2 1. (7 p.) Lihtsustage avaldis (3a + b)(3a b) (2b + 3a) 12ab ja arvutage selle täpne väärtus, kui a = 3 ja b = 13-. 2. (7 p.) Võrdkülgse kolmnurga kujulise maatüki külje pikkus on 315 m. Kui palju saab sellelt maatükilt nisu (tonnides), kui saak ühelt hektarilt on 32 tsentnerit. Vastus andke kümnendiku täpsusega. 2 3. (7 p.) Lahendage võrrand 2x + 3x = 5 ja kontrollige selle lahendeid. 4. (7 p.) Aadu brutopalk oli aasta alguses 13500 krooni ja seda tõsteti 1. märtsil 6,5% ning palka tõsteti ka 1. aprillil, seekord 3,5% võrra. Kui suur on nüüd Aadu brutopalk ja kui mitme protsendi võrra on viimane palk suurem aasta alguses saadud palgast? 5. (8 p). Võrdhaarse trapetsi alused on 10 cm ja 4 cm ning kõrgus 4 cm. Leidke trapetsi pindala ruutdetsimeetrites (kümnendiku täpsusega). Kui palju tuleb kumbagi haara pikendada, et need l?
1. (7 p.) Lihtsustage avaldis (3m n)(3m + n) (2n + 3m)2 12mn ja arvutage selle täpne väärtus, kui m = 2 ja n = 13-. 2. (7 p.) Võrdkülgse kolmnurga kujulise maatüki külje pikkus on 215 m. Kui palju saab sellelt maatükilt otra (tonnides), kui keskmine saak ühelt hektarilt on 35 tsentnerit. Vastus andke kümnendiku täpsusega. 3. (7 p.) Lahendage võrrand 3x2 + 4x = 7 ja kontrollige selle lahendeid. 4. (7 p.) Juku brutopalk oli aasta alguses 12500 krooni ja seda tõsteti 1. märtsil 7,5% ning palka tõsteti ka 1. aprillil, seekord 2,5% võrra. Kui suur on nüüd Juku brutopalk ja kui mitme protsendi võrra on viimane palk suurem aasta alguses saadud palgast? 5. (8 p). Täisnurkse trapetsi alused on 10 cm ja 6 cm ning lühem haar 5 cm. Leidke trapetsi pindala ruutdetsimeetrites (kümnendiku täpsusega). Kui palju tuleb kumbagi haara pikendada, et need lõikuksid? 6. (8 p) Ottomari hinded on 2, 4, 3, 1, 2, 4, 3, 5, 3, 4, 5, 3, 2,
FUNKTSIOONID. 1. (1997 A) Leidke funktsiooni y = 4x3 3x2 maksimum- ja miinimumkoht ning kasvamis- ja kahanemisvahemikud. 2 2. (1997 B) Leidke funktsiooni y 2 x määramispiirkond, maksimum- ja x 1 miinimumpunkt ning kasvamis- ja kahanemisvahemikud. 3. Joonisel on antud ruutfunktsiooni y = f(x) ja funktsiooni y = ex graafikud. Leidke a) Ruutfunktsiooni y = f(x) määrav valem; b) Punkti A koordinaadid; c) Funktsiooni y = f(x) nullkohad ja haripunkti koordinaadid; d) Funktsiooni y = ex väärtus kohal, mis vastab funktsiooni y = f(x) absoluutväärtuselt vähimale nullkohale; e) Antud funktsioonide ühine positiivsuspiirkond. 4. (1998) Heinakuhja telglõige on piiratud joonega y = 1 x2 ja sirgega y = 0. Kuhjale toetub koonusekujuline katus, mille telglõike tipunurk on t
-1- - 1.Leia funktsiooni määramispiirkond. 3 x 3 x y y b) y 17 15 x 2 x log( 1 x ) 2 a) 4x 8 c) 2x 2 3 9 x y d) y = log( x2 + x -20 ) - 6x e) log 2 ( x 4) f) y = log x-1 x2
Kordamisülesanded 11 klass 1. Kombinatoorika ja tõenäosus a) Ühes klassis õpitakse 14 õppeainet. Mitmel erineval viisil saan nendest koostada ühe päeva tunniplaani, kui selles peab olema 7 erinevat õppeainet? Vastus: 17297280 b) Martinil on taskus viis viiekroonist ja neli kümnekroonist rahatähte. Kui suur on tõenäosus, et kahe kupüüri juhuslikul võtmisel on mõlemad viiekroonised? Vastus: 20/72 c) Tõenäosus leida pliiats kirjutuslaua esimesest sahtlist on 0,5, teisest sahtlist 0,7 ja kolmandast 0,4. Kui suur on tõenäosus , et pliiats on olemas a) täpselt ühes sahtlis b) vähemalt ühes sahtlis c) mitte üheski sahtlis
1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3 10. klass Viljandi Täiskasvanute Gümnaasium REAALARVUDE PIIRKONNAD Kuna erinevates õpikutes kasutatakse reaalarvude piirkondade märkimiseks erinevaid tähistusi, siis oleks kasulik teada mõlemat varianti. Nimetus Tingimus Esimene
Ruutfunktsioon Sissejuhatav kordamine 1. Teosta tehted. Vastustes vabane negatiivsetest astendajatest. 3 1 2 3 1 a) 2 a b c 3 Lahendus: ; 1 4 2 s 3 t b) 4 5 3 4 s t Lahendus: . 2. Lihtsusta avaldis. a) xy(x + 3y) + (x + y)(x2 2xy y2) Lahendus: xy(x + 3y) + (x + y)(x2 2xy y2) = = x2y + 3xy2 + x3 2x2y xy2 + x2y 2xy2 y3 = = x 3 y3 = = (x y)(x2 + xy + y2) b) (3a 2)2 + (2 + 3a)(2 3a) Lahendus: (3a 2)2 + (2 + 3a)(2 3a) = 9a2 12a + 4 + 4 9a2 = = 8 12a 3. Lahenda võrrand. a) 24x2 + 5x 1 (24x2 6x 12x + 3) = 111 Lahendus: 24x2 + 5x 1 (24x2 6x 12x + 3) = 111; 24x2 + 5x 1 24x2 + 6x
2007. aasta matemaatika riigieksami ülesanded koos lahenduste ja kommentaaridega 2 1. ÜLESANNE (5 punkti) Ülesannete tekstid 1 5x 1 I Antud on avaldis 2 , kus x 0 ja x . x 25 x 2 x 0 5 1) Lihtsustage see avaldis. 3 2) Arvutage avaldise väärtus, kui x 2 . Vastus andke täpsusega 10 2. 2 x 2 (9 x 2 x 0 ) 1 II Antud on avaldis , kus x 0 ja x . 1 3x 3 1)
Kõik kommentaarid