Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Tabel "sirge" (0)

1 HALB
Punktid

Esitatud küsimused

  • Mis on tõusunurk?
  • Milline on sirge üldkuju?
  • Millal on sirge nurgapoolitaja?
  • Kui see on x- teljega risti?
Tabel-sirge #1
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2009-09-22 Kuupäev, millal dokument üles laeti
Allalaadimisi 35 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor mmust Õppematerjali autor
kokkuvõtlik tabel sirgete kohta, küsimused, vastused, näited, valemid

Sarnased õppematerjalid

thumbnail
14
ppt

Sirge tasandil

Lõigu keskpunkt Punktide A(x1; y1) ja B(x2; y2) vahelise lõigu keskpunkti C koordinaadid on leitavad valemitega 1 1 x0 = ( x2 - x1 ) , y0 = ( y2 - y1 ) . 2 2 y B y2 y0 C y1 A 0 x1 x0 x2 x Sirglõigu ja sirge tõus Positiivset nurka x-telje positiivse suuna ja sirge (sirglõigu) vahel nimetatakse sirge (sirglõigu) tõusunurgaks. Seejuures 0 < 180. Suurust tan nimetatakse sirge (sirglõigu) tõusuks ja tähistatakse tähega k. y (s2) (s1) Tõusva sirge (s1) tõus on positiivne : tan 1 > 0 (0 < < 90°);

Matemaatika
thumbnail
18
ppt

Sirge

Sirge võrrandid Heldena Taperson www.welovemath.ee Sirge tõus • Sirge tõusunurgaks nimetatakse nurka x-telje positiivse suuna ja sirge vahel y s  x NB! Tõusunurk on alati 0o ja 180o vahel. y y s s  x  x Tõusunurk on Tõusunurk on teravnurk – sirge nürinurk – sirge tõuseb langeb y y s

Matemaatika
thumbnail
40
doc

Keskkooli matemaatika raudvara

Kahe vektori ristseisu tunnus..................................................................................................34 Nurk kahe vektori vahel......................................................................................................... 34 Joone võrrand......................................................................................................................... 34 Sirge tõusunurk, sirge tõus..................................................................................................... 34 Tõusu ja algordinaadiga määratud sirge võrrand................................................................... 35 Kahe punktiga määratud sirge võrrand...................................................................................35 Punkti ja sihivektoriga määratud sirge võrrand......................................................................35

Matemaatika
thumbnail
3
doc

Kordamine III(sirge, ringjoon, parabool, vektor)

Kordamine III(sirge, ringjoon, parabool, vektor) 1. On antud kolmnurk tippudega A(1;2), B(4;3) ja C(2;5). Leidke sirgete AB ja AC võrrandid ning lõikepunktid koordinaattelgedega; 2) Leidke läbi tipu C joonestatud küljega AB paralleelse sirge võrrand; 3) Leidke läbi tipu C joonestatud küljega AB ristuva sirge tõus. 2. Lõik otspunktidega on ringjoone diameetriks. Leidke: 1) ringjoone võrrand; 2) sellele ringjoonele punktides (2,5; 4,5) ja (0;2) joonestatud puutujate võrrandid ja nende puutujate lõikepunkt. 3. Tuletage joone võrrand, kui joone iga punkti kaugused punktidest M(0;-3) ja N(2;3) on võrdsed. Näidake, et otsitav joon on lõigu MN keskristsirge. 4. Parabool läbib punkte (-1;0), (5;0) ja (0;-10). Leidke parabooli võrrand ja tema haripunkti

Matemaatika
thumbnail
2
doc

Vektor tasandil ja sirge võrrandid

a b = a b cos - Vektorite skalaarkorrutis a b = a1 b1 + a 2 b2 a1 b1 + a 2 b2 cos = a b - Nurk kahe vektori vahel 2. Sirge võrrandid y 2 - y1 k = tan = - Sirge tõus ja tõusunurk x 2 - x1 y - y1 = k ( x - x1 ) - Punkti ja tõusuga määratud sirge võrrand y = kx + b - Tõusu ja algordinaadiga määratud sirge võrrand

Matemaatika
thumbnail
10
doc

Analüütilise geomeetria valemid

26. Kahe vektori a ja b vektorkorrutise skalaarkorrutist kolmanda vektoriga c nimetatakse vektorite a,b,c segakorrutiseks. V = ( a x b ) c 27. Vektorite komplanaarsuse tingimus ( a x b ) c = 0 X1 Y1 Z1 28. Segakorrutis koordinaatides ( a x b ) c = X 2 Y2 Z2 X3 Y3 Z3 Sirge võrrand ruumis. 29. Sirge parameetriline võrrand. x = xA + tl ; y = yA + tm ; z = zA +tn . 30. Sirge võrrand läbi ühe antud punkti A ja antud sihivektoriga s ehk sirge kanooniline võrrand x ­ xA y ­ yA z ­ zA = = l m n x ­ xA y ­ yA z ­ zA 31. Sirge võrrand läbi kahe antud punkti A ja B = = xB ­ x A yB ­ y A z B ­ z A

Analüütiline geomeetria
thumbnail
10
doc

Analüütilise geomeetria valemid

26. Kahe vektori a ja b vektorkorrutise skalaarkorrutist kolmanda vektoriga c nimetatakse vektorite a,b,c segakorrutiseks. V = ( a x b ) c 27. Vektorite komplanaarsuse tingimus ( a x b ) c = 0 X1 Y1 Z1 28. Segakorrutis koordinaatides ( a x b ) c = X 2 Y2 Z2 X3 Y3 Z3 Sirge võrrand ruumis. 29. Sirge parameetriline võrrand. x = xA + tl ; y = yA + tm ; z = zA +tn . 30. Sirge võrrand läbi ühe antud punkti A ja antud sihivektoriga s ehk sirge kanooniline võrrand x ­ xA y ­ yA z ­ zA = = l m n x ­ xA y ­ yA z ­ zA 31. Sirge võrrand läbi kahe antud punkti A ja B = = xB ­ x A yB ­ y A z B ­ z A

Analüütiline geomeetria
thumbnail
36
pdf

Vektor. Joone võrrand. Analüütiline geomeetria

klassis. Esimene kursus kannab pealkirja ,,Vektor tasandil. Joone võrrand" nii laias kui kitsas matemaatikas, kuid erinevused sisus on olulised. Kitsas matemaatikas peab kolmanda kursuse lõpetaja oskama selgitada vektori mõistet ja selle koordinaate; liitma ja lahutama vektoreid ning korrutama vektoreid arvuga nii geomeetriliselt kui ka koordinaatkujul; arvutama vektori pikkust; leidma vektorite skalaarkorrutist ning tundma vektorite ristseisu ja kollineaarsuse tunnuseid. Õpilane koostab sirge võrrandi, kui sirge on määratud punkti ja tõusuga, tõusu ja algordinaadiga või kahe punktiga ning määrab sirgete vastastikuse asendi ja leiab vajadusel nende lõikepunkti. Õpilane tunneb ja joonestab sirgeid, paraboole ja ringjooni nende võrrandite järgi ning koostab ringjoone võrrandi keskpunkti ja raadiuse järgi. Samuti peab õpilane oskama leida joonte lõikepunkte, kui üks joontest on sirge, ja lahendama rakendusliku sisuga ülesandeid vektorite ja joonte võrrandite abil.

Matemaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun