Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Soojustehnika eksamiküsimused (vastused) - sarnased materjalid

soojus, gaas, termod, ises, soojusl, ringprotsess, rrand, lmutus, avaldis, turbiin, keskk, siseenergia, hiku, steem, erisoojus, lemise, lemine, diagrammil, soojusvaheti, turbiini, rrandi, tuletus, const, kompressor, soojusjuhtivus, elda, ideaalgaas, soojuslik, naamika, ielik, termilise, avaldise, soojuskadu, soojushulk, mehaaniline, soojuskiirgus, tuhk
thumbnail
19
doc

Soojustehnika eksami küsimuste vastused

p1 T1 võrdeliselt absoluutsete temperatuuridega: v=const(isohoorne) p 2 T2 11. Ideaalgaaside segud. Partsiaalrõhu mõiste. Daltoni seadus. Gaasikomponendi suhteline osamass ja suhteline osamaht. *Ideaalgaaside segu on ideaalsete gaaside mehaaniline segu, mille puhul kehtivad samuti idealgaaside olekuvõrrandid. Iga gaas segus võtab enda alla kogu segu mahu ja omandab segu temperatuuri. *Partsiaalrõhk ­ kui iga üksikgaas avaldab anuma seintele kindlat rõhku ja üksikuid gaase millest segu koosneb nim. gaasi komponentideks siis üksiku komponendi rõhku nim. partsiaalrõhuks. * Daltoni seadus ­ gaasi segu rõhk võrdub komponentide partsiaalrõhkude summaga n p p1 p 2 .... p n pi [Pa] i 1 Mi

Soojustehnika
58 allalaadimist
thumbnail
12
doc

Soojustehnika - küsimused vastustused

Entroopia on vastastikustest muundumistest. Termodünaamika hõlmab ekstensiivne suurus. Entroopia kui olekufunktsiooni väärtuse mehaanilisi, soojuslike, elektrilisi, keemilisi, elektromagnetilisi ja määravad kaks meelevaldset olekuparameetrit. Gaasi entroopia muid nähtuseid. Tehnilise termodünaamika põhi ülesanne on väärtus normaaltingimustel loetakse nulliks. teoreetiliste aluste loomine, soojusmootorite, soojusjõu seadmete, soojus transformaatoritele. 4. Isohooriline protsessiks nim. sellist protsessi, kus Termodünaamilise süsteemi all mõistetakse kehade kogu, termodünaamilise süsteemi soojuslikul mõjutamisel selle maht mis võivad olla nii omavahel kui ka väliskeskkonnaga ei muutu. (v=const, dv=0). p1v1=RT1; p2v2=RT2—erimaht=> energeetilises vastumõjus. p1/T1*v=R=p2/T2*v => p1/p2=T1/T2

Soojustehnika
87 allalaadimist
thumbnail
21
doc

Soojustehnika küsimuste vastused

...................................................................................................6 13.Soojushulga määramine entroopia abil (Soojushulga kujutamine TS-diagrammil).........................7 14.Ringprotsessi mõiste (kujutamine olekudiagrammidel PV;TS)(Ringprotsessi termiline-kasutegur) ................................................................................................................................................................7 15.Carnot'i - ringprotsess (PV ja TS diagrammid, termiline kasutegur)...............................................8 16.Erisoojuse def....................................................................................................................................8 17.Soojusmahtuvuse def........................................................................................................................ 8 18.Erisoojuste liigitused ja mõõteühikud......................................................................

Soojustehnika
399 allalaadimist
thumbnail
2
doc

Soojustehnika teooria eksamiks

Tõeliseks erisoojuseks- nim. madalama temp. kehale), sellist ülekande vormi nim. erisoojust, mida keha omab c=dq/dt = limq/t. soojuseks. Soojusvahetus, levi- soojusevormis 13.Termodünaamilise keha entalpia. Entalpia h on ülekantud energiat nim. soojushulgaks. Tähistatakse Q- siseen u ja rõhuenergia pv summa: h=u+pv [J/kg]. [J]. q=Q/M [J/kg]. Arvuliselt on võrdne tööga, mis on vaja, et viia gaas 20.Vee aurustumine. Vee aurustumise all mõistetakse 4. Ideaalne gaas . Selle all mõistetakse gaasi, mis mahuga v vaakumist ruumi rõhuga p. Entalpia antakse sellist TD pr, kus küllastustempl olev vesi muudetakse koosneb elastsetest molekulidest, mille vahel puuduvad keha 1kg kohta. Entalpia on ekstensiivne suurus. isobaarilises kuumutamisprotsessis kuivaks küllastunud jõud

Soojustehnika
725 allalaadimist
thumbnail
24
doc

Soojustehnika eksamiküsimuste vastused

Eksamiküsimuse õppeaines ,,Soojustehnilised mõõtmised", õ-a 2006/2007 Mõõtmiste üldküsimused 1. Mõõtmise mõiste. Mõõtmise meetodid. Mõõtevahendid. Mõõteriist. Mõõteandurid ja mõõturid. Mõõteriistade klassifikatsioon. Mõõtmine on füüsikalise suuruse kvantitatiivne võrdlemine mõõteseadme poolt reprodutseeritava mõõtühikuga. Mõõtmine võib olla otsene või kaudne. Otsesel mõõtmisel määratakse mõõdetava suuruse arvväärtus just selle füüsikalise suuruse mõõtmiseks valmistatud mõõtevahendi abil, kaudsel arvutatakse otsitav suurus mõõdetud otseste suuruste järgi. Mõõtevahend, mis näitab mõõdetava suuruse väärtust, on mõõteriist. Mõõteriist võib olla otselugemmõõteriist, mille lugemisseadis esitab mõõtetulemuse mõõdetava suuruse ühikutes, või võrdlusmõõteriist, mis hangib mõõtetulemuse mõõdetava suuruse mõõtudega võrdlemise teel (nt lauakaal vihtid

Soojustehnika
205 allalaadimist
thumbnail
52
doc

Katlatehnika eksami vastused

vedeliku tootmiseks ja tarbijale edastamiseks. Katlas toimub mingi energialiigi muundamine soojuseks ning vee (või ka termoõli) kuumutamine ja vee aurustamine selle soojuse arvel. Soojuse saamiseks võib kasutada kütuse keemilist energiat, elektrienergiat, otsest päikese energiat jne. Tänapäeval kasutatakse siiski kõige rohkem orgaanilise kütuse energiat. Seepärast vaadeldakse käesolevas konspektis katlaid, kus soojus saadakse orgaanilise kütuse põlemisel. Katel koosneb koldest ja erinevat liiki küttepindadest, mis võivad olla paigutatud ühte või mitmesse korpusesse. Kolle on ettenähtud kütuse põletamiseks ja küttepinnad vabanenud soojuse ülekandmiseks põlemisproduktidelt vedelikule, aurule või põlemisõhule. Aurutootva katla ehk aurukatla küttepinnad ja nende otstarve on järgmised: · toitevee eelsoojendis ehk ökonomaiseris tõstetakse katlasse antud vee

Katlatehnika
82 allalaadimist
thumbnail
90
pdf

Soojustehnika eksami küsimused

) ei muutu, kui süsteem mõjutab teda soojuslikul, mehaanilisel või mõnel muul viisil. Termodünaamilise süsteemi üks lihtne näide on gaas balloonis. Süsteemi ja ümbruskeskkonna vaheline piir on ballooni sisepind, ümbruskeskkonna moodustab aga balloon ise koos seda ümbritseva õhuga. Termodünaamiline süsteem võib olla homogeenne või heterogeenne. Homogeenses süsteemis on aine füüsikalis-keemilised omadused kõigis punktides ühesugused. Sellise süsteemi näiteid on gaas, vesi ja jää. Heterogeenseks nimetatakse süsteemi, mille üksikosade füüsikalis-keemilised omadused on erisugused. Seejuures on süsteemi osad üksteisest eraldatud lahutuspinnaga. Heterogeenne süsteem on näiteks vesi ja jää, aur ja vesi, aur ja jää. Termodünaamiline süsteem võib olla kas materiaalselt suletud või materiaalselt avatud. Süsteem on materiaalselt suletud, kui puudub aine juurdevool süsteemi või äravool sellest, sest siis ei

tehnomaterjalid
121 allalaadimist
thumbnail
75
doc

Soojusautomaatika eksami vastused

Soojusautomaatika eksamiküsimuste vastused 1. Põhimõisted automatiseeritud tootmise alalt. Automaatikasüsteemide klassifikatsioon nende otstarbe järgi. Näited. Automatiseeritud tootmise põhimõisted: 1. Objekt 2. Regulaator 1. Andur 2. Tajur 3. Automaatikasüsteem Automaatikasüsteemide klassifikatsioon otstarbe järgi: 1. Automaatreguleerimise süsteemid (ARS) 2. Distantsioonjuhtimise süsteemid (DJS) 3. Tehnoloogilise kaitse süsteemid 4. Automaatblokeeringu süsteemid (ABS) 5. Reservseadme automaatse käivitamise süsteem (RAKS) 6. Automaatsed tehnoloogilise kontrolli süsteemid (ATKS) 7. Signalisatsioonisüsteemid (SS) valgus ja helisüsteemid 1. Tehnoloogiline SS andmed seadmete töö ja üksikute parameetrite kohta 2. Avarii SS teatavad võimalikest avariilistest olukordadest ja juba tekkinud avariidest 3. tsentraalsed SS on ette nähtud signalisatsioonisüsteemi korrasoleku ja

Soojusautomaatika
106 allalaadimist
thumbnail
13
pdf

Elektrotehnika eksamiküsimused

takistusmoment ajami liikumist, mõnel juhul võib ta aga seda soodustada. Kui inertsimoment on püsiv suurus (J = const), siis muutub valem lihtsamaks: Kui elektriajamis on edasi-tagasi liikuvad osad, siis tuleb momendi asemel vaadelda jõudusid. Analoogselt momendi valemiga saame jõudude tasakaalu valemi Kui mass on püsiva suurusega, siis 32. Elektrimootori soojenemine ja jahtumine. Elektrimasin valmistatakse mitmesugustest soojustehniliselt erinevatest materjalidest. Soojus eraldub mootori välispinnalt kiirguse, soojusjuhtivuse ja õhu liikumise teel. Soojuse ülekanne pöörlevalt osalt seisvale või välispinnalt keskkonda sundventilatsiooni korral on keerukam. Reaalse mootori üksikasjalik soojusarvutus on keerukas. Praktilistes arvutustes vaadeldakse elektrimasinat homogeense tahke kehana, mille temperatuur on ühtne kõigis punktides. Soojussiire väliskeskkonda

Elektrotehnika
506 allalaadimist
thumbnail
25
doc

Katlatehnika kordamisküsimused

antakse üle ökonomaiseris. Seepärast ongi keskrõhu trummelkateldes kasutusel keevad ökonomaiserid. Toitevee temperatuur tõuseb üle küllastuspiiri ning toimub vee osaline aurustumine. Kõrgrõhu trummelkateldes soojuse osa mis on vajalik vee aurustamiseks tunduvalt väheneb ja koldes ülekantud soojusest piisab vajaliku koguse auru saamiseks. Torud aurustus küttepinnas on püsti või väikese kaldega püstloodi suhtes, mitmekordse sundringlusega kateldes ka horisontaalselt. Gaas väljub koldest läbi hõrendatud ekraanpinna 1-4 realise festooni. Festoon on hõre torude kimp katlas. Laskuvad torud on suurema läbimõõduga kui tõusutorud, aga neid on vähem. Loomuliku ringlusega katlas on aurustusküttepinna torud üleval ühendatud põhitrumliga, all alumiste kollektorite või alumise trumliga. Aurustusküttepinna torusid toidavad veega põhitrumli veeruumi ja alumisi kollektoreid ühendavad mittekuumutatavad laskuvtorud

Katlatehnika
75 allalaadimist
thumbnail
54
pdf

SOOJUSTEHNIKA EKSAMI VASTUSED

Soojus ja töö. Energia ülekanne töö vormis- on seotud kehade ümberpaiknemisega ruumis või süsteemiväliste parameetrite muutusega. 2.Energia otsest üleminekut ühelt kehalt teisele ilma väliste parameetrite muutusteta (kõrgema temp. kehalt madalama temp. kehale), sellist ülekande vormi nim. soojuseks. Soojusvahetus, levi- soojusevormis ülekantud energiat nim. soojushulgaks. Tähistatakse Q- [J]. q=Q/M [J/kg]. Ideaalne gaas. Selle all mõistetakse gaasi, mis koosneb elastsetest molekulidest, mille vahel puuduvad jõud. Ideaalse gaasi molekulide endi maht on tühiselt väike, mis võimaldab neid vaadelda materiaalsete punktidena. Gaasi molekulid on pidevas liikumises. Sellist aineosakeste liikumist nimetatakse soojuslikuks liikumiseks. Ideaalses gaasis liigub sirgjooneliselt seni kuni ta põrkub kokku naabermolekuli või gaasi piirava pinnaga. Põrked põhjustavad rõhu, mis ajaühikus jaguneb üle

Soojustehnika
46 allalaadimist
thumbnail
528
doc

Keskkonnakaitse lõpueksami küsimused-vastused

KESKKONNAKAITSE JA KORRALDUS 1. loodus- ja keskkonnakaitse üldküsimused  Keskkonnakaitse: atmosfääri, maavarade, hüdrosfääri ratsionaalse kasutamise ja kaitse, jäätmete taaskasutamise või ladustamise, kaitse müra, ioniseeriva kiirguse ja elektriväljade eest. Keskkonnakaitse on looduskaitse olulisim valdkond.  Looduskaitse : looduse kaitsmist (mitmekesisuse säilitamist, looduslike elupaikade ning loodusliku loomastiku, taimestiku ja seenestiku liikide soodsa seisundi tagamine), kultuurilooliselt ja esteetiliselt väärtusliku looduskeskkonna või selle elementide säilitamine, loodusvarade kasutamise säästlikkusele kaasaaitamine 2. loodus- ja keskkonnakaitse mõiste  Keskkonnakaitse- rahvusvahelised, riiklikud, poliitilis-administratiivsed, ühiskondlikud ja majanduslikud abinõud inimese elukeskkonna saastamise vähendamiseks ja vältimiseks ning l

Keskkonnakaitse ja säästev...
238 allalaadimist
thumbnail
21
docx

Soojustehnika konspekt

Ringprotsesse saab liigitada temperatuur taseme järgi: · Kõrge temperatuuriga protsessiga, kus maksimaalne temperatuur on üle 1000co. · Madalat temperatuuriga protsessid, kus kasutatakse madalal temperatuuril keevaid vedelikke, seal on maksimaalne temperatuur on 30o-70o . Madalatemperatuurilised on soojustransformaatorid protsessid. Tähtsamateks termodünaamika mõisteteks loetakse: 1) Töö ­ L; [J]; l[J/kg] Energiaühik ­ ,,J" 2) Soojus ­ Q[J] 3) Siseenergia ­ U[J] Gaasi või auru siseenergi · Mass · Raskusjõud · Kaal · Ainehulk · Moolmass · Moolmaht Tehnilises termodunaamikas vaadeldakse: Massi, kui keha inertsus omaduste karakteristikut (see tähendab kui inertsi iseloomustajat ja tema mõõtu) seda massinimetatakse inertseks massiks. Vaadeldakse massi konstantse suurusena, määratakse kaalumise teel, kussjuures see mass tasakaalustatakse kalibreeritud vihtide raskustega

Soojustehnika
134 allalaadimist
thumbnail
25
doc

Termodünaamika I eksamiküsimused vastustega

1) Nimetada termodünaamika 3 printsiipi: Termodünaamika esimene printsiip on energia jäävuse seadus, millest järeldub siseenergia U kui olekufunktsiooni olemasolu. Kui ainehulk on jääv, siis siseenergia muutus U=Q- W, kus Q on süsteemi sisestatud soojushulk ja W süsteemi tehtud töö. Termodünaamika teine printsiip määrab iseeneslike protsesside suuna. Klassikalised sõnastused, mille kohaselt soojus ei saa iseenesest minna külmemalt kehalt soojemale ja ei ole võimalik ehitada perioodiliselt töötavat soojusjõumasinat, mille tegevuse ainus tulemus on soojuse muundumine tööks Termodünaamika kolmas printsiip määrab termodünaamilises tasakaalus olevate süsteemide käitumise absoluutse nullpunkti ligidal: tasakaalulises süsteemis on entroopia absoluutse nullpunkti juures süsteemi olekust sõltumatu 2

Termodünaamika
226 allalaadimist
thumbnail
28
docx

Hoone- ja soojusautomaatika

Hoone- ja saoojusautomaatika Soojusmootorid Üldandmed ja mootorite liigitus Kütuse põlemisel silindril paisub gaas paneb enamjuhtudel kolvi liikuma kusjuures ja kolb sooritab kulgliiklemist aga nn rootormootorites on kolb asendatud pöörleva rootoriga. Tavalistes kolbmootorites kus on tegemist kulgliikumisega muudab väntvõllmehhanism selle energia hoorattakaudu pöörlevaks liikumiseks. Mootori pidevaks tööks on vajalik 1. Gaasi jaotusmehhanism(klapid), mis on oluline, sest ta juhib kütuse ja õhu sisselase silindrisse ja heitegaasi eemaldamist silindris. 2. Toitesüsteem 3. Õlitus 4.

Soojustehnika
56 allalaadimist
thumbnail
11
pdf

Termodünaamika eksamiküsimused 2013

Termodünaamika I kordamisküsimused 2013 1. Nimetada termodünaamika kolm printsiipi. Esimene printsiip on energia jäävuse seadus, millest järeldub siseenergia U kui olekufunktsiooni olemasolu. Kui ainehulk on jääv, siis siseenergia muutus U=Q-W, kus Q on süsteemi sisestatud soojushulk ja W süsteemi tehtud töö. Teine printsiip määrab iseeneslike protsesside suuna. Klassikalised sõnastused, mille kohaselt soojus ei saa iseenesest minna külmemalt kehalt soojemale ja ei ole võimalik ehitada perioodiliselt töötavat soojusjõumasinat, mille tegevuse ainus tulemus on soojuse muundumine tööks Kolmas printsiip määrab termodünaamilises tasakaalus olevate süsteemide käitumise absoluutse nullpunkti ligidal: tasakaalulises süsteemis on entroopia absoluutse nullpunkti juures süsteemi olekust sõltumatu 2. Mida uurib statistiline , klassikaline ja tehniline termodünaamika

Masinamehaanika
30 allalaadimist
thumbnail
18
pdf

Füüsika 1 Eksamiküsimuste vastused

Energia füüsikaline suurus, mis iseloomustab keha võimet teha tööd. Seega on energia töö varu. Mõjugu ühtlaselt liikuvale kehale kiirusega ühest ajahetkest alates muutumatu jõud, mis kiirendab seda keha. Jõud teeb seejuures tööd: | | | Tulemuseks on tehtud töö, aga avaldis sisaldab liikumisolekuid iseloomustavaid suurusi. Tehtud töö on kahe suuruse (mida nimetamegi kineetiliseks energiaks) vahe. Kineetiline energia sõltub taustsüsteemi valikust ja on alati positiivne. 35. Lähtudes raskusjõu väljast, tuletage potentsiaalse energia valem. Leiame raskusjõu töö vertikaalselt nivoolt 1 nivoole 2. Tööd tehakse ainult vertikaalsuunas: ( ) ( )

Füüsika
302 allalaadimist
thumbnail
83
doc

Füüsika eksami küsimuste vastused

Elektrolüütides kehtib Ohm'i seadus: 1836. a.,tehes elektrolüüsikatseid erinevate ainetega, avastas M. Faraday kaks lihtsat seadust: 1) Elektroodil eralduva aine mass on võrdeline elektrolüüti läbinud laenguga. 2) Võrdetegur sõltub ainest ja teda nimetatakse elektrokeemiliseks ekvivalendiks. Aine elektrokeemiline ekvivalent on võrdeline aatommassi ning pöördvõrdeline valentsiga. Mõlemad seadused saab kokku võtta ühte valemisse: Gaasid - Definitsiooni järgi koosneb gaas vabadest molekulidest; et need peavad olema elektriliselt neutraalsed, ei saa gaas elektrit juhtida. Et gaasilises keskkonnas tekiks vool, tuleb seal kõigepealt tekitada laengukandjaid. Voolu gaasides nimetatakse elektrilahenduseks (gaaslahenduseks). See lahendus võib olla kaht tüüpi: 1. Sõltuv lahendus, kui laengukandjaid (ioone, elektrone) tekitab mingi kõrvaline allikas (soojus, valgus, radioaktiivne kiirgus).

Füüsika
140 allalaadimist
thumbnail
4
doc

FKI- eksami küsimused/ vastused

w rev - w 0 1. Selgitage järgmisi keemilise termodünaamika kuumemalt kehale külmemale. Kui gaas paisub mahust põhimõisted:termodünaamiline süsteem, vaakumisse siis x suureneb , q paisub, saabub tasakaal. tasakaal,temperatuur. 5. Töö, soojuse ja siseenergia arvutamine ideaalgaasile , kokkusurumisel: Kuidas on defineeritud absoluutne temperatuuriskaala? isotermilise, isokoorilise ja isobaarilise protsessi korral.

Füüsikaline keemia
236 allalaadimist
thumbnail
30
docx

Keemia ja materjaliõpetuse eksami küsimuste vastused

ega kuju). Aur on selline aine gaasilises olekus, mille keemistemperatuur on kõrgem kui toatemperatuur, nt veeaur (st gaasilises olekus olevad ained, mis tavatingimustes on kas vedelad või tahked, nt vesi (vedel), jood (tahke)). Gaaside kõige iseloomulikumaks omaduseks on nende kokkusurutavus ja võime paisuda. Gaasidel ei ole kindlat kuju, nad täidavad anuma, võttes selle kuju. Gaasi ruumala ühtib anuma ruumalaga, milles ta asub. Ruumala sõltub toatemperatuurist ja rõhust. Gaas avaldab anuma seintele püsivat rõhku, mis on kõikides suunades ühesugune. Gaaside käitumist iseloomustatakse kriitilise temperatuuri ja rõhuga. Põhiseadused: Normaaltingimused: T = 273,15 K (0 C); P = 101 325 Pa (1,0 atm; 760 mmHg) V m = 22,4 dm3/mol. Tihedus on suurus, mis on võrdne ruumala ühikus olevate osakeste arvuga, ka mass ruumala ühikus = m/V (kg/m3). Ühe mooli gaasi või auru ruumala normaaltingimustel on 22,4 g/dm 3. Kriitiline

Keemia ja materjaliõpetus
309 allalaadimist
thumbnail
31
docx

Mullateaduse eksamiküsimused ja vastused

Mullateaduse õppeaine kordamisküsimused: 1. Mulla mõiste ja mulla komponendid. Mullaks nimetatakse maakoore pindmist kobedat kihti, mida kasutavad ja muudavad aktiivselt taimed ja muud elusorganismid ning nende laguproduktid kogu ülejäänud keskkonna osalusel ja mõjutusel. Muld on eluta(kivimid) ja elusa looduse vahelüli ning nende pikaajalise vastastiktoime tulemus, mis on vajalik elu eksisteerimiseks maismaal. Muld on taastumatu loodusvara. Mulla komponendid: Õhk(20-30%) ebastabiilne Vesi(20-30%) ebastabiilne Mineraalosa(45%) stabiilne Orgaaniline osa(5%) NB! Olenevalt mullast võib komponentide vahekord eelpool olevast suurel määral erineda! 2. Muldi kujundavad faktorid. Mulla teket ja erengut ehk mulla geneesi mõjutavad paljud tegurid, millest tähtsaimad on järgmised: 1)Lähtekivim 2)rohelised taimed, mikroorganismid ja vähemal määral ka teised elus organismid

Eesti mullastik
71 allalaadimist
thumbnail
46
pdf

Biofüüsika eksami küsimused vastuse valikvariantidega

tuumale kukkuma, tegelikult seda ei juhtu, kuna elektron ei liigu mööda kindlat orbiiti. Tegelikkuses seda ei toimu, sest aatomid on stabiilsed ja tavaliselt ei kiirga energiat. 2) Sama elemendi aatomid on üksteisega eristamatult sarnased. Klassikaline mudel seda ei eelda. Elektron võiks tiirelda igasugustel kaugustel tuumast. Seega peaks ka igasuguse suurusega aatomeid olemas olema. 8. Mis ühendab tööd ja soojust, mis eristab? Töö ja soojus on mõlemad energia ülekande viisid, kuid töö on suunatud vektoriaalne suurus, aga soojus on osakeste kaootiline liikumine. 9. Vaakumis kehtib lainepikkuse λ ja sageduse ν vahel (milline) seos? Kuidas see valem muutub elektromagnetiline laine levib aines? 𝐶(𝑣𝑎𝑙𝑔𝑢𝑠𝑒𝑘𝑖𝑖𝑟𝑢𝑠 𝑣𝑎𝑎𝑘𝑢𝑚𝑖𝑠) 𝜆(𝑙𝑎𝑖𝑛𝑒𝑝𝑖𝑘𝑘𝑢𝑠) = .

Bioloogiline füüsika
29 allalaadimist
thumbnail
32
doc

Eksami küsimuste vastused

Lubja efektiivseks kustutamiseks on otstarbekas hoida temperatuuri 60...800C, et protsessi kiirus oleks tagatud aga ei toimuks ülekuumenemist. Moodustuv lubjataigen on 2...2,5 korda suurema mahuga kui lähtematerjalid. Kustutatud lubi sisaldab ca 80% vett. Lubja jahvatamine enne kustutamist kiirendab kustumist tunduvalt. Jahvatatud lubi kustub 20...30 minutiga ja teda võib segudes kasutada ilma eelneva kustutamiseta. Lubi kustub alles segus ja eraldunud soojus kiirendab segu tardumist. Lubja hüdratatsiooni ja kivinemise protsessid Ca(OH)2 kivinemine seisneb tavalisel temperatuuril veega segatud mördis ümberkristallumise protsessi tekkes, kusjuures tekkinud kristallid kasvavad ja põimudes üksteisest läbi, moodustavad struktuuri. Selle kõrval toimub paralleelne protsess õhus leiduva CO2 toimel, toimub karboniseerumine. Ca(OH)2+CO2=CaCO3+H2O Ca(OH)2 kivinemisel vabaneb palju soojust, vesi aga

Ehitusmaterjalid
594 allalaadimist
thumbnail
31
docx

Materjalide keemia eksamiküsimuste vastused 2015

Mis on abrasiivmaterjalid, nende omadused ja rakendamine? abrasiivmaterjal on suure kõvadusega (Üldiselt Mohsi skaalal 7 ja rohkem) teraline kristalne aine (tihti mineraal), mille osakeste teravad servad kokkupuutes pehmema materjaliga kriimustavad ja kulutavad pinda. Näiteks viilid ei ole abrasiividega seotud, see töötab samal põhimõttel, mis saag. Lisks kõvadusele on tähtis osakese teravus, keemiline stabiilsus hapete, vee jms vastu ning termiline stabiilsus, sest hõõrdumisel tekib soojus ning teatud materjalid võivad hakata sulama. Abrasiive iseloomustab ka võrgusilm, mis näitab auke tolli kohta. Rakendatakse näiteks lihvimisel, poleerimisel, lõikamisel, puurimisel, teritamistel (käiad ja luisud). CaCO3, mis on suhteliselt pehme (Mohsi skaalal 3), kasutatakse näiteks ,,poleerimise" jaoks hambapastas. Pulbrilisi abrasiive kasutatakse eeskätt metallide ja ehitusmaterjalide pindade puhastamiseks. Saab ka saagida kivimeid, kui niisutada traati abrasiivi poolvedela seguga

Materjalide keemia
8 allalaadimist
thumbnail
49
pdf

Keskkonnafüüsika kordamisküsimuste vastused

hõredalt asustatud Galaktika piirkonnas. Gaasipilve kollapsi käigus koondusid ketta tasandisse raskematest elementidest koosnevad ühendid, mis esinesid põhiliselt tolmu kujul. Edasisel suhteliselt kiirel tolmuosakeste kleepumise ning kuhjumise ajajärgul tekkisid suuremad ainekogumid, mis üksteisega põrgates moodustasid aja jooksul praegu tuntud planeedid. Päikese ja planeetide tekkimisest üle jäänud tahke aine on jäänud Päikesesüsteemi tolmu ja väikekehadena, gaas aga puhutud Päikese kiirguse ja päikesetuulte poolt kaugetesse Päikesesüsteemi välisosadesse. Päikesesüsteemi ja teiste kosmiliste objektide päritoluga tegeleb kosmogoonia. o 3. Päikesesüsteemi planeedid. Planeetide liigitus. Planeet on suure massiga taevakeha, mis tiirleb ümber tähe ega tooda termotuumasünteesi abil energiat. Rahvusvahelise Astronoomiauniooni definitsiooni järgi 24. augustist 2006 nimetatakse Päikesesüsteemi planeediks taevakeha, mis 1

Keskkonnafüüsika
111 allalaadimist
thumbnail
11
doc

Keemia ja materjaliõpetuse eksami küsimuste vastused

keemistemperatuur g) koostiselementide või ainete ja lisandite sisaldused h) lisainfo. Gaaside ja aurude korral: (gaasid on ained, mis normaaltingimustes esinevad gaasina ja aurud esinevad normaaltingimustes vedelike või tahkete ainetena) a) sulamis-, keemis-, tahkumis- ja veeldumistemperatuur b)kriitiline temperatuur- temperatuur, millest kõrgemal ei saa gaasi veeldada ilma rõhu kasvamiseta c) kriitiline rõhk- rõhk mille korral gaas on nii gaasilises kui ka vedelas olekus, nende vahel esineb tasakaal. Hapete ja aluste teooria: happed eraldavad ja alused liidavad prootoneid. Kas aine on alus või hape oleneb partnerist: CH3COO(a)+H2O(h)=CH3COOH(h)+OH(a)NH4(h)+ H2O(a)= H2O(h)+ NH4(a); 6. Aatomi, molekuli, iooni jne.: Aatom on keemilise elemendi väikseim osake, mis koosneb positiivse laenguga tuumast ja seda ümbritsevast elektronkattest. Molekul on elektriliselt neutraalne,

Keemia ja materjaliõpetus
369 allalaadimist
thumbnail
9
doc

Meditsiinifüüsika kordamisküsimuste vastused

jooksul. Meeste normaalne veresete on La 3...9 mm ja naistel La 6...12 mm 61.Termodünaamika 1.seadus. Termodünaamika 2.seadus. I : Energia jäävuse seadus ­ soojusnähtuste ja protsentide jaoks Q = U ­ A. Süsteemile juurdeantav Q läheb süsteemi U suurendamiseks ja A'ks. Kui Q=U, siis A=-U. II: Protsessid on pöördumatud, kindla suunaga ja seotud ajaga. Tagasi minna ei saa. Protsesside kulgemine looduses iseenesest. Soojus ei saa iseenesest külmemalt kehalt soojemale minna. Suletud süsteem püüab üle minna korrastatud olekult mittekorrastatule. See on loomulik. Loodus püüab üle minna vähem tõenäoliselt olekult tõenäolisemale. 62.Mõisted: siseenergia, soojusmahtuvus, erisoojus, entroopia ja nende ühikud. Siseenergia on molekulide kineetiline ja potentsiaalne energia. Soojusmahtuvus ­ soojushulk, mida on vaja antud ainekoguse temepratuuri tõstmiseks 1 kraadi võrra. J/K

Füüsika
16 allalaadimist
thumbnail
49
pdf

Füüsika I kordamisküsimuste vastused

Joonis ja valem. Inertsimoment mistahes pöörlemistelje suhtes võrdub inertsimomendiga raskuskeset läbiva, pöörlemisteljega paralleelse telje suhtes, millele on liidetud keha massi korrutis raskuskeskme ja pöörlemistelje vahelise kauguse ruuduga. 54. Mis on jõumoment? Valem ja joonis vektorite kohta. Jõu pöörava toime iseloomustamiseks kasutatakse jõumomenti. Jõumoment on jõu ja õla korrutis. 55. Lähtudes töö avaldisest kulgliikumisel, tuletage töö avaldis pöördliikumisel. Tehke joonis. dr vektor df vektoriks 56. Lähtudes töö avaldisest pöördliikumisel, tuletage võimsuse arvutamise valem pöördliikumisel 57. Mis on impulssmoment? Valem ja kujutage vektorid joonisel. Impulssmoment on kehade pöörlemise ja tiirlemisega määratud suurus. <-- keha puhul 58. Lähtudes impulssmomendi kahest definitsioonist tuletage pöördliikumise põhiseadus kahel kujul (Newtoni II seadus).

Füüsika
79 allalaadimist
thumbnail
11
doc

Eksami kordamisküsimuste vastused

jaotunud teises aines; lahustunud aine osakesed on aatomitest, molekulidest ja ioonidest tunduvalt suuremad agregaadid, süsteem on heterogeenne ja suhteliselt ebapüsiv ­ seismisel võib tekkida värvuse muutus, hägu või sade. Näiteks: piim (emulsioon - dispergeeritud aine olek vedel, dispersioonikeskkond vedel), suits (aerosool - dispergeeritud aine olek tahke, dispersioonikeskkond gaas), laava (tahke vaht ­ dispergeeritud aine olek gaas, dispersioonikeskkond tahke). Lahustuvus ­ aine max kogus, mis lahustub kindlas koguses lahustis antud temp ja rõhul. Tahkete ainete lahustuvus vees üldjuhul suureneb temp tõusuga. Gaaside lahustuvud vees temp tõusuga üldiselt väheneb ja rõhu suurenemisega kasvab. 5. Mool ­ aine hulk, mis sisaldab Avagadro arv loendatavat osakest. Kasutatakse reaktsioonides loendamiseks. Aatommassiühik ­ aatomi masside mõõtmiseks ning näitavad kui vähe aatomid kaaluvad.

Keemia alused ii
181 allalaadimist
thumbnail
22
doc

Keemia alused Eksami kordamisküsimuste vastused

jaotunud teises aines; lahustunud aine osakesed on aatomitest, molekulidest ja ioonidest tunduvalt suuremad agregaadid, süsteem on heterogeenne ja suhteliselt ebapüsiv – seismisel võib tekkida värvuse muutus, hägu või sade. Näiteks: piim (emulsioon - dispergeeritud aine olek vedel, dispersioonikeskkond vedel), suits (aerosool - dispergeeritud aine olek tahke, dispersioonikeskkond gaas), laava (tahke vaht – dispergeeritud aine olek gaas, dispersioonikeskkond tahke). Lahustuvus – aine max kogus, mis lahustub kindlas koguses lahustis antud temp ja rõhul. Tahkete ainete lahustuvus vees üldjuhul suureneb temp tõusuga. Gaaside lahustuvud vees temp tõusuga üldiselt väheneb ja rõhu suurenemisega kasvab. 5. Mool – aine hulk, mis sisaldab Avagadro arv loendatavat osakest. Kasutatakse reaktsioonides loendamiseks. Aatommassiühik – aatomi masside mõõtmiseks ning näitavad kui vähe aatomid kaaluvad.

Keemia
10 allalaadimist
thumbnail
33
doc

Konspekt 2 vaheeksami küsimused ja vastused

R - gaasijoa pöörlemisraadius, m. Tegur 2/R on tsentrifugaaltegur, mis iseloomustab osakese sadenemiskiiruse suurenemist võrreldes gravitatsioonilise sadenemidega. Tsükloni arvutuse lähteandmed on: - gaasi mahtkiirus ja füüsikalised omadused - tolmu sisaldus ja osakeste suuruse jaotus - vajalik puhastusaste. Arvutuste alusel määratakse tsükloni diameeter D ja selle alusel valitakse tsükloni tüüp ülejäänud standardmõõtmetega. Tolmune gaas siseneb tsüklonisse suure kiirusega (15-25 m/s) puutuja suunas ja liigub spiraalset trajektoori mööda alla. Tolmuosakesed paiskuvad tsentrifugaaljõu mõjul vastu tsükloni seinu ja kaotanud kiiruse, vajuvad mööda tsükloni alumist koonilist osa alla. Puhastatud gaas tõuseb üles ja väljub kesktoru kaudu. Tsükloni puhastusaste oleneb tolmuosakestele mõjuva tsentrifugaaljõu suurusest ja kasvab viimase kasvades.

Ökoloogia ja...
309 allalaadimist
thumbnail
80
pdf

Üldkeemia kordamisküsimuste vastused

Tahked kehad säilitavad kindla temperatuuri juures kuju ja ruumala. Vedel Üksikud molekulid pole seotud kindlate asenditega. Aurumine - vedelik saab väljaspoolt soojust, mille käigus osad molekulid omandavad suure energia, et saavad vedelikust lahkuda. Gaasiline Aine molekulid/aatomid liiguvad täiesti vabalt ja korratult. Pole kindlat ruumala ega kuju. Plasmaolek Aine koosneb elektriliselt laetud või neutraalsetest aatomitest ning vabadest elektronidest. Ioniseeritud gaas, kus on positiivse laenguga ioonid ja negatiivse laenguga elektronid. 15. Termodünaamika I seadus · Energia ei teki ega kao, vaid muundatakse mingiks teiseks vormiks. · Suletud süsteemi siseenergia väheneb, kuna soojus, mis läheb välja (ekso), ning töö, mida süsteem teeb, on negatiivsed; s.t süsteemi energia muutub. · Isoleeritud süsteemi siseenergia ei muutu, sest energiaülekanne puudub. · Tsüklilises protsessis on süsteemi töö võrdne

Keemia
18 allalaadimist
thumbnail
32
doc

Biokeemia kordamisksimuste vastused

elusrakus: a) sama b) negatiivsem c) positiivsem (võivad olla erinevad reaktsioonid) Entalpia on olekufunktsioon ehk sõltub ainult süsteemi olekust, mitte selle saavutamise viisist. Hoopis teine küsimus on, kui palju reaktsiooni käigus vabanevast energiast organism ära suudab kasutada. 2. Vette asetatud jäätükk sulab. Miks ei ole võimalik olukord, kus jäätükk muutuks veelgi külmemaks ümbritsev vesi aga soojemaks? Sest isevooluliselt liigub soojus alati soojemalt kehalt külmemale (termodünaamika II seadus) S.t. soojem keha (vesi) annab energiat külmemale kehale (jää), kristallid lõhutakse ja sulab ära. 3. Vee jäätumisel tema korrapära kasvab (S < 0). Kuidas on võimalik vee jäätumine? Vee jäätumisel tema korrapära kasvab ehk S<0. Avatud süsteemi isevoolulised protsessid toimuvad vabaenergia vähenemise suunas (G<0). Selleks,et G oleks negatiivne, peab H<0 ning seega tingimuseks on see,et protsess

Biokeemia
28 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun