 325 Pa)
Kõik kommentaarid