NÄIDE 2: (-6w² - 4) – (5 + 7w² - 8w) = -6w² - 4 – 5 -7w² + 8w = 13w² - 9 + 8w NB! Miinus märk sulu ees, muudab märgi sulu sees!!! 6. Hulkliikmete korrutamine ja jagamine üksliikmega. Hulkliikme korrutamisel üksliikmega korrutame hulkliikme iga liikme üksliikmega ja tulemused liidame. a (b + c + d) = ab + ac + ad Hulkliikme jagamisel üksliikmega jagame hulkliikme iga liikme üksliikmega ja tulemused liidame. (a + b + c) : k = a/k + b/k + c/k 7. Hulkliikmete tegurdamine. Hulkliikmete tegurdamine on hulkliikme esitamine korrutisena. NÄIDE 1: 2x² + 5x = x (2x + 5) NÄIDE 2: 7y + 14x + 35 = 7 (y + x + 5) 8. Kahe üksliikme summa ja vahe korrutis, kaksliikme ruut, kaksliikme kuup, kuupide summa ja vahe valemid. Ruutude vahe (a+b)(a-b)= a²- b² Vahe ruut (a-b)²= a²-2ab+b² Summa ruut (a + b)² = a² + 2ab + b² Summa kuup (a + b)³ = a³ + 3a²b + 3ab² + b³ Kuupide summa
Lahendused 1. P: +15/ 2)8)5) 1s22s22p63s23p3 min -III max +V 2 2 6 2 6 2 10 3 As: +33/ 2)8)18)5) 1s 2s 2p 3s 3p 4s 3d 4p min -III max +V Ca: +20/ 2)8)8)2) 1s22s22p63s23p64s2 min 0 max +II Sn: +50/ 2)8)18)18)4) 1s22s22p63s23p64s23d104p65s24d105p2 min 0 max +IV 2. KC l- iooniline Na2O- iooniline HNO2- kovalntne polaarne Br2- kovalentne mittepolaarne C- kovalentne mittepolaarne CO- kovalentne polaarne CO2- kovalentne mittepolaarne Al2(SO4)3 - iooniline H2- kovalentne mittepolaarne Zn(OH)2- iooniline 3. KC l- neutraalne Na2O- aluseline HNO2- happeline Br2- neutraalne C- neutraalne CO- neutraalne CO2- happeline Al2(SO4)3 - happeline H2- neutraalne Zn(OH)2- neutraalne 4. NaBr- ioonvõre S8- molekulvõre O2- molekulvõre Fe- metallivõre
........................................................................ 5 SULAMID.................................................................................................................................. 6 8. klassi KEEMIA EKSAMI TEEMAD....................................................................................6 Ülesandeid harjutamiseks............................................................................................................8 Reaktsioonivõrrandite koostamine. ............................................................................................9 Aatomi ehituse seos perioodilisussüsteemiga........................................................................... 10 Metalliliste omaduste muutumine perioodilisustabelis.............................................................10 I MÕISTED molekul aine väiksem osake, millel on ainele iseloomulik koostis;koosneb aatomitest.
Funktsioonid ja nende graafikud © T. Lepikult, 2010 Funktsioon Kui muutuva suuruse x igale väärtusele, mis kuulub tema muutumispiirkonda, vastab teise suuruse y üks kindel väärtus, siis öeldakse, et y on x funktsioon. Asjaolu, et üks muutuja on teise funktsioon, tähistatakse y = f(x). Näited: Kuubi ruumala on tema serva pikkuse funktsioon, suusataja poolt läbitud teepikkus on aja funktsioon, vedru deformatsioon on tõmbejõu funktsioon jne. Funktsiooni argument Muutujat x nimetatakse seejuures sõltumatuks muutujaks e. argumendiks. Argumendi x väärtuste hulka, mille puhul saab määrata funktsiooni y väärtusi vastavalt eeskirjale f(x), nimetatakse funktsiooni määramispiirkonnaks. Määramispiirkonnale vastavat funktsiooni
1 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK I Joonistel on kuue funktsiooni graafikud. Tee kindlaks, missuguste funktsioonidega on tegemist. 1 2 3 © Allar Veelmaa 2014 2 10. klass Viljandi Täiskasvanute Gümnaasium KORDAMINE: FUNKTSIOONI GRAAFIK II © Allar Veelmaa 2014 3 10. klass Viljandi Täiskasvanute Gümnaasium REAALARVUDE PIIRKONNAD Kuna erinevates õpikutes kasutatakse reaalarvude piirkondade märkimiseks erinevaid tähistusi, siis oleks kasulik teada mõlemat varianti.
Ruutfunktsioon ja selle graafik EESMÄRGID Parabooli y = ax2 + k joonestamine Tutvustada lihtsamat parabooli Parabooli y = ax2 + bx +c joonestamine Paraboolide joonestamine Parabooli y = ax2 + k joonestamine Sümmeetriatelg y = x2 x=0 x y (x, y) (–2, 4) y –2 4 –1 1 (–1, 1) 0 0 (0, 0) 1 1 (1, 1) x 2 4 (2, 4) Parabool avaneb ülespoole. Haripunkt (0, 0) Parabooli y = ax2 + k joonestamine Võrrandis y = x2 , mis on a ? a = 1 . Kuid, mis juhtub, kui a ei võrdu 1? Näiteksy võrrandis y = – 4x2 . Mis on a ? a=–4 x y (x, y) x –2 – 16 (–2, –16) –1 –4 (–1, –4) 0 0 (0, 0)
Mainori Kõrgkool Matemaatika ja statistika Loengukonspekt Silver Toompalu, MSc 2008/2009 1 Matemaatika ja statistika 2008/2009 Sisukord 1 Mudelid majanduses ............................................................................................................. 4 1.1 Mudeli mõiste ......................................................................................................................... 4 1.2 Matemaatilise mudeli struktuur ja sisu ................................................................................... 4 2 Funktsioonid ja nende algebra..................................................................
2 1. (7 p.) Lihtsustage avaldis (3a + b)(3a b) (2b + 3a) 12ab ja arvutage selle täpne väärtus, kui a = 3 ja b = 13-. 2. (7 p.) Võrdkülgse kolmnurga kujulise maatüki külje pikkus on 315 m. Kui palju saab sellelt maatükilt nisu (tonnides), kui saak ühelt hektarilt on 32 tsentnerit. Vastus andke kümnendiku täpsusega. 2 3. (7 p.) Lahendage võrrand 2x + 3x = 5 ja kontrollige selle lahendeid. 4. (7 p.) Aadu brutopalk oli aasta alguses 13500 krooni ja seda tõsteti 1. märtsil 6,5% ning palka tõsteti ka 1. aprillil, seekord 3,5% võrra. Kui suur on nüüd Aadu brutopalk ja kui mitme protsendi võrra on viimane palk suurem aasta alguses saadud palgast? 5. (8 p). Võrdhaarse trapetsi alused on 10 cm ja 4 cm ning kõrgus 4 cm. Leidke trapetsi pindala ruutdetsimeetrites (kümnendiku täpsusega)
Kõik kommentaarid