Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Matemaatika kordamine 2 9.klass (0)

3 KEHV
Punktid

Esitatud küsimused

  • Kui mataka kogu pikkus oli 22 km?
  • Mitmele riiulile tuleb mahutada raamatud?
  • Kestis 2 päeva vähem kui planeeritud Mitu päeva kestis matk?
  • Kui palju aega kulus töölisel detailide valmistamiseks?
  • Kui üks plaat maksab 180 krooni?
Matemaatika kordamine 2 9 klass #1 Matemaatika kordamine 2 9 klass #2 Matemaatika kordamine 2 9 klass #3 Matemaatika kordamine 2 9 klass #4 Matemaatika kordamine 2 9 klass #5
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 5 lehte Lehekülgede arv dokumendis
Aeg2012-10-31 Kuupäev, millal dokument üles laeti
Allalaadimisi 168 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor ervin Õppematerjali autor
VASTAMATA

Sarnased õppematerjalid

thumbnail
8
doc

12. klass matemaatika kordamine

1. Arvud, mis väljendavad risttahuka mõõtmeid moodustavad geomeetrilise jada. Risttahuka põhja pindala on 108 m² ja täispindala 888 m². Leia risttahuka mõõtmed. 2. Urnis on 5 musta, 7 kollast ja 4 punast palli. Leia tõenäosus, et juhuslikult võetud kolme palli hulgas on. 1) vähemalt 2 kollast palli; 2) Kõik erinevat värvi pallid; 3) kõik ühtevärvi pallid. 3. Leia kõik reaalarvude paarid (x;y), mis rahuldavad võrrandit 2 x +1 = 4 y 2 +1 ja võrratust 2 x 2 y . 4. Kahe positiivse arvu vahe moodustab 1/19 nende kuupide vahest, nend4e korrutis on aga ½ võrra väiksem nende ruutude poolsummast. Leia need arvud. 5. Lahenda võrrand 3sin 9 + 3 = 3 vahemikus (-2; 2). 6. Võrdkülgsesse kolmnurka küljega a on kujundatud teine võrdkülgne kolmnurk, mille tipud asuvad esimese kolmnurga külgedel jaotades need suhtes 1:2. Leia väiksema kolmnurga pindala. 7. Koonusekujulise veiniklaasi kõrgus on h

Matemaatika
thumbnail
6
doc

Reaalarvud. Võrrandid

MA1 - Reaalarvud. Võrrandid 1. Teemad Arvuhulgad N, Z, Q ja R, nende omadused. Reaalarvude piirkonnad arvteljel. Reaalarvu absoluutväärtus. Protsentülesanded. Astme mõiste üldistamine: täisarvulise ja ratsionaalarvulise astendajaga aste. N- es juur. Tehted astmete ja juurtega. Ratsionaal- ja irratsionaalavaldiste lihtsustamine. Irratsionaalsusest vabanemine. Lineaar-, ruut-, murd- ja juurvõrrandid. Võrrandite koostamine. Lihtsamate tekstülesannete lahendamine. 2. Tarkuseterad 2.1 Arvuhulgad Loendamisel kasutatavad arvud Arv 0 Kas 0N? Naturaalarvud N Järjestatav, vähim arv 1, lõpmatu Liitmine, korrutamine Jäägiga jagamine, algarv, SÜT, VÜK Nat. arvude vastandarvud Täisarvud Z Järjestatav,

Matemaatika
thumbnail
40
doc

Keskkooli matemaatika raudvara

KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ­...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvu

Matemaatika
thumbnail
33
doc

Matemaatika riigieksam

Tiia Toobal 2008 II osa Pärnu Koidula Gümnaasium Test nr. 1. a 0,5 - 16b 0, 5 1. Leia avaldise - 4b 0, 25 , kui a = 16. a 0, 25 - 4b 0, 25 1) 6 2) -2 3) 4 4) 2 2. Leia antud arvudest suurim ( 2) ( 2) 3, 2 3 1 4, 7 1) 2) 3) 4) 3 4 5 2 3 1- log 3 6 - log 4 0 ,125 3. Arvuta avaldise 27 -4 väärtus. 1) 0 2) 7,875 3) ­ 7,875 4) ­ 3,875 4. On antud perioodilise funktsiooni y

Matemaatika
thumbnail
62
pdf

Nupukas - Nuputamisülesanded

Matemaatika nuputamisülesandeid 4. ja 5. kl õpilastele Panin siia kirja 325 ülesannet, mida võiks anda nuputamiseks 4. ja 5. kl matemaatikahuvilistele õpilastele. Olen nuputamisülesanded väga erinevatest allikatest juba mitu aastat kogunud ja olümpiaadiks ettevalmistamisel praktikas kasutanud. Praegune valik on selline. Võib-olla on need ülesanded natukene abiks ka mõnele kolleegile. On lisatud ka vastused ja üks võimalikest lahenduskäikudest. 1. Ühe staadioniringi läbimiseks kulub Sassil 3 minutit ja Reinul 4 minutit. Poisid alustasid jooksu samal ajal samalt stardijoonelt. Leia vähim aeg, mis kulub poistel, et ületada jälle samaaegselt seda stardijoont. VASTUS: 12 minutit, sest see on väikseim arv, mis jagub nii 3-ga kui ka 4- ga. 2. Mitu kolmnurka on joonisel? VASTUS: 20 3. Mari elab koos ema, isa ja vennaga. Neil on kodus üks koer, kaks kassi, kaks papagoid ja akvaariumis neli kuldkala. Mitu jalga on neil kõigil kokk

Matemaatika
thumbnail
10
docx

11. klass kordamine EKSAMIKS vastustega

Kordamisülesanded 11 klass 1. Kombinatoorika ja tõenäosus a) Ühes klassis õpitakse 14 õppeainet. Mitmel erineval viisil saan nendest koostada ühe päeva tunniplaani, kui selles peab olema 7 erinevat õppeainet? Vastus: 17297280 b) Martinil on taskus viis viiekroonist ja neli kümnekroonist rahatähte. Kui suur on tõenäosus, et kahe kupüüri juhuslikul võtmisel on mõlemad viiekroonised? Vastus: 20/72 c) Tõenäosus leida pliiats kirjutuslaua esimesest sahtlist on 0,5, teisest sahtlist 0,7 ja kolmandast 0,4. Kui suur on tõenäosus , et pliiats on olemas a) täpselt ühes sahtlis b) vähemalt ühes sahtlis c) mitte üheski sahtlis

Matemaatika
thumbnail
22
docx

Matemaatika eksami kordamine KEVAD 2015

-1- - 1.Leia funktsiooni määramispiirkond. 3 x 3 x y y b) y  17  15 x  2 x log( 1  x ) 2 a) 4x  8 c) 2x  2 3 9 x y d) y = log( x2 + x -20 ) - 6x e) log 2 ( x  4) f) y = log x-1 x2

Matemaatika
thumbnail
3
doc

Hulkliikmete liitmine ja lahutamine

Hulkliikmete liitmine ja lahutamine 1. Lihtsusta ja arvuta avaldise väärtus. a) (t ­ 3s) ­ (2t + s), kui s = 2 ja t = 3 (t ­ 3s) ­ (2t + s) = t ­ 3s ­ 2t ­ s = ­ 4s ­ t; Lahendus: ­ 4s ­ t = ­ 4 * 2 ­ 3 = ­ 11 b) (4c ­ 5d) + (4d ­ c), kui c = 5 ja d = ­1 (4c ­ 5d) + (4d ­ c) = 4c ­ 5d + 4d ­ c = 3c ­ d; Lahendus: 3c ­ d = 3 * 5 ­ (­1) = 16 c) (a ­ y2) + (a + y2), kui a = 4 ja y = ­3 (a ­ y2) + (a + y2) = a ­ y2 + a + y2 = 2a; Lahendus: 2a = 2 * 4 = 8 d) (2s2 ­ s) ­ (s2 ­ 2s), kui s = ­2 (2s2 ­ s) ­ (s2 ­ 2s) = 2s2 ­ s ­ s2 + 2s = s2 + s; Lahendus: s2 + s = (­2)2 + (­2) = 4 ­ 2 = 2

Matemaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun