Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Sirged tasandil 12. klass kordamine (0)

5 VÄGA HEA
Punktid
Sirged tasandil 12-klass kordamine #1 Sirged tasandil 12-klass kordamine #2
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2012-10-24 Kuupäev, millal dokument üles laeti
Allalaadimisi 57 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor ervin Õppematerjali autor

Sarnased õppematerjalid

thumbnail
3
doc

Kordamine III(sirge, ringjoon, parabool, vektor)

Kordamine III(sirge, ringjoon, parabool, vektor) 1. On antud kolmnurk tippudega A(1;2), B(4;3) ja C(2;5). Leidke sirgete AB ja AC võrrandid ning lõikepunktid koordinaattelgedega; 2) Leidke läbi tipu C joonestatud küljega AB paralleelse sirge võrrand; 3) Leidke läbi tipu C joonestatud küljega AB ristuva sirge tõus. 2. Lõik otspunktidega on ringjoone diameetriks. Leidke: 1) ringjoone võrrand; 2) sellele ringjoonele punktides (2,5; 4,5) ja (0;2) joonestatud puutujate võrrandid ja nende puutujate lõikepunkt. 3. Tuletage joone võrrand, kui joone iga punkti kaugused punktidest M(0;-3) ja N(2;3) on võrdsed. Näidake, et otsitav joon on lõigu MN keskristsirge. 4. Parabool läbib punkte (-1;0), (5;0) ja (0;-10). Leidke parabooli võrrand ja tema haripunkti koordinaadid ning puutuja võrrand punktis (0;-10). 5. Leidke parabooli y = x2 ­ 2x haripunkti koordinaadid. 1) Vektori v =(a;9) alguspunkt asetseb antud parabool

Matemaatika
thumbnail
36
pdf

Vektor. Joone võrrand. Analüütiline geomeetria

Vektor. Joone võrrand. Analüütiline geomeetria. Hele Kiisel, Hugo Treffneri Gümnaasium Analüütilise geomeetria teemad on gümnaasiumi matemaatikakursuses jaotatud kaheks osaks: analüütiline geomeetria tasandil, mida õpetatakse nii kitsas kui laias kursuses 10. klassi viimase teemana ja analüütiline geomeetria ruumis, mida õpetatakse vaid laias matemaatikas 12. klassis. Esimene kursus kannab pealkirja ,,Vektor tasandil. Joone võrrand" nii laias kui kitsas matemaatikas, kuid erinevused sisus on olulised. Kitsas matemaatikas peab kolmanda kursuse lõpetaja oskama selgitada vektori mõistet ja selle koordinaate; liitma ja lahutama vektoreid ning korrutama vektoreid arvuga nii geomeetriliselt kui ka koordinaatkujul; arvutama vektori pikkust; leidma vektorite skalaarkorrutist ning tundma vektorite ristseisu ja kollineaarsuse tunnuseid. Õpilane koostab sirge võrrandi, kui

Matemaatika
thumbnail
2
doc

Vektor tasandil ja sirge võrrandid

X klassi matemaatika V perioodi arvestuse näidisküsimused ja -ülesanded Teemad: Valemid: 1. Vektor tasandil d= ( x2 - x1 ) 2 + ( y 2 - y1 ) 2 - Kahe punkti vaheline kaugus - Mis on vektor? Vektorite liigitus? a1 a 2 - Kollineaarsed vektorid a b , kui = b1 b2

Matemaatika
thumbnail
14
ppt

Sirge tasandil

Sirge tasandil © T. Lepikult, 2010 Lõigu pikkus Punktide A(x1; y1) ja B(x2; y2) vaheline kaugus ehk neid ühendava lõigu pikkus d on leitav valemiga d = ( x2 - x1 ) 2 + ( y2 - y1 ) 2 . y Valemit saab põhjendada B Pythagorase teoreemiga. y2 d y2 - y1 y1 A x2 - x1 0 x1 x2 x Lõigu keskpunkt Punktide A(x1; y1) ja B(x2; y2) vahelise lõigu keskpunkti C koordinaadid on leitavad valemitega 1 1 x0 = ( x2 - x1 ) , y0 = ( y2 - y1 ) . 2 2 y B y2 y0 C y1 A 0 x1 x0 x2 x

Matemaatika
thumbnail
7
doc

Joone võrrand, sirge võrrand

­ 3x + 6y ­ 9 = 0 6 y + 9 + 6 y -9 = Y 3 0 2 12 y -0 = 0 y = 0 Asendame y = 0 võrrandisse x + 2y + 3 = 0 x + 2 0 + 3 = 0 x = -3 Sirged lõikuvad punktis A(-3 ; 0) 14. Leida sirgete lõikepunkti koordinaadid ning nurk sirgete vahel, kui sirged on: x ­ 5 = 0 ja y ­ 2 = 0. Joonesta mõlemad sirged (ül. 13) ühisel joonisel, tähista lõkepunkt L, nurk sirgete vahel ja kontrolli, kas lahendasid õigesti ül. 13. x -5 = 0 x = 5 y -2 = 0 y = 2 lõikepunkti koordinaadid on (5 ; 2) Sirge x ­ 5 = 0 sihivektor: s1 = 0 i + 1 j s2 Sirge y ­ 2 = 0 sihivektor: s 2 = 1 i + 0 j K=

Matemaatika
thumbnail
12
pdf

Matemaatika eksami teooria 10. klass

5.15 Siinusteoreem Kolmnurga küljed on võrdelised vastasnurkade siinustega 5.16 Koosinusteoreem Kolmnurga ühe külje ruut on võrdne teiste külgede ruutude summaga, millest on lahutatud samade külgede ja nendevahelise nurga koosinuse kahekordne korrutis. 5.17 Kolmnurga lahendamine 5.18 Kahe nurga summa ja vahe sin ja cos 5.19 Kahe nurga summa ja vahe tan 5.20 Kahekordse nurga sin, cos, tan Vektor tasandil Kui A(x1) ja B(x2), siis lõigu AB pikkus on AB=|x1-x2| Arvtelje lõigu keskpunkti koordinaat võrdub lõigu otspunktide koordinaatide aritmeetilise keskmisega. Kui tasandil on määratud koordinaatteljestik siis on tegemist koordinaattasandiga (Descartes'i ristkoordinaadistik) 6.1 Lõigu keskpunkt Koordinaattasandil asuva lõigu keskpunkti koordinaatideks on lõigu otspunktide samanimeliste koordinaatide aritmeetilised keskmised. 6.2 Lõigu pikkus Olgu lõigu otspunktid A ja B

Matemaatika
thumbnail
40
doc

Keskkooli matemaatika raudvara

...................29 Kolmnurga pindala valemid................................................................................................... 29 Siinusteoreem......................................................................................................................... 29 Koosinusteoreem.................................................................................................................... 30 IV Vektor tasandil...................................................................................................................... 30 Sissejuhatuseks....................................................................................................................... 30 Lõigu pikkus...........................................................................................................................31 Lõigu keskpunkti koordinaadid...............................................................

Matemaatika
thumbnail
7
doc

Kõrgem matemaatika

paralleellükke abil muuta. Kahte vektorit nim võrdseks, kui nad on võrdsete moodulitega ning samasuunalised. Vektorite võrdsus erineb lõikude võrdsusest. Vektoreid nim kollineaarseteks, kui nad pärast ühisesse alguspunkti viimist asuvad ühel ja samal sirgel. Võivad olla sama või vastassuunalised. . Vektoreid nim komplanaarseteks, kui nad pärast ühisesse alguspunkti viimist asuvad ühel ja samal tasandil. Kahe vektori skalaarkorrutiseks nim vektorite moodulite ja nende vahelise nurga cos korrutist. . Omadused: · Vektorite skalaarkorrutis võrdub 0-ga, kui üks teguritest võrdub nulliga või vektorid on omavahel risti. . · Vektorite skalaarkorrutis on kommutatiivne. . · Vektorite skalaarkorrutis on assotsiatiivne skalaariga korrutamise suhtes. .

Kõrgem matemaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun