Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

DURALUMIINIUMI TERMOTÖÖTLUS - sarnased materjalid

kõvadus, duralumiinium, duralumiiniumi, sulam, termilise, katsekehad, graafik, termotöötlus, katsekehade, materjalitehnika, faasidiagramm, seadistada, sulamine, ahjust, sekundaarne, cual2, ühefaasiline, kuueks, vanandamine, keevas, ajavahemike, joonestada
thumbnail
8
pdf

Duralumiiniumi termotöötlus aruanne

Tallinna Tehnikaülikool 2014/2015 õ.a Materjalitehnika instituut Materjaliõpetuse õppetool Praktikumi nr. 7 aruanne aines tehnomaterjalid Üliõpilane: Kristjan Männik Rühm: MATB11 Esitatud:         Töö eesmärk:    Tutvuda alumiiniumisulami – duralumiiniumi termilise töötlemisega  ja uurida termilise töötlemise mõju duralumiiniumi omadustele.   

Tehnomaterjalid
36 allalaadimist
thumbnail
6
docx

7. Praktikumi tehnomaterjalid

Tallinna Tehnikaülikool 2015/16 õ.a Materjalitehnika instituut Materjaliõpetuse õppetool Praktikumi nr. 7 aruanne aines tehnomaterjalid Üliõpilane: Michael Felert Rühm: MATB11 Esitatud: 08.12.2015 Töö eesmärk: Tutvuda alumiiniumisulami – duralumiiniumi termilise töötlemisega ja uurida termilise töötlemise mõju duralumiiniumi omadustele. Duralumiiniumi keemiline koostis Duralumiinium on Al-Cu sulam Cu-sisaldusega kuni 5%. Duralumiiniumi termilise töötlemise ja toimuvate protsesside olemuse kirjeldus. Kui kuumutada Al-Cu-sulamit (5,7%) ühefaasilise tardlahuse α-alasse ja seejärel kiirelt jahutada, säilib toatemperatuuril sama struktuur. See on karastamine. Karastatud ühefaasiline tardlahuse struktuuriga sulam on suhteliselt

Materjalitehnika
14 allalaadimist
thumbnail
5
docx

Duralumiiniumi termotöötlus

Tallinna Tehnikaülikool 2018 Mehaanika ja tööstustehnika instituut Praktikumi nr. 6 aruanne aines MTX0010 Materjalitehnika Üliõpilane: Rühm: Esitatud: Töö eesmärk: Tutvuda alumiiniumisulami ­ duralumiiniumi termilise töötlemisega ja uurida termilise töötlemise mõju duralumiiniumi omadustele. Kasutatud töövahendid: Katsekehad, kõvadus mõõtmis masin Töö kirjeldus: Duralumiiniumi keemiline koostis: Duralumiinium on alumiiniumisulam, mis sisaldab 2.2-5.7% vaske ja 0.2-2.7% magneesiumi. Al-Cu faasidiagramm: Duralumiiniumi termilise töötlemise ja toimuvate protsesside kirjeldus: Duralumiiniumiga tehakse kahte asja. Kõigepealt karastatakse ja siis vanandatakse

Materjalitehnika
18 allalaadimist
thumbnail
3
docx

Duralumiiniumi termotöötlus

Tallinna Tehnikaülikool Mehaanikateaduskond Materjalitehnika instituut DURALUMIINIUMI TERMOTÖÖTLUS Aruanne MATB11 Juhendaja Liina Lind Tallinn 2011 Töö eesmärk Tutvuda alumiiniumisulami ­ duralumiiniumi termilise töötlemisega ja sellega kaasnevate protsesside muutustega ning uurida termilise töötlemise mõju duralumiiniumi omadustele. Tutvuda ja aru saada duralumiiniumi karastamise ja vanandamisega ning tänu sellele aines toimuvate protsesside muutustega ning aru saada, miks aine omadused muutuvad. Duralumiiniumi keemilisi koostise iseloomustus ja faasidiagramm Duralumiinium sisaldab vaske 2,2- 5,5 %. Mangaani, räni ja magneesiumi sisaldab kuni 1%. Seega alumiiniumit sisaldab üle 90%.

Tehnomaterjalid
114 allalaadimist
thumbnail
2
docx

Tehnomaterjali praktikumi aruanne 7 - Duralumiinium

TALLINNA TEHNIKAÜLIKOOL Mehaanikateaduskond Mehhatroonikainstituut Nimi Üliõpilaskood Rühmanumber Duralumiiniumi termotöötlus Praktikum nr. 7 Tallinn 2011 Töö eesmärk Tutvuda alumiiniumsulami ­ duralumiiniumi termilise töötlemisega ja uurida termilise töötlemise mõju duralumiiniumi omadustele. Duralumiiniumi keemiline koostis a) Duralumiiniumiks nimetatakse AlCu sulamit, mille Cu sisaldus on kuni 5%. Meie kasutasime duralumiiniumit AlCu4Mgl ning selle keemiline koostis on järgnev: Cu sisaldus 3,8-4,9 ; Mu sisaldus 0,3-0,9 ; Mg sisaldus 1,2-1,8 ; Si sisaldus 0,5 ; Fe sisaldus 0,5. b) Duralumiiniumi termotöötlus

Tehnomaterjalid
155 allalaadimist
thumbnail
9
docx

Labori praktikumid

C45 (v-soonega) - 2,4 -50oC Läikiv, teraline Järeldus: Võrreldes purustustööks kulutatud energiat toatemperatuuril ja -50oC, siis on näha, et külmhapruse tõttu muutuvad antud materjalid -50oC juures hapraks ning seetõttu kulub vähem energiat purustustööks. Peale selle mõjutab purustustööd ka soone tüüp: mida teravam soon on, seda vähem energiat kulub purustustööks. Kõvadus Töö eesmärk: -Tutvuda põhiliste kõvaduse määramise meetoditega (Brinell, Rockwell ja Vickers, Barcol); - Valida sobiv meetod kõvaduse määramiseks erinevatele materjalidele; - Võrrelda katsetatud materjalide kõvadust; - Analüüsida seost materjali tõmbetugevuse ning kõvaduse vahel. Kõvaduse määramise meetodid: Brinelli- materjali surutakse kõvasulamkuul(HBW) või karastatud teraskuul(HBS) jõuga 1...3000 kgf

Tehnomaterjalid
83 allalaadimist
thumbnail
3
doc

Tutvuda alumiiniumisulami – duralumiiniumi termilise töötlemisega ja uurida termilise töötlemise mõju duralumiiniumi omadustele.

Tallinna Tehnikaülikool 2014/15 õ.a Materjalitehnika instituut Materjaliõpetuse õppetool Praktikumi nr.7 aruanne aines tehnomaterjalid Üliõpilane: Oliver Nõgols Rühm: MATB11 Esitatud: 10.12.14 Töö eesmärk: (Lühidalt kirjeldada praktikumitöö eesmärk) Tutvuda alumiiniumisulami – duralumiiniumi termilise töötlemisega ja uurida termilise

tehnomaterjalid
26 allalaadimist
thumbnail
7
docx

Duralumiiniumi termotöötlus

TTÜ EESTI MEREAKADEEMIA Üld- ja alusõppekeskus Felix Laig DURALUMIINIUMI TERMOTÖÖTLUS Kodutöö 3 Õppejõud: lektor Aleksander Lill Tallinn 2017 Sisukord Duralumiiniumsulamid.................................................................................................... 3 Alumiiniumsulamite termotöötlus................................................................................... 3 AlCu4Mg keemiline koostis ja omadused.........................................................................6 Kasutatud kirjandus......................................................................................................... 7 Duralumiiniumsulamid Duralumiiniumsulamid on deformeeritavaist alumiiniumsulamitest tuntud oma kerguse ja tugevuse poolest, mistõttu neid kasutatakse palju lennukitööstuses

Materjaliõpetus
15 allalaadimist
thumbnail
6
doc

TERASE TERMOTÖÖTLUS

TALLINNA TEHNIKAÜLIKOOL Materjalitehnika instituut TÖÖ NR 5 TERASE TERMOTÖÖTLUS 2011 Töö eesmärk. Tutvuda terase termotöötlemise tehnoloogiaga, selgitada välja terase süsinikusisalduse, jahutuskiiruse ja karastamisele järgneva noolutustemperatuuri mõju terase kõvadusele. Antud töös keskendutakse süsinikteraste termotöötlusele. Karastamise ja noolutamise olemus ning tähtsuse lühike kirjeldus.

Tehnomaterjalid
124 allalaadimist
thumbnail
19
rtf

Exami piletite vastused

põhimetalli omadustele. Kuna paljud ehituskonstruktsioonid töötavad tihti madalatel temperatuuridel ja dünaamilistel koor- mustel, siis üheks tähtsamaks omaduste näitajaks on külmahapruslävi. Ehitusterastena kasutatakse: · tavasüsinikteraseid, · mangaanteraseid, · peenterateraseid, · parendatud teraseid, · boorteraseid. 5) Masinaehitusterased ja nende omadused. Kasutamine. Tsementiiditavate terastena kasutatakse madalsüsinikteraseid (0,1...0,25%C), mille kõvadus peale tava- karastust on väike. Peale tsementiitimist (pinnakihi rikastamist süsinikuga, C-sisaldus viiakse ca 1%-ni), karastamist ja madalnoolutamist on nende pinnakõvadus 58...62 HRC, südamiku kõvadus aga 30...42HRC. Tsementiiditavate teraste südamik peab olema heade mehaaniliste omadustega, eriti tähtis on kõrge voolavuspiir, mille tagab eelkõige peeneteraline struktuur. Ka pinnakihis on oluline peeneteraline

176 allalaadimist
thumbnail
44
docx

Tehnomaterjalide stenogramm

Tallinna Tehnikaülikool 2014/2015 õ.a Materjalitehnika instituut Materjaliõpetuse õppetool Stenogramm aines tehnomaterjalid Üliõpilane: Üliõpilaskood: Rühm: Materjalide füüsikalised ja mehaanilised omadused Metallide ja sulamite liigitus tiheduse järgi:  ρ< 5000 kg/m3 – kergmetallid ja –sulamid;  5000 < ρ < 10000 kg/m3 - keskmetallid ja –sulamid;  ρ > 10000 kg/m3 - raskmetallid ja -sulamid.

tehnomaterjalid
37 allalaadimist
thumbnail
14
doc

KAT31_Termotöötluse materjal ja kuesimused

Esimene neist näeb ette metalli kuumutamine vastavates keemilistes keskkondades eesmärgiga muuta pinna koostist ja omadust. Teine on metalli deformatsiooni ja termilise töötlemise koosmõju selle omadustele. 1. TERMOTÖÖTLUSE TEOORIA Temperatuur ja aeg Termotöötlemise protsesside peategurid on metalli kuumutamise või jahutuse kiirus, mis graafiliselt kujutatakse kõveraga temperatuur- aeg ja nimetatakse termilise kõveraga. Sõltuvalt lahendatavast ülesandest võivad kõverad olla väga erinevad. Kõveral on kolm osa: kuumutamine, seisutus ja jahutus. Kuumutamine võib olla pidev ja sõltub peamiselt kuumutusseadme võimsusest ja metalli massist. Seisutuse kestus pideval temperatuuril sõltub mitmetest teguritest, neist peamised on kuumutava metalli mass, soojusjuhitavus (legeerterased vajavad reeglina pikemad kuumutamist), metallis tekivate faasimuutuste iseloom ja teised. Olulist mõju

Tehnomaterjalid
161 allalaadimist
thumbnail
32
docx

Mõisted

meetodite abil saavutatakse üha erinevamaid oma- 0,06%. Malmid sisaldavad võrreldes terastega duste kombinatsioone. Selle teeb võimalikuks eel- rohkem fosforit (0,1...0,2%), mis parandab malmide kõige raua polümorfism. valuomadusi, eelkõige vedelvoolavust. Süsinik Tabel 1.8. Tavalisandid terastes C-sisalduse suurenedes kasvab terase kõvadus, tõmbetugevus ja voolavuspiir ning vastupanu väsi- Lisand Sisaldus Mõju terases muspurunemisele; vähenevad aga plastsus- ning %, kuni sitkusnäitajad. Si 0,5 Viiakse terasesse Süsinik avaldab mõju ka terase külmahap- valmistusprotsessis ruslävele, soodustades terase haprumist madalatel

70 allalaadimist
thumbnail
26
docx

Metallide tehnoloogia, materjalid eksam 2015

1. Aatomi ehituse skeem suhtena. Kõvaduse määramine Rockwelli meetodil Kõvadus Rockwelli meetodil määratakse sissesurumise jälje sügavuse järgi: teraskuul läbimõõduga 1,6 mm ja jõud 980 N (100 kgf) – skaala B; teemantkoonus tipunurgaga 120° ja jõuga 580 N (60 kgf) või kõvasulamkoonus jõuga 1470 N

Materjaliõpetus
179 allalaadimist
thumbnail
47
docx

Tehnomaterjalide eksami materjal

annab piiramatu tardlahuse. Esimesel juhul vastavalt joonisele 1.45a, lk 42 toodud faasidiagramille koosnevad kõik sulamid peale kristalliseerumist tardlahuse kristallidest (komponendi B piiramatu tardlahus komponendis A). Sulamites koostisega A-C kristalliseerub temperatuuri alanedes tardlahus ümber tardlahuseks (komponendi B piiratud tardlahus komponendis A). Allpool joont EC (polümorfse muutuse algtemperatuurid) koosneb sulam ainult tardlahuse kristallidest; joon ED vastab polümorfse muutuse lõpptemperatuuridele. Joonte EC ja ED vahel on tasakaalus mõlemad tardlahused ja . Teisel juhul vastavalt joonisel 1.45b, lk 42 toodud faasidiagrammile koosnevad kõik sulamid normaaltemperatuuril tardlahuse kristallidest (komponendi B piiramatu tardlahus komponendis A), kõrgtemperatuurne modifikatsioon A annab komponendiga B piiratud tardlahuse . Joon CPD viitab peritektmuutusele. Joonisel 1

Tehnomaterjalid
450 allalaadimist
thumbnail
52
odt

Materjaliõpetus

S – NiSiCr 20 5 2 – keraja grafiidiga malm, Ni – 20%, Si – 5%, Cr – 2%. Malmide tähistsüsteemi EN 1560 kohaselt tähistatakse legeermalmi koostise järgi, näiteks EN-GJLA-XNiCuCr 15-6-2 on liblegrafiidiga (L), austeniitstruktuuriga (A) kõrglegeeritud (X) malm, mis sisaldab 15% Ni, 6% Cu, 2% Cr. Abrasiivkulumiskindlate malmide liigitähis EN 12513 (2001) kohaselt on GJN. Liigitähise järel näidatakse malmi Vickersi kõvadus, näiteks EN GJN-HV600 on malm (GJ), milles puudub grafiit (N) ja mille Vickersi kõvadus on 600. 3. TERAS, TOOTMINE. Terased on raua sulamid, mis sisaldavad süsinikku piires 0,05-2,14%. Kui süsinikusisaldus on alla 0,05%, on tegemist praktiliselt puhta rauaga ehk tehnilise rauaga (kasutatakse elektrotehnikas). Tehniliselt puhast rauda tuntakse armkorauana. See nimetus ARMCO on lühend USA firma American Rolling Mill Company nimetusest. Terasesulatuse põhimeetodid:

Materjaliõpetus
37 allalaadimist
thumbnail
12
doc

Materjaliõpetus eksami vastused, spikker

Malmide kasutamise eelised ja puudused: Negatiivne: väike tugevus (grafiit on terade vahel), ei ole plaste, ei pea vastu lõõkkoormusele; Positiivne: hea valumaterjal (sulamistemp madalam, lihtne ja odavam asju valmistada), hõõrdetegur väiksem kui terasel (kulub vähem), väsimustugevus on parem, malmist võlli tugevus väheneb täpselt sama palju kui ristlõige 3. Teras, selle tootmine, saadav kvaliteet Teras on raua sulam mis sisaldab süsinikku piirides 0,05…2,14%. Kui C sisaldus <0,05, siis tegemist puhta (tehnilise) rauaga, mida kas.elektrotehnikas, seda tuntakse armkorauana (ARMCO – American Rolling Mill Company). Sulatusahjudes saadakse malmist esmalt toorteras, sellele järgneb terase taandamine (Mn ja Si lisamisega). Terasesulatuse meetodid: 1) Konvertermeetod- sulatus toimub teraskesta ja tulekindlast materjalis voodriga lahtises ahjus (konverteris vedaelas

Materjaliõpetus
100 allalaadimist
thumbnail
86
pdf

Materjalid

) ning keskmetalle ja -sulameid (tihedus üle 5000 kuid alla 3 10 000 kg/m ). Tehnikas kasutatavaist metallidest kergeimaks on magneesium, raskeimaks aga plaatina. Füüsikalised omadused Mehaanilised Tehnoloogilised Talitlusomadused omadused omadused Tihedus Tugevus Valatavus Korrosioonikindlus Sulamistemperatuur Kõvadus Survetöödeldavus Kulumiskindlus Soojuspaisumine Sitkus Lõiketöödeldavus Pinnaomadused Soojusjuhtivus Plastsus Termotöödeldavus Tulekindlus Elektrijuhtivus Keevitatavus Soojuspüsivus Magnetism Joodetavus Ohutus

335 allalaadimist
thumbnail
20
docx

Materjaliõpetuse eksami kordamisküsimuste vastused.

Erinevad faasid on üksteisest eraldatud piirpinnaga, erinevatel faasidel on erinevad omadused, näiteks teistsugune tihedus, kristallistruktuur või värvus. On olemas homogeenseid ja heterogeenseid sulamisüsteeme, mis koosnevad vastavalt ühest ja kahest faasist. Sageli käsitletakse faase kui aine erinevaid olekuid (vedel, tahke, gaasiline, plasma). Tegelikult hõlmab faas nii aine olekut kui ka oleku sees toimuvaid struktuurimuutusi. Kui näiteks sulam läheb vedelast olekust tahkesse, siis muutub ka selle faas. Aga ühes agregaatolekus olev aine võib olla mitmes teineteisest erinevas faasis. Näiteks grafiit ja teemant on sama aine erinevad faasid - keemiline koostis on identne, aga aine struktuur on erinev. Protsessi, kus aine läheb ühest faasist teise, nimetatakse faasisiirdeks, mille tunnuseks on aine omaduste oluline muutus. Soojushulka, mis neeldub või eraldub aine massiühiku kohta, nimetatakse siirdesoojuseks

Materjaliõpetus
194 allalaadimist
thumbnail
75
pdf

Paagutatud Tribomaterjalid

metallilõikepinkide, hüdroturbiinide, mudapumpade jne detailid. Materjalide abrasiivkulumise kohta on tehtud palju uurimusi. Kõige enam on tunnustamist leidnud Archardi kulumisseadus, mis väljendub valemiga: V = k x Fn x S / H, (1) kus V - materjali kulumine ( kaalu vahe), S - läbitud tee pikkus, Fn - rakendatud normaaljôud, k - kordaja, mis iseloomustab materjali kulumist, H ­ materjali kõvadus. Selle järgi materjali kulumine abrasiivkulumisel on võrdeline läbitud tee pikkusega ja rakendavast normaaljôust ning pöördvõrdeline materjali kõvadusest. Seega, saab hõõrdepaari tööiga tõsta, kui kasutada suurema kõvadusega materjale. 5 Abrasiivne erosioon (abrasive-erosion) tekib detaili ja abrasiivosakese kokkupõrkel (joon.2). Abrasiivne erosioon on kompleksne protsess, mis sõltub kulutavast

Materjaliõpetus
18 allalaadimist
thumbnail
69
pdf

Kermised ehk kõvasulamid

2. 7. Kermiste paagutamine 26 2.8. Omaduste kontroll 39 2.9 Täiendav töötlemine 39 2.9.1 Lihvimine 39 2.9.2 Poleerimine 40 2.9.3 Pindamine 40 2.9.4. Termiline töötlemine 41 2.8.4.Isostaatiline kuumpresimine 42 3. Kermiste omadused 43 3.1. Kõvadus 48 3.2 Paindetugevus 52 3.3 Purunemissitkus 59 3.4 Erosioonikindlus 60 3.5. Abrasiivkulumine 61 3.6 Hõõrdekulumine 63 4. Kermiste kasutamine 66 4.1. WC-Co kermised 66 4.2.TiC- baasil kermised 66 4.3

Materjaliõpetus
84 allalaadimist
thumbnail
252
doc

Rakendusmehaanika

2.1. Materjalide omadused Materjalide omadused võib jagada kolme gruppi: füüsikalised, mehaanilised ja tehnoloogilised omadused (vt. Tabel 2.1). Materjalide kasutusomadusi iseloomustavad talitlusomadused. Tabel 2.1. Materjalide omadused. Füüsikalised Mehaanilised Tehnoloogilised Talitlusomadused omadused omadused omadused Tihedus Tugevus Valatavus Korrosioonikindlus Sulamistemperatuur Kõvadus Survetöödeldavus Kulumiskindlus Soojuspaisumine Sitkus Lõiketöödeldavus Pinnaomadused Soojusjuhtivus Plastsus Termotöödeldavus Tulekindlus Elektrijuhtivus Keevitatavus Soojuspüsivus Magnetilisus Joodetavus Ohutus Keskkonnasõbralikkus Materjalide füüsikalised omadused

Materjaliõpetus
142 allalaadimist
thumbnail
88
pdf

Materjaliõpetus

detailide juures. Värvus. Metalle jaotatakse mustadeks(rauaühendid) ja värvilisteks metallideks. Kõvadus. Nimetatakse materjali omadust vastupanna teistele temasse tungivatele materjalidele. Brinelli meetod, mis kasutab kõvaduse määramiseks kolme karastatud teraskuuli läbimõõduga 10, 5, 2,5 mm. Kõvaduse määramiseks surutakse kuul pressi abil materjalisse, seejärel arvutatakse tekkinud jälje pindala ja kõvadus. Rocwelli kõvaduse katse. Siin kasutatakse kõvaduse määramiseks teemantkoonust tipunurgaga 120 kraadi. Ning karastatud teraskuuli läbimõõduga 1,50mm.Survepressi varustas Rockwell indikaatoriga millel oli kaks skaalat. Must C skaala ja punane B skaala. Kui mõõdetakse karastatud detaile siis kasutatakse teemant koonust survejõud on 150kg ning kõvadust loetakse indikaatori mustalt skaalalt. Ja tähistatakse HRC 62.Kui katsetatakse karastamata materjali siis kasutatakse

Materjaliõpe
60 allalaadimist
thumbnail
88
pdf

Materjaliõpetus

detailide juures. Värvus. Metalle jaotatakse mustadeks(rauaühendid) ja värvilisteks metallideks. Kõvadus. Nimetatakse materjali omadust vastupanna teistele temasse tungivatele materjalidele. Brinelli meetod, mis kasutab kõvaduse määramiseks kolme karastatud teraskuuli läbimõõduga 10, 5, 2,5 mm. Kõvaduse määramiseks surutakse kuul pressi abil materjalisse, seejärel arvutatakse tekkinud jälje pindala ja kõvadus. Rocwelli kõvaduse katse. Siin kasutatakse kõvaduse määramiseks teemantkoonust tipunurgaga 120 kraadi. Ning karastatud teraskuuli läbimõõduga 1,50mm.Survepressi varustas Rockwell indikaatoriga millel oli kaks skaalat. Must C skaala ja punane B skaala. Kui mõõdetakse karastatud detaile siis kasutatakse teemant koonust survejõud on 150kg ning kõvadust loetakse indikaatori mustalt skaalalt. Ja tähistatakse HRC 62.Kui katsetatakse karastamata materjali siis kasutatakse

182 allalaadimist
thumbnail
36
docx

Materjalide keemia

Staatiline tugevus ­ vastupidavus pidevalt mõjutavale jõule. Dünaamiline tugevus ­ omadus panna vastu suure kiirusega muutuvale koormusele. Sitkus - materjali omadus koormamisel taluda olulist deformeerimist enne purunemist. Sitkuse vastupidine omadus on haprus. Väsimus - omadus puruneda perioodiliselt muutuva jõu toimel. Tugevust mõõdetakse katseliselt. Masin sikutab materjali ­ määratakse tõmbetugevust. Keskelt lükkab masin alla, äärtest paigal ­ saab teada paindetugevuse. Kõvadus on omadus osutada vastupanu teisele kehale, mis püüab temasse tungida. Jaguneb staatiline ja dünaamiline kõvadus. Dünaamiline ­ seda iseloomustab tagasi põrkamise kõrgus või võnkumise sumbumine. Staatiline Brinelli, Vickersi ja Rockwelli kõvadus, kus suure massiga surutakse väikse pindalaga teemant või wolfram karbiid otsaga keha sisse. Petool ja reaktiivkütused. Need on naftast saadud kütuseliigid. Petrool on süsivesinik, mis koosneb C9-C16

Materjalide keemia
24 allalaadimist
thumbnail
70
pdf

Rakenduskeemia kordamisküsimused

(kehaosale) aineosakeste vastasmõju (molekulidevaheliste põrgete) tagajärjel  Soojusmahtuvus - soojushulk, mis on vajalik antud ainekoguse temperatuuri tõstmiseks 1 kraadi võrra  Lahustuvus - tahke, vedela või gaasilise aine ehk solvaadi omadust moodustada tahke, vedela või gaasilise solvendiga homogeenne lahus  Absorptsioon – neelduvus, imavus  Kõvadus – kasutatakse määramiseks Mohsi skaalat, kus N: talk on 1, teemant 5 000 000  Magnetväli: ferro - agneetilised (Fe), paramagneetilised (Al), diamagneetilised (Cu) 14. Kuidas saab metallid liigitada lähtuvalt füüsikalistest omadustest (näited). Omadus Liigitus Koostis (värv) – jaotamine metallisisalduse järgi (kas  Mustad metallid ehk raud ja rauasulamid

Rakenduskeemia
46 allalaadimist
thumbnail
472
pdf

EHITUSMATERJALID

Programm „Kutsehariduse sisuline arendamine 2008-2013“ HELMUT PÄRNAMÄGI EHITUSMATERJALID Tallinna Tehnikakõrgkool Ehitusteaduskond Tallinn 2005 KOHANDATUD ÕPPEMATERJAL Ana Kontor Konsultant Aita Kahha 2013 1 SISUKORD 1. Sissejuhatus .............. 8 1.1. Ehitusmaterjalide osatähtsusest ............. 8 1.2. Ehitusmaterjalide ajaloost ............. 9 1.3. Ehitusmaterjalide arengusuundadest tänapäeval ............. 10 2. Ehitusmaterjalide üldomadused ............ 11 2.1. Ehitusmaterjalide füüsika

Ehitus
69 allalaadimist
thumbnail
74
docx

Ehitusmaterjalide eksami materjal 2014

surutakse mingi jõuseadme abil puruks. Seade fikseerib purustava jõu suuruse, mille tähiseks on P või F ja mõõtühikuks N või kg. · Tõmbele kontrollitakse suuri deformatsioone omavaid materjale (metallid). Proovikeha on varda kujuline ja ta rebitakse pooleks. · · Paindetugevuse määramisel on proovikeha talakujuline ja ta murtakse pooleks vastava seadme abil. · Kõvadus on materjali võime vastu panna teise materjali kriimustustele või sissetungimisele. Kõvadusest sõltub materjali töödeldavus. Homogeensete kivimaterjalide kõvadust hinnatakse 10pallise skaala järgi (Mohsi skaala), mille aluseks on 10 erikõvadusega mineraali. Skaala alusmineraalid on järgmised: 1- talk, 2- kivisool, 3- kaltsiit, 4- sulapagu, 5- apatiit, 6-ortoklaas, 7- kvarts, 8- topaas, 9- korund, 10- teemant. ·

Ehitus
84 allalaadimist
thumbnail
151
pdf

PM Loengud

p la stsu se g a s av i, 6 ) k es k m is e p la stsu se g a sa v i Ühendades graafikule kantud punktid saame nn. lõimisekõvera. Lõimisekõver annab võimaluse hinnata uuritava pinnase terade suurust ja jaotust. Jaotuse iseloomu saab üldjoontes hinnata visuaalselt. Graafiku horisontaalne osa viitab vastava läbimõõduga fraktsiooni puudumisele pinnases, vertikaalne osa aga vastupidi, sellise läbimõõduga fraktsiooni suuremale hulgale. Mida pikem on graafik, seda erinevama suurusega teradest pinnas koosneb st. seda ebaühtlasem ta on. Pinnase ebaühtluse täpsemaks iseloomustamiseks määratakse joonisel näidatud kaks iseloomulikku diameetrit d60 ja d10. Viimast nimetatakse efektiivdiameetriks. Nende suhet d 60 U=

Pinnasemehaanika, geotehnika
200 allalaadimist
thumbnail
127
pdf

Metallkonstruktsioonid

eemaldamist jäävdeformatsioonid. Kui sama katsekeha koormata uuesti, on pinge ja deformatsiooni seos lineaarne ca kuni eelmise koormamise lõppkoormuseni. Seega on terase voolavuspiir kasvanud. Korduvalt selliselt toimides on katsekeha saanud uued tugevusnäitajad, kusjuures o voolavuspiirkond on kadunud; voolavuspiir asendatakse nn. 0,2% piiriga; o proportsionaalsuspiir ja elastsuspiir on tõusnud; o kõvadus on suurenenud ja sitkus vähenenud; o kalduvus vananeda on suurenenud; o terase kuumenemisel (näit. tulekahjul) külmtöötlemisega saadud omadused kaovad - seega külmtöödeldud terast ei tohi (välja arvatud erandjuhtudel) keevitada. Külmtöötlus on näiteks o traadi ja varraste tootmine külmtõmbamise teel; o lehtterase ja pleki külmvaltsimine teel. Termiline töötlemine Termiline töötlemine toimib tegelikkuses juba valtsimise käigus; terase omadused sõltuvad

Teraskonstruktsioonid
390 allalaadimist
thumbnail
638
pdf

Eesti eluasemefondi puitkorterelamute ehitustehniline seisukord ning prognoositav eluiga

EHITUSTEADUSKOND Eesti eluasemefondi puitkorterelamute ehitustehniline seisukord ning prognoositav eluiga Uuringu lõpparuanne Ehituskonstruktsioonid Ehitusfüüsika Tehnosüsteemid Sisekliima Energiatõhusus Tallinn 2011 EHITUSTEADUSKOND Eesti eluasemefondi puitkorterelamute ehitustehniline seisukord ning prognoositav eluiga Uuringu lõpparuanne Targo Kalamees, Endrik Arumägi, Alar Just, Urve Kallavus, Lauri Mikli, Martin Thalfeldt, Paul Klõšeiko, Tõnis Agasild, Eva Liho, Priit Haug, Kristo Tuurmann, Roode Liias, Karl Õiger, Priit Langeproon, Oliver Orro, Leele Välja, Maris Suits, Georg Kodi, Simo Ilomets, Üllar Alev, Lembit Kurik

Ehitusfüüsika
66 allalaadimist
thumbnail
937
pdf

Erakorralise meditsiini tehniku käsiraamat

Erakorralise meditsiini tehniku käsiraamat Toimetaja Raul Adlas Koostajad: Andras Laugamets, Pille Tammpere, Raul Jalast, Riho Männik, Monika Grauberg, Arkadi Popov, Andrus Lehtmets, Margus Kamar, Riina Räni, Veronika Reinhard, Ülle Jõesaar, Marius Kupper, Ahti Varblane, Marko Ild, Katrin Koort, Raul Adlas Tallinn 2013 Käesolev õppematerjal on valminud „Riikliku struktuurivahendite kasutamise strateegia 2007- 2013” ja sellest tuleneva rakenduskava „Inimressursi arendamine” alusel prioriteetse suuna „Elukestev õpe” meetme „Kutseõppe sisuline kaasajastamine ning kvaliteedi kindlustamine” programmi Kutsehariduse sisuline arendamine 2008-2013” raames. Õppematerjali (varaline) autoriõigus kuulub SA INNOVEle aastani 2018 (kaasa arvatud) ISBN 978-9949-513-16-1 (pdf) Selle õppematerjali koostamist toetas Euroopa Liit Toimetaja: Raul Adlas – Tallinna Kiirabi peaarst Koostajad: A

Esmaabi
313 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun