Lõigu keskpunkt Punktide A(x1; y1) ja B(x2; y2) vahelise lõigu keskpunkti C koordinaadid on leitavad valemitega 1 1 x0 = ( x2 - x1 ) , y0 = ( y2 - y1 ) . 2 2 y B y2 y0 C y1 A 0 x1 x0 x2 x Sirglõigu ja sirge tõus Positiivset nurka x-telje positiivse suuna ja sirge (sirglõigu) vahel nimetatakse sirge (sirglõigu) tõusunurgaks. Seejuures 0 < 180. Suurust tan nimetatakse sirge (sirglõigu) tõusuks ja tähistatakse tähega k. y (s2) (s1) Tõusva sirge (s1) tõus on positiivne : tan 1 > 0 (0 < < 90°);
Sirge võrrandid Heldena Taperson www.welovemath.ee Sirge tõus • Sirge tõusunurgaks nimetatakse nurka x-telje positiivse suuna ja sirge vahel y s x NB! Tõusunurk on alati 0o ja 180o vahel. y y s s x x Tõusunurk on Tõusunurk on teravnurk – sirge nürinurk – sirge tõuseb langeb y y s
Kahe vektori ristseisu tunnus..................................................................................................34 Nurk kahe vektori vahel......................................................................................................... 34 Joone võrrand......................................................................................................................... 34 Sirge tõusunurk, sirge tõus..................................................................................................... 34 Tõusu ja algordinaadiga määratud sirge võrrand................................................................... 35 Kahe punktiga määratud sirge võrrand...................................................................................35 Punkti ja sihivektoriga määratud sirge võrrand......................................................................35
Kordamine III(sirge, ringjoon, parabool, vektor) 1. On antud kolmnurk tippudega A(1;2), B(4;3) ja C(2;5). Leidke sirgete AB ja AC võrrandid ning lõikepunktid koordinaattelgedega; 2) Leidke läbi tipu C joonestatud küljega AB paralleelse sirge võrrand; 3) Leidke läbi tipu C joonestatud küljega AB ristuva sirge tõus. 2. Lõik otspunktidega on ringjoone diameetriks. Leidke: 1) ringjoone võrrand; 2) sellele ringjoonele punktides (2,5; 4,5) ja (0;2) joonestatud puutujate võrrandid ja nende puutujate lõikepunkt. 3. Tuletage joone võrrand, kui joone iga punkti kaugused punktidest M(0;-3) ja N(2;3) on võrdsed. Näidake, et otsitav joon on lõigu MN keskristsirge. 4. Parabool läbib punkte (-1;0), (5;0) ja (0;-10). Leidke parabooli võrrand ja tema haripunkti
a b = a b cos - Vektorite skalaarkorrutis a b = a1 b1 + a 2 b2 a1 b1 + a 2 b2 cos = a b - Nurk kahe vektori vahel 2. Sirge võrrandid y 2 - y1 k = tan = - Sirge tõus ja tõusunurk x 2 - x1 y - y1 = k ( x - x1 ) - Punkti ja tõusuga määratud sirge võrrand y = kx + b - Tõusu ja algordinaadiga määratud sirge võrrand
26. Kahe vektori a ja b vektorkorrutise skalaarkorrutist kolmanda vektoriga c nimetatakse vektorite a,b,c segakorrutiseks. V = ( a x b ) c 27. Vektorite komplanaarsuse tingimus ( a x b ) c = 0 X1 Y1 Z1 28. Segakorrutis koordinaatides ( a x b ) c = X 2 Y2 Z2 X3 Y3 Z3 Sirge võrrand ruumis. 29. Sirge parameetriline võrrand. x = xA + tl ; y = yA + tm ; z = zA +tn . 30. Sirge võrrand läbi ühe antud punkti A ja antud sihivektoriga s ehk sirge kanooniline võrrand x xA y yA z zA = = l m n x xA y yA z zA 31. Sirge võrrand läbi kahe antud punkti A ja B = = xB x A yB y A z B z A
26. Kahe vektori a ja b vektorkorrutise skalaarkorrutist kolmanda vektoriga c nimetatakse vektorite a,b,c segakorrutiseks. V = ( a x b ) c 27. Vektorite komplanaarsuse tingimus ( a x b ) c = 0 X1 Y1 Z1 28. Segakorrutis koordinaatides ( a x b ) c = X 2 Y2 Z2 X3 Y3 Z3 Sirge võrrand ruumis. 29. Sirge parameetriline võrrand. x = xA + tl ; y = yA + tm ; z = zA +tn . 30. Sirge võrrand läbi ühe antud punkti A ja antud sihivektoriga s ehk sirge kanooniline võrrand x xA y yA z zA = = l m n x xA y yA z zA 31. Sirge võrrand läbi kahe antud punkti A ja B = = xB x A yB y A z B z A
klassis. Esimene kursus kannab pealkirja ,,Vektor tasandil. Joone võrrand" nii laias kui kitsas matemaatikas, kuid erinevused sisus on olulised. Kitsas matemaatikas peab kolmanda kursuse lõpetaja oskama selgitada vektori mõistet ja selle koordinaate; liitma ja lahutama vektoreid ning korrutama vektoreid arvuga nii geomeetriliselt kui ka koordinaatkujul; arvutama vektori pikkust; leidma vektorite skalaarkorrutist ning tundma vektorite ristseisu ja kollineaarsuse tunnuseid. Õpilane koostab sirge võrrandi, kui sirge on määratud punkti ja tõusuga, tõusu ja algordinaadiga või kahe punktiga ning määrab sirgete vastastikuse asendi ja leiab vajadusel nende lõikepunkti. Õpilane tunneb ja joonestab sirgeid, paraboole ja ringjooni nende võrrandite järgi ning koostab ringjoone võrrandi keskpunkti ja raadiuse järgi. Samuti peab õpilane oskama leida joonte lõikepunkte, kui üks joontest on sirge, ja lahendama rakendusliku sisuga ülesandeid vektorite ja joonte võrrandite abil.
Kõik kommentaarid