Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Soojus õpetus - sarnased materjalid

gaas, soojushulk, molaarmass, siseenergia, ainekoguse, const, termodünaamika, balloon, kraad, ühelt, aurustumine, kütteväärtus, soojusõpetus, kelvin, paskal, dzaul, gaasikonstant, molekulaarfüüsika, parameeter, temperatuuriskaala, atmosfäär, baar, olekuvõrrand, isoprotsess, erisoojus, kolmes, sulamine, sulamissoojus, kondenseerumine
thumbnail
15
doc

Soojusõpetus

Soojusõpetus. 1. Mikroparameetrid, makroparameetrid. Soojusliikumine. Soojusnähtusi kirjeldatakse parameetrite abil. Parameetriks nimetatakse ühelaadseid, olekuid või protsesse kirjeldavat suurust, mille iga väärtus määrab mingi kindla objekti, oleku või protsessi. Makroparameetrid on füüsikalised suurused, mida kasutatakse ainekoguse kui terviku kirjeldamisel. Nendeks on näiteks ainekoguse mass, rõhk, ruumala, temperatuur. Mikroparameetrid on füüsikalised suurused, mida kasutatakse aine üksiku molekuli kirjeldamisel. Nendeks onnäiteks molekuli mass, molekuli kiirus. Soojusnähtusi seletatakse molekulaarkineetilise teooria või termodünaamika abil. Esimene kasutab peamiselt mikroparameetreid, teine makroparameetreid. Molekulaarkineetilise teooria põhialused põhinevad kolmel väitel: a) Aine koosneb molekulidest.

Füüsika
178 allalaadimist
thumbnail
13
doc

Soojusfüüsika

Parameetreid jaotatakse makro- ja mikroparameetriteks. Termodünaamika käsitleb kehade kogumeid, mis on soojuslikus kontaktis, st saab toimuda soojusvahetus. Neid kogumeid nimetatakse termodünaamilisteks süsteemideks. Kui süsteemi parameetrid muutuvad, siis süsteem läheb ühest olekust teise, st süsteemi parameetrid muutuvad. Sellist üleminekut nimetatakse protsessiks. Ajalooliselt on vanimtermodünaamika ja sellepärast alustamegi sellest. 4.1. Termodünaamika Termodünaamika kasutab nähtuste kirjeldamiseks makroparameetreid, milleks on füüsikalised suurused, mida kasutatakse ainekoguse kui terviku soojusliku oleku kirjeldamisel. Nendeks on suurused, mida on võimalik hõlpsasti mõõta, näiteks ainekoguse mass, rõhk, ruumala, temperatuur . Suurusi rõhk, ruumala ja temperatuur nimetatakse ka olekuparameetriteks. Olek ei tähenda siin mitte agregaatolekut, vaid ainekoguse seisundit, mis on määratud olekuparameetrite p, V ja T konkreetsete

Füüsika
27 allalaadimist
thumbnail
10
odt

Füüsika 10. klassi teemad

· V(ruumala) konsentratsioon) Kui üht olekuparameetrit. · T(abs. Temperatuur) · v(molekulide muuta, siis muutub vhmlt · (tihedus) keskmine kiirus veel üks ja seega ka olek. Molekul- molekulaarfüüsikas vähim osake, millest ained koosnevad ja mis on pidevas kaootilises liikumises Temperatuur- iseloomustab keha soojuslikku seisundit; molekulide liikumise keskmise kineetilise energia ja siseenergia mõõt (t) Absoluutne temperatuur- temperatuur Kelvini skaalal (T) Absoluutne nulltemperatuur- temperatuur, mille saavutamisel molekulid lakkavad liikumast Ideaalne gaas- lihtsaim mudel gaasi kirjeldamiseks, milles ei arvestata molekulide mõõtmeid ja vastastikmõju Mool- ainehulk, mis sisaldab Avogadro arvuga võrdse arvu molekule või aatomeid (mol) Avogadro arv- aatomite või molekulide arv ühes moolis aines (N A) Molaarmass- ühe mooli aine mass (M)

Füüsika
60 allalaadimist
thumbnail
5
doc

Termodünaamika alused ( kokkuvõte)

Termodünaamika alused Siseenergiaks nim. keha molekulide kineetilise ja potentsiaalse energia summat. Siseenergia levimist ühelt kehalt teisele nim. soojusülekandeks. Soojusülekandes levib siseenergia soojemalt kehalt või kehaosalt külmemale. Seejuures soojema keha siseenergia väheneb ja külmema keha siseenergia suureneb. Soojusülekanne kestab seni, kuni kehade temp. saavad võrdseks. Soojusülekande liigutus: ¤Soojusjuhtivuseks nim. soojusülekannet, kus energia levib ühelt aineosakeselt teisele molekulidevaheliste põrgete tõttu, ilma et aine ümber paikneks. ¤Konvektsiooniks nim. soojusülekannet, kus energia levib gaasi-või vedeliku liikumise tõttu. ¤Soojuskiirguseks nim. soojusülekannet, kus energia levib elektromagnetlainete kiirgamise ja neelamise tõttu. Kui kontaktis olevate kehade makroparameetrid ei muutu, nim. kehi soojuslikus ehk termodünaamilises tasakaalus olevaiks.

Füüsika
39 allalaadimist
thumbnail
13
docx

Konspekt füüsika eksamiks!

võrra. Suund on vastupidine deformatsiooni põhjustavale jõule e. ,,­,, märk Hooke'i seaduses. Hõõrdejõud ­ jõud, mis tekib keha liikumisel mööda pinda, on suunalt vastupidine keha liigutava jõuga. Keha liikumahakkamist takistab seisuhõõrdejõud. Liugehõõrdejõud Hõõrdumise põhjused: 1) Pindade konarused 2) Kehade aineosakestevahelised tõmbejõud Hõõrdumise ületamiseks tehtav töö kulub kehade siseenergia suurendamiseks (kehade soojendamiseks) Üleslõkkejõud ­ vedelikku sukeldatud kehale mõjuv jõud, mis on võrdne keha poolt väljatõrjutud vedelikule mõjuva raskusjõuga. Archimedese seadus: (Va < V) ­ keha ujub (Va = V) ­ keha heljub (Va > V) ­ keha upub Impulss e liikumishulk ­ keha massi ja kiiruse korrutis; vektoriaalne suurus, mille suund ühtib kiirusvektori suunaga.

Füüsika
122 allalaadimist
thumbnail
4
doc

Termodünaamika

TERMODÜNAAMIKA 1. Tuletada ideaalse gaasi siseenergia valem ja sõnastada lõpptulemus. m0 v 2 3 U = NE k = N = kTN Ideaalse gaasi siseenergia ei sõltub ainult temperatuurist ning ei sõltu gaasi 2 2 ruumalast ega rõhust. 2. Kirjuta energia jäävuse seaduse üldine sõnastus. Energia ei teki ega kao, ta võib vaid muunduda ühest liigist teise ning kanduda ühelt kehalt teisele. 3. Tuletada ideaalse gaasi poolt tehtava töö seos gaasi ruumala isobaarilisel muutumisel. Gaas saab teha tööd siseenergia arvelt. Olgu kolvis oleva gaasi rõhk p ning selle ristlõikepindala S. Leiame mehaanilise töö gaasi paisumisel.Eeldame, et tegu on isobaarilise protsessiga. Ag = F s cos F p = F = p S Ag = p s ( h 2 - h 2 ) Ag = p V S s = h2 - h2 Avj =-Ag ; Avj = Ag 4. Põhjenda, millal teeb gaas

Füüsika
56 allalaadimist
thumbnail
11
docx

Tallinna Polütehnikumi I kursuse 2009. aasta eksami küsimused ning vastused.

kuni talle ei mõju mingi jõud või mõjuvad jõud on tasakaalus. Füüsikaliselt kõige lihtsamalt kirjeldatav liikumine: trajektoor on sirge, kiirus ei muutu, st. vk = v. Tegelikkuses on ühtlast sirgliikumist väga raske saavutada., kiirus saab olla muutumatu ainult mingil lõigul, sest liikumise alguses ja lõpus peab kiirus olema ikkagi null (keha hakkab liikuma ja jääb seisma). Ühtlasel liikumisel läbitakse mistahes võrdsetes ajavahemikes võrdsed teepikkused: v = const. ; a = 0, sest Dv = 0. 6.Ühtlaselt muutuv sirgliikumine Trajektoor on sirge, kuid kiirus muutub nii, et kiiruse muutus mistahes võrdsetes ajavahemikes on ühesugune. Ehk teisiti öelduna: kiirendus on muutumatu. Nihe võrdub teepikkusega. Sirgliikumise korral pole vaja vektorimärke kasutada, asja saab lahendada "+" ja "­" märkidega. Ilma algkiiruseta liikumisel on v = at. Algkiirusega v0 liikudes on v = v0 ­ at. Kuidas leida läbitud teepikkust või nihet, mis on antud juhul võrdsed

Füüsika
232 allalaadimist
thumbnail
4
doc

Soojusnähtused

Soojusnähtused. 1. Siseenergia olemus ja selle muutmise viisid: Siseenergia – keha molekulide kineetilise ja nende vahelise vastastikmõju potentsiaalse energia summa a. Soojusülekande teel – Q=∆U (∆U – siseenergia muut) (Q – soojushulk – iseloomustab soojusvahetuse teel ülekantud energia hulka) Soojendamine – Q>0 ∆U>0 Jahutamine – Q<0 ∆U<0 Soojusjuhtivus – soojusenergia kandumine kuumemalt kehalt külmemale kehale aineosakeste vastasmõju tagajärjel (metallid) Konvektsioon – aine liikumisega kaasnev soojuse levimine vedelikus või gaasis Soojuskiirgus – soojuse levimine kehade poolt kiiratava, temperatuurist sõltuva elektromagnetkiirguse mõjul b

Füüsika
8 allalaadimist
thumbnail
9
doc

10klassi füüsika

· Mehaaniline koguenergia- keha energia võib samaaegselt koosneda kineetilisest ja potentsiaalsest energiast. · Mehaanilise energia jäävuse seadus ­ isoleeritud süsteemis, kus mõjuvad ainult konservatiivsed jõud võivad kineetiline ja potentsiaalne energia muunduda teineteiseks, aga nende summa ei muutu. · Energia jäävuse seadus ­ energia ei saa tekkida ega kaduda. Ta võib muunduda ühest liigist teise või kanduda ühelt kehalt teisele. 9. · Pöördenurk on nurk, mille võrra pöördub ringliikumises oleva keha trajektoori raadius mingi aja jooksul. Tähis: (fii) Ühik: rad (radiaan) Põhivalem: = l / r , kus l on kaare pik Nurkkiirus on füüsikaline suurus, mis näitab raadiuse pöördenurka ajaühiku kohta. Tähis: (omega) Ühik: rad/s (radiaani sekundis) Põhivalem: = / t, kus (fii) on pöördenurk ja t on aeg = 2f ,kus ja r on raadius

Füüsika
366 allalaadimist
thumbnail
2
doc

Mehaanika ja soojuse valemid

Gravitatsiooniseadus m1 m 2 F G G ­ gravitatsioonikonstant r2 Suletud süsteemi moodustavate kehade impulsside summa ei muutu nende vastastikmõju tulemusel. Impulsi jäävuse seadus p const p mv ­ keha impulss Elastsusjõud on võrdeline pikenemisega. Hooke'i seadus Fe kx k ­ keha jäikus (1N/m), x ­ keha deformatsioon e. pikenemine (1m) Toereaktsioon N mg cos mg ­ raskusjõud, ­ kaldenurk Amontons'i-Coulomb'i seadus Fh N Liugehõõrdejõud on võrdeline toereaktsiooniga.

Mehaanika ja soojuse valemid
20 allalaadimist
thumbnail
66
docx

Füüsika I konspekt

Põrkudes omavahel ning anuma seintega, muutuvad nii kiiruse väärtus kui ka liikumise suund pidevalt. Igas sekundis toimub ühe molekuliga umbes 10^9 põrget. 6. IDEAALSE GAASI OLEKUVÕRRAND. ISOPROTSESSIDE GRAAFIKUD. Ideaalse gaasi olekuvõrrandiks nim seost p=nkT, kus n on molekulide kontsentratsioon, k Boltzmanni konstant ja T gaasi absoluutne temperatuur. Ideaalse gaasi olekuvõrrandi saab esitada ka ainult makroparameetrite abil: pV=m/M*RT, kus m on gaasikoguse mass, M molaarmass, R universaale gaasikonstant 8,31 J/(mol*K), T gaasi absoluutne temp. p  const V  f (T ) 1. ehk isobaariline protsess ehk Gay-Lussac’i seadus, mida kirjeldab seos V1 V2 V    const T1 T2 T 14 V  const p  f (T ) 2

Füüsika
72 allalaadimist
thumbnail
1
docx

Aineosakeste kineetiline potensiaalne energia

100 kraadi. Nende vahe oli jaotatud 100 võrdseks osaks. Ebamugav oli praktikas seda kasutada, mille tulemusel C.Linne keeras skaala ringi, võttes jää sulamistemperatuuri võrdseks 0 kraadiga ja vee keemispunkti +100 kraadiga, millest sai kõige enam kasutatava skaalaga termomeeter. 2)Fahrenheiti skaala võttis kasutusele füüsik D.G.Fahrenheit. Loodud soojuspaisumisel põhineva termomeetri üks skaalajaotis, Fahrenheiti kraad, võrdub 1/180 vee keemispunkti ja jää sulamispunkti temperatuuride vahest normaalrõhul. °F.Skaala koostamise kohta on erinevaid versioone.Jää sulamispunkt on 32 ja vee keemispunkt 212.3)Kelvini temperatuuriskaala ehk absoluutne, termodünaamiline temp.s. võttis kasutusele i.k. William Thomson(lord Kelvin). Algpunktiks on absoluutne nulltemp.ja selles võib temp olla ainult positiivne.T Kasutatakse SI-süsteemis.1 kelvin on 1/273,15 vee kolmpikpuntki termodünaamilisest temperatuurist

Füüsika
3 allalaadimist
thumbnail
10
docx

Füüsika mõisted ja valemid

A= F*s 1J on töö, mida teeb 1N suurune jõud liigutades keha 1m. Elastsusjõu töö ­ Võimsus ­ Näitab, kui palju tööd tehakse ajaühikus. N=A/t ; N=Fv Kineetiline energia ­ Liikuv keha energia. Ek=mv2/2 Potsensiaalne energia ­ Keha võib, aga ei pruugi teha tööd.Ep=mgh Energia- Keha või kehade võime teha tööd. Energia jäävuse seadus ­ Energia ei saa tekkida ega kaduda. Ta võib muunduda ühest liigist teise või kanduda ühelt kehalt teisele.E=const Perioodilised liikumised Pöördenurk ­ nurk, mille võrra pöördub ringjooneliselt liikuv keha ja trajektoori keskpunkti ühendav raadius. fii =l/r Radiaan ­ Üks radiaan on kesknurk, mis vastab ringjoone kaarele, mille pikkus on võrne selle ringjoone raadiusega. (Kraadi ja radiaani seos) Nurkkiirus ­ on füüsikaline suurus, mis näitab raadiuse pöördenurka ajaühiku kohta. l = 2f = =

Füüsika
70 allalaadimist
thumbnail
76
pdf

Soojusõpetuse konspekt

Tallinna Ülikool Matemaatika ja Loodusteaduste Instituut Loodusteaduste osakond Soojusõpetuse lühikonspekt Tõnu Laas 2009-2010 2 Sisukord Sissejuhatus. Soojusõpetuse kaks erinevat käsitlusviisi.......................................................................3 I Molekulaarfüüsika ja termodünaamika..............................................................................................4 1.1.Molekulide mass ja mõõtmed....................................................................................................4 1.2. Süsteemi olek. Protsess. Tasakaaluline protsess.......................................................................4 1.3. Termodünaamika I printsiip.....................................................................................................

Füüsika
31 allalaadimist
thumbnail
18
pdf

MOLEKULAARFÜÜSIKA ALUSED

KOOLIFÜÜSIKA: SOOJUS 1 (kaugõppele) 4. MOLEKULAARFÜÜSIKA ALUSED Molekulaarfüüsika käsitleb soojusprotsesse, lähtudes aine koosseisu kuuluvate aatomite (molekulide) soojusliikumisest. Gaaside kirjeldamisel kasutame ideaalse gaasi mudelit. Ideaalse gaasi korral jäetakse molekulidevahelised jõud arvestamata, mistõttu gaasi siseenergia on gaasi molekulide summaarne kineetiline energia. Gaasid tavatingimustes (veeldumistemperatuurist kõrgematel temperatuuridel ja normaalsetel rõhkudel) on küllalt hästi vaadeldavad ideaalse gaasina. 4.1 Mool, molaarmass, ühe molekuli mass Mool on SI-süsteemi ainehulga ühik. Mool on süsteemi ainehulk, mis sisaldab sama palju elementaarseid koostisosakesi, nagu on aatomeid 0,012 kilogrammis ¹²C (süsiniku isotoobis massiarvuga 12). Mooli kasutamisel peab täpsustama

Füüsika
60 allalaadimist
thumbnail
57
rtf

TEHNILINE TERMODÜNAAMIKA

TEHNILINE TERMODÜNAAMIKA SISSEJUHATUS Termodünaamika on teadus energiate vastastikustest seostest ja muundumistest, kus üheks komponendiks on soojus. Tehniline termodünaamika on eelmainitu alaliigiks, mis uurib soojuse ja mehaanilise töö vastastikuseid seoseid. Tehniline termodünaamika annab alused soojustehniliste seadmete ja aparaatide (näiteks katelseadmete, gaasiturbiinide, sisepõlemismootorite, kompressorite, reaktiivmootorite, soojusvahetusseadmete, kuivatite jne.) arvutamiseks ja projekteerimiseks. Tehniline termodünaamika nagu termodünaamika üldse tugineb kahele põhiseadusele. Termodünaamika esimene seadus on energia jäävuse seadus, rakendatuna soojuslikele protsessidele, teine seadus aga määrab kindlaks vahekorra olemasoleva soojuse ja temast

Termodünaamika
17 allalaadimist
thumbnail
14
docx

Füüsika teise suulise arvestuse teooriapiletid

Vahelduv töö, kui paigal olevat juhti läbib vool, eraldub temast elektrivoolutööga võrdne soojushulk.Q=A=IUT=I2Rt *Efektiivne pinge- vahelduvvoolu pinge muutus ajas. Koduse pisikupesa klemmidel 230V, teataval hetkel on vastava siinuseliselt muutuva pinge max väärtus ruutjuur2 X korda suurem. *Efektiivne voolutugevus- Vahelduvvoolu efektiivväärtuseks nimetatakse sellist alalisvoolu tugevust, mille korral eraldub vahelduvvooluringis võrdse aja jooksul sama suur soojushulk kui alalisvoolu korral. I=Im/ruutjuur2 *Efektiivne võimsus- muutuv elektrivool PILET2 1.Kuidas jaotatakse materjalid elektrijuhtivuse järgi? Kolmeks: Pooljuhid,mille elektrijuhtivus pole niivõrd hea(räni), dielektrikud, mille vabade laengute kandjate arv on väike e. Juhib halvasti(kumm,klaas), juhid, mis juhivad elektrit hästi,see sisaladab rohkelt vabalt liikuvaid lanenguga osakesi(vask) 2.Elektrivoolu töö ja võimsuse arvutamine.

Elektriõpetus
9 allalaadimist
thumbnail
2
doc

Soojustehnika teooria eksamiks

vahemikus 0- kindlaks töötava keha oleku. Intensiivseteks nim. siseenergiaks, mis on keha molekulide kulg -ja 100C, alla 0 on ta tahkes ja üle 100 gaasilises. Aine selliseid töötava keha parameetreid, mis ei sõltu pöörlemisliikumiseenergia, aatomite võnkumisenergia jt. faasilise oleku väljendamiseks kasut. faasimuutuse termodün.süsteemis oleva keha massist või osakeste energiate summa. siseenergia antakse tavaliselt keha 1kg diagramme. Nt. pt- diagramm, Ts- diag., Pv, hs- diag. arvust. Intensiivne parameeter on nt. rõhk ja temp. kohta. Siseenergia on ekstensiivne suurus. Siseen. kui Aditiivseteks e. ekstensiivseteks termodün parameetriteks olekufunktsiooni väärtuse määravad keha kaks on parameetrid, mis on proport-sionaalsed süsteemis meelevaldset olekuparameetrit, sagedamini valitakse olevate kehade massiga või osakeste arvuga. Nt

Soojustehnika
727 allalaadimist
thumbnail
2
odt

Molekulaarfüüsika alused

FÜÜSIKA I KONTROLLTÖÖ (II KURSUS) 1) Mis on molekulmass, tema tähis ja ühik? Molekulmass on ühe molekuli mass. Tähis ­ m0 Ühik ­ 1 kg 2) Mis on mool, tema tähis? 1 mool on ainehulk, milles on Avogadro arv molekule. Tähis ­ 1 mol 3) Ainehulga mõiste, tähis ja ühik? Ainehulk, näitab, mitu mooli on ainet. Tähis ­ (nüü) Ühik ­ 1 mol 4) Molaarmass, tähis, ühik ja seos molekulmassiga. Molaarmass on 1 mooli aine mass. Tähis ­ M Ühik ­ kg/mol Seos molekulmassiga: M = m0 NA 5) Molekulide konstruktsioon, tema definitsiooni valem ja ühik. Molekulide konstruktsioon näitab 1 m³ olevate molekulide arvu. Tähis ­ n Ühik ­ 1/m³ n = N:V 6) Mis on mikroparameetrid? Too näiteid nende kohta. Ikroparameetrid on molekuli iseloomustavad parameetrid. Näited: M ­ molaarmass; m - 1 molekuli mass; n ­ molekulide konstruktsioon jne...

Füüsika
193 allalaadimist
thumbnail
4
doc

10. klassi soojusõpetuse mõisted

FÜÜSIKA Molekulaarkineetilise teooria 3 põhieeldust a) Gaas koosneb molekulidest b) Molekulid on pidevas kaootilises liikumises c) Molekulide vahel on vastastikmõju Makroparameetrid- Füüsikalised suurused, mille abil ainet makroskoopiliselt kirjeldatakse. ( gaasikoguse m, p, V, T) Olekuparameetrid- Makroparameetrid p, V ja T Mikroparameetrid- Füüsikalised suurused, mida kasutatakse mikrokäsitluses. Iseloomustavad ainet molekulaarsena

Füüsika
49 allalaadimist
thumbnail
4
doc

Füüsika

Mool on sellise süst ainehulk, kus osakeste arv võrdub 0,012 kg süsiniku aatomite arvuga. Aine molekulide hulga N ja ainehulga V suhet nim Avogaadro arvuks. See näitab, mitu aatomit või molekuli on ühes moolis aines. Molaarmassiks M nim suurust, mis võrdub aine massi m ja ainehulga V suhtega. Molekuli massi m0 tuleb keha mass m jagadasselle keha molekulide arvuga. St; molekuli massi leidmiseks tuleb teada selle molaarmassi M ja Avogaadro arvu. Ideaalse gaasi olekuvõrrand. Ideaalne gaas ­ gaas, kus molekulide vahlised tõmbejõud puuduvad, tõukejõud mõjuvad aga molekulide omavahelisel põrkumisel ja põrkumisel vastu anuma seina. Ideaalse gaasi olekuvõrrand seob 3e gaasi parameetrit: See on Clapeyroni võrrand. Nende 3e suuruse vaheline seos on konstantnesuurus, mis on ühe mooli gaasi puhul kõikidel gaasidel ühesugune. Seda nim unevrsaalseks gaasi konstandiks ja tähis on R. Medeleejev andis olekuvõrranditele sellise kuju: See on Medeleejevi Clapeyroni võrrands.

Füüsika
109 allalaadimist
thumbnail
5
docx

Füüsika Mõisted

Vabade laengukandjate tekitamist soodustavad lisandained pooljuhtides. Alfakiirgus kujutab endast osakeste voogu. Alfaosake koosneb kahest prootonist ja kahest neutronist, st. on samasuguse ehitusega nagu heeliumi aatomi tuum. Beetakiirgus kujutab endast kiirelt liikuvate elektronide voogu. Bohri aatomimudel tugineb postulaatidele. Aatomis tiirlevad elektronid ümber tuuma ringorbiitidel ilma energiat kiirgamata. Neid orbiite nimetatakse statsionaarseteks orbiitideks. Elektroni üleminekul ühelt statsionaarselt orbiidilt teisele aatom kiirgab või neelab kindla sagedusega elektromagnetilist kiirgust. Kiiratud või neelatud footoni energia on määratud täisarvuga n, mida nimetatakse peakvantarvuks. Coulomb'i seadus: Kaks punktlaengut q1 ja q2 mõjutavad teineteist jõuga, mis on võrdeline nende laengute korrutisega ja pöördvõrdeline laengutevahelise kauguse r ruuduga: F = kq1q2/r2, kus k on SI süsteemi ühikute korral 9 . 10 9 N. m2/C 2.

Füüsika
72 allalaadimist
thumbnail
26
doc

10 klassi füüsika kokkuvõte

Mehaanilise energia jäävuse seadus Keha langemisel teeb tööd raskusjõud, mille tulemusena muutub potentsiaalne energia kineetiliseks. Kui õhutakistust mitte arvestada, siis on esialgu kineetiline ja potentsiaalne energia vahetult enne maapinda võrdsed. Töö tulemusena on muutunud energia liik. Energia jäävuse seadus: Energia ei saa tekkida ega kaduda. Ta võib vaid muunduda ühest liigist teise või kanduda ühelt kehalt teisele. Energia jäävuse seadus(massi ja energia jäävuse seadus) on üks tähtsamatest loodusseadustest. Ei ole täheldatud ühtegi protsessi, mis oleks sellega vastuolus. Igiliikur ­ perpetuum mobile ­ seadmed, mis teevad tööd energiat kasutamata. Perioodilised liikumised Ringjooneline liikumine Ringjoonelise liikumise puhul on keha punktide trajektooriks ringjoon või selle osad.

Füüsika
577 allalaadimist
thumbnail
2
doc

Füüsika, aine ehitus

Vedelik täidab mahuti ja osaliselt ka peenikese toru. Vedeliku ruumala muutumisel ehk termomeetri soojenemisel või jahtumisel vedelikusamba pikkus paisumistorus muutub. 12.Keha aineosakeste kineetilise energia ja potensiaalse energia summa moodustab keha siseenergia. Keha siseeenergia muutub temperatuuri muutumisel, kuid ka aine oleku muutumisel. 13.Siseenergia muutusele vastavad füüsikalist suurust nimetatakse soojushulgaks. Soojushulgaks nimetatakse keha siseenergia hulka, mis kandub sellelt teisele kehadele või siis teistelt kehadelt antud kehale. 14. Soojusülekandes levib siseenergia soojemalt kehalt külmemale kehale. 15.Soojusjuhtivuseks nimetatakse siseenergia levimist ühelt aineosakeselt teisele. Siseenergia levimist vedeliku- või gaasivoolude liikumise teel nimetatakse konvektsiooniks. Soojenedes vedelate ja gaaide osad muutuvad kergemaks ja tõusevad üles poole, külmemad osad langevad alla. Tekib vedeliku või gaaside ringlus e. Konvektsioon

Füüsika
148 allalaadimist
thumbnail
2
doc

Molekulaarfüüsika alused

· Molekulaarfüüsika põhialused: 1) Kõik ained koosnevad osakestest. 2) Oakesed on pidevas korrapäratus liikumises. 3) Osakeste vahel mõjuvad väikestel kaugustel nii tõmbe- kui ka tõukejõud. · Soojusliikumine ­ aineosakeste pidev korrapäratu liikumine, mille iseloom sõltub aine agregaatolekust. · Ainehulk () ­ 1 mool on ainehulk, milles on Avogadro arv (NA = 6, 02 · 1023 1/mol) molekule. · Molaarmass () ­ 1 mooli antud aine mass (kg/mol). · Molekulmass (m0) ­ ühe molekuli mass. m0 = M / NA. · Ideaalne gaas ­ gaas, mille molekulide mõõtmeid pole vaja arvestada ja mille molekulidevaheline vastastikmõju on tähtsusetult väike. · Rõhk ­ on arvuliselt võrdne pinnaühikule risti mõjuva jõuga. p = F / S [Pa = N / m2]. · Gaasi rõhk ­ on tingitud gaasimolekulide põrgetest vastu anuma seinu. p = 1/3m0nv2.

Füüsika
90 allalaadimist
thumbnail
40
doc

Mehaanika, kinemaatika, jõud ja impulss ning muud teemad

Mehaanilise energia jäävuse seadus Keha langemisel teeb tööd raskusjõud, mille tulemusena muutub potentsiaalne energia kineetiliseks. Kui õhutakistust mitte arvestada, siis on esialgu kineetiline ja potentsiaalne energia vahetult enne maapinda võrdsed. Töö tulemusena on muutunud energia liik. Energia jäävuse seadus: Energia ei saa tekkida ega kaduda. Ta võib vaid muunduda ühest liigist teise või kanduda ühelt kehalt teisele. Energia jäävuse seadus(massi ja energia jäävuse seadus) on üks tähtsamatest loodusseadustest. Ei ole täheldatud ühtegi protsessi, mis oleks sellega vastuolus. Igiliikur – perpetuum mobile – seadmed, mis teevad tööd energiat kasutamata. Perioodilised liikumised Ringjooneline liikumine Ringjoonelise liikumise puhul on keha punktide trajektooriks ringjoon või selle osad. Ringjoonelist liikumist iseloomustab kõverusraadius (R).

Füüsika
36 allalaadimist
thumbnail
20
doc

Füüsika teooria ja valemid (10.klass)

Mehaanilise energia jäävuse seadus Keha langemisel teeb tööd raskusjõud, mille tulemusena muutub potentsiaalne energia kineetiliseks. Kui õhutakistust mitte arvestada, siis on esialgu kineetiline ja potentsiaalne energia vahetult enne maapinda võrdsed. Töö tulemusena on muutunud energia liik. Energia jäävuse seadus: Energia ei saa tekkida ega kaduda. Ta võib vaid muunduda ühest liigist teise või kanduda ühelt kehalt teisele. Energia jäävuse seadus(massi ja energia jäävuse seadus) on üks tähtsamatest loodusseadustest. Ei ole täheldatud ühtegi protsessi, mis oleks sellega vastuolus. Igiliikur ­ perpetuum mobile ­ seadmed, mis teevad tööd energiat kasutamata. Perioodilised liikumised Ringjooneline liikumine Ringjoonelise liikumise puhul on keha punktide trajektooriks ringjoon või selle osad. Ringjoonelist liikumist iseloomustab kõverusraadius (R).

Füüsika
61 allalaadimist
thumbnail
7
doc

Keskkooli füüsika

korrutisega ja pöördvõrdeline nendevahelise kauguse ruuduga. Gravitatsiooniseadus m1 m2 F =G G ­ gravitatsioonikonstant r2 Suletud süsteemi moodustavate kehade impulsside summa ei muutu nende Impulsi jäävuse vastastikmõju tulemusel. seadus p = const p = mv ­ keha impulss Elastsusjõud on võrdeline pikenemisega. Hooke'i seadus Fe = kx k ­ keha jäikus (1N/m), x ­ keha deformatsioon e. pikenemine (1m) Toereaktsioon N = mg cos mg ­ raskusjõud, ­ kaldenurk Amontons'i-Coulomb'i Fh = µN Liugehõõrdejõud on võrdeline toereaktsiooniga. seadus ­ hõõrdetegur, N ­ toereaktsioon III. Töö ja energia

Füüsika
829 allalaadimist
thumbnail
7
doc

Füüsika valemid

korrutisega ja pöördvõrdeline nendevahelise kauguse ruuduga. Gravitatsiooniseadus m1 m2 F =G G ­ gravitatsioonikonstant r2 Suletud süsteemi moodustavate kehade impulsside summa ei muutu nende Impulsi jäävuse vastastikmõju tulemusel. seadus p = const p = mv ­ keha impulss Elastsusjõud on võrdeline pikenemisega. Hooke'i seadus Fe = kx k ­ keha jäikus (1N/m), x ­ keha deformatsioon e. pikenemine (1m) Toereaktsioon N = mg cos mg ­ raskusjõud, ­ kaldenurk Amontons'i-Coulomb'i Fh = µN Liugehõõrdejõud on võrdeline toereaktsiooniga. seadus ­ hõõrdetegur, N ­ toereaktsioon III. Töö ja energia

Füüsika
151 allalaadimist
thumbnail
54
pdf

SOOJUSTEHNIKA EKSAMI VASTUSED

olevate kehade massiga või osakeste arvuga. Nt. maht, energia, entroopia, entalpia. Parameetreid, mille kaudu iseloomustatakse soojuse ja töö vastastikust muundumist, nim. termilisteks olekuparameetriteks. Termodünaamilise keha termilisteks olekuparameetriteks on erimaht (tihedus), rõhk ja temp. Soojuslikeks oleku-parameetriteks on aga suurused, mis iseloomustavad termodünaamilise süst. energeetilist olukorda. Nendeks on: siseenergia u,[J/kg]; entalpia h,[J/kg]; entroopia s,[J/kg]. Sõltumatud olekuparameetrid on: 1.Erimaht(keha massiühiku maht) v=1/, [m3/kg]. 2. Tihedus(on erimahu pöördväärtus) =M/V=1/v, [kg/m3].3. Rõhk (pinnaühikule normaalisihis mõjuv jõud) p [N/m2,Pa]. 4.Temperatuur(iseloomustab antud keha kuumenemise astet mingi teise keha suhtes ja määrab nendevahelise soojusvoo suuna). Soojus ja töö. Energia ülekanne töö vormis- on seotud kehade ümberpaiknemisega ruumis või süsteemiväliste

Soojustehnika
46 allalaadimist
thumbnail
7
docx

KESKKONNAFÜÜSIKA KT-Valemid

1 20000 s Infraheli v λ=vT = f m 330 s λ= =u . 20,6 m 16 Difusioon Mõisted: aine mass, mis kandub aja t jooksul risti läbi pinna suurusega S – m, difusiooni tegur ( m 2 /s ) D, kontsentratsioon punktis A n1, kontsentratsioon punktis B n2, vahemaa A ja B vahel l n1−n2 Edasikantud aine mass: m=D S⋅t l Soojusjuhtivus Mõisted: soojushulk, mis kandub aja t jooksul risti läbi pinna suurusega S – Q, ainekihi paksus l, temperatuur ainekihi erinevates osades T1 ja T2 T 1−T 2 Ülekantav soojushulk: Q=k S ⋅t l Sisehõõre Mõisted: impulss, mis kandub aja t jooksul risti läbi pinna suurusega S, mis eraldab kahte teineteisest kaugusel l olevat ainekihti p, ainekihtide kiirused v1 ja v2, sisehõõrdetegur, mis oleneb ainest η

Keskkonafüüsika
2 allalaadimist
thumbnail
90
pdf

Soojustehnika eksami küsimused

Sellelt lingilt saab tõmmata Arvo otsa soojustehnika raamatu. http://digi.lib.ttu.ee/i/?967 Faili lõpus on eksami näide, mida tunnis vaadati. 1. Termodünaamika põhimõisted, termodünaamiline süsteem, termodünaamiline keha jatermodünaamilised olekuparameetrid. Termodünaamiline süsteem. Nimetus „termodünaamika” hõlmab see mõiste kõik nähtused mis kaasnevad energiaga ja energia muundusega. Jaguneb füüsikaline, keemiline ja tehniline termodünaamika. Tehniline termodünaamika käsitleb ainult mehaanilise töö ja soojuse vastastikuseid seoseid. Termodünaamiline süsteem on kehade kogu, mis võivad olla nii omavahel kui ka väliskeskkonnaga energeetilises vastasmõjus. Väliskeskkond on termodünaamilist süsteemi ümbritsev suure energia mahtuvusega keskkond, mille teatud olekuparameetrid (T, p jne.) ei muutu, kui süsteem mõjutab teda soojuslikul, mehaanilisel või mõnel muul viisil. Termodünaamilise süsteemi üks lihtne näide on

tehnomaterjalid
121 allalaadimist
thumbnail
5
doc

Eksami spikker

Massikese on punkt, mida läbivat mistahes sirget mööda mõjuv jõud kutsub esile selle keha kulgliikumise. Trajektoor on joon mida mööda punktmass liigub. Nihe on vektor, mis ühendab keha algasukohta lõppasukohaga. 3.Ühtlane ringliikumine-Ühtlase ringliikumise korral on nii joonkiirus kui nurkkiirus konstantsed.-nurkkiirus =' =/t f-sagedus T-periood f=l/T=/2 V=R a n=v2/R an- normaalkiirendus. 4.Ühtlaselt muutuv ringliikumine-v(joonkiirus) ei ole const ,(nurkkiirus) ei ole const -nurkkiirendus =const .Nurkkiirus pole konstantne sellepärast et on olemas nurkkiirendus ,mille vektor on nurkkiiruse vektoriga samasuunaline e aksiaalvektor.=´ =at/R at=R a=v´ v=v0+at S=v0+at2/2 =0+t 5.Newtoni seadused.Kulgliikumise dünaamika-Dünaamika puhul lisandub liikumisele kaks põhisuurust: jõud ja mass .Jõud on iga põhjus ,mis kutsub esile keha kiireneva v aeglustuva liikumise.Mass on ainehulk antud kehas .m0-seisumass ,c-valguskiirus ,v-kiirus m=m0/

Füüsika
505 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun