Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse Registreeri konto
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

"Vektorruumi mõiste" - 19 õppematerjali

vektorruumi mõiste – kõigi n-dimensionaalsete vektorite hulka nim n-dimensionaalseks vektorruumiks Kahe vektori skalaarkorrutis nim arvu, mis on võrdne nende vektorite pikkuste ja vektoritevahelise nurga koosinuse korrutisega Skalaarkorrutise omadused 1. skalaarkorrutis on null siis ja ainult siis kui vähemalt üks vektoritest on nullvektor või kui vektorid on omavahel risti.
thumbnail
4
docx

Vektorruumi mõiste, vahetud järeldused aksioomidest

DEF1: hulgal V on defineeritud elementide liitmine, kui igale paarile ( ⃗a , ⃗b ) ∈V ×V on seatud vastavusse element ⃗c ∈ . V × V →V ( ⃗a , ⃗b ) ↦ c⃗ =⃗a + ⃗b DEF2: hulgal V on defineeritud elemendi korrutamine reaalarvuga λ , kui igale paarile ( λ , ⃗a ) ∈ R ×V on seatud vastavusse element λ ⃗a ∈V . R ×V →V ( λ , ⃗a ) ↦ b⃗ =λ a⃗ Hulk V on vektorruum üle reaalarvude hulga R, kui sel hulgal on DEF1 &DEF2 nii, et on täidetud tingimused (vektorruumi aksioomid): 1) ∀ ⃗a ∈V , ∀ ⃗b ∈V korral ⃗a + b⃗ =b⃗ + ⃗a (liitmise kommuta...

Lineaaralgebra
35 allalaadimist
thumbnail
9
docx

Lineaaralgebra

astendamine On võimalik kui k-arv on esitatud trig.kujul z=r(cos +isin ), astendamise kasutatakse korrutamise reeglit z1*z2=r1r2 [ cos ( 1+ 2 ) +isin( 1+ 2) ] juurimine Igal k-arvul z=r(cos +isin ) 0 on parajasti n juurt + 2 k +2 k cos + isin n n ,anname k väärtused (1,2,3....n-1) n n z= r ¿ 4) Vektorruumi mõiste , vahetud järeldused aksioomidest. Vektorruum on-mittetühi hulk V mille elementitega saab teha 2 tehet.1)liitmine-2le ( , V on )elemendile on pandud + V vastandisse. 2) skalaarkorrutamine- vastavuse elemet( C V on pandud arvule( C R ja hulga elemendile ( V ) .vektorruumi element-on vektor. 5) Vektorite lineaarne sõltuvus ja sõltumatus. Lineaarse s~oltuvuse tarvilik ja piisav tingimus....

Matemaatiline analüüs 2
32 allalaadimist
thumbnail
4
doc

Lineaar algebra teooria kokkuvõte

xn=cn+snt arv t on parameeter Kanooniline võr x1-c1/S1=x2-c2/S2=...xn-cn/Sn Tasandi norm võrrand xcosa+ycosB+zcosg=P P-norm vektori suund =>0, kordajad on määratud üheselt. Punkti kaugus tasandist nim antud punktist tasandile tõmmatud ristlõigu pikkust. L==x0cosa+ycosB+Z0cosg X0=(x0,yo,z0) n=(cosa,cosB,cosg) L=d+p=x0cosa+y0cosB+Z0cosg d=|x0cosa+y0cosB+z0cosg-p| cosa=A/rj(A^2+B^2+C^2) p=-D/rj(A^2+B^2+C^2) d=|Ax0+By0+Cz0+D|/rj(A^2+B^2+C^2) 2D-s d=Ax0+By0+C/rj(A^2+B^2) Vektorruum Vektorruumi mõiste ehk lineaarne ruum V on elementide (vektorite) x,y,... hulk, mis on vektorite liitmise ja arvuga alf R (või alf C) korrutamise suhtes kinnin ( tulemusex on vektor) ning mille puhul kehtivad nn vektorruumi aksioonid: 1) x +y= y+x( liitmise kommutatiivsus) 2) x+ (y+z) = (x+y)+ z (liitmise assotsiatiivsus), 3) leidub 0 V => 0+x=x (nullvektorite olemasolu), 4) iga elemendi x V leidub (-x) V => x+(-x)= 0( vastandvektor olemasolu) 5) 1*x=x ; 6) alf(bet x) =...

Lineaaralgebra
863 allalaadimist
thumbnail
2
doc

Lineaar algebra teooria2

, st A = Fi+2kPi/n , k Z. Arvestame ka seda, et osa juuri langevad omavahel kokku, st ws = wt, kui As = At + 2kPi, k Z. Nii saame, et erinevaid juuri on täpselt n: nRjz = nRJr(cos(fi + 2kPi/n) + isin( fi + 2kPi/ n)); k = 0; 1;.. ; n - 1: Tehted kompleksarvudega algebralisel ja trigonomeetrilisel kujul. Kompleksarvude juurimine ja juurte graafiline kujutamine. Piirkondade kujutamine komplekstasandil. Vektorruum Vektorruumi mõiste . Aritmeetiliste ja geomeetriliste vektorite vektorruum. Vektorite lineaarne sõltuvus ja sõltumatus Vektorite lineaarse sõltuvuse ja sõltumatuse definitsioonid. Vektorite hulga lineaarse sõltuvuse tarvilik ja piisav tingimus. Vektorruumi baas ja mõõde. Vektori koordinaadid. Eukleidiline vektorruum Vektorite skalaarkorrutis. Cauchy-Bunjakovski võrratus. Ühikvektor, kahe vektori vaheline nurk. Meetriline maatriks, vektorite skalaarkorrutise leidmine analüütilisel kujul....

Lineaaralgebra
478 allalaadimist
thumbnail
19
doc

Õppematerjal

Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e Vektoreid, mille arvväärtus (pikkus) on null, nimetatakse nullvektoriteks. Kasutatakse tähistust 0. Nullvektori siht ja suund on määramata. VEKTORITE VASTASTIKUSED SEOSED: Vektorid...

Kõrgem matemaatika
383 allalaadimist
thumbnail
14
doc

Teooria vastused II

Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi...

Matemaatiline analüüs 2
335 allalaadimist
thumbnail
14
doc

KT spikker

Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Süsteemi maatriks ja laiendatud maatriks. Lineaarse võrrandi all mõistetakse võrrandit kujul a1 x1 + a2 x2 + ... + an xn = b , (1) kus a1 , a2 , ... , an ja b on fikseeritud arvud ning x1 , x2 , ... , xn on tundmatud. Arvu b nimetatakse vaadeldava võrrandi vabaliikmeks, arve a1 , a2 , ... , an aga tema kordajateks. Def. 1. Võrrandi (1) lahendiks nimetatakse selliseid tundmatute x1 , x2 , ... , xn väärtusi c1 , c2 , ... , cn R , et pärast nende paigutamist võrrandi (1) vasakusse poolde tundmatute asemele kehtiks võrdus a1c1 + a2c2 + ... + ancn = b . Võrrandi (1) lahend on n arvust c1 , c2 , ... , cn koosnev järjestatud lõplik jada. Seega saab teda vaadelda aritmeetilise vekt...

Lineaaralgebra
265 allalaadimist
thumbnail
9
doc

Lineaaralgebra

Kompleksarvu mõiste , imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi , (1) kus a ja b on reaalarvud ja i on niinimetatud imaginaarühik, mis on määratud võrdustega i = -1 või i 2 = -1 ; Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z2 = a2 + b2i loetakse võrdseteks ( z1 = z2 ) , kui a1 = a2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o....

Lineaaralgebra
920 allalaadimist
thumbnail
5
docx

Lineaaralgebra Eksami küsimuste vastused

Kompleks arvude põhimõiste,põhilised definatsioonid. K.arvude liitmine,korrutamine,jagamine algebralisel kujul. DEF. k.arvuks nim. Arvufoori (a,b) kus a,bR. esitatakse z=a+bi (a-reaalosa,b- imaginaar osa,i- imaginaar ühik). Põhimõiste olgu z1=a1+b1i,z2=a2+b2i z1=z2 kui a1= a2 ja b1=b2, z=0 kui a=0 ja b=0,k-arvu z1=a1-b1i nim.kaas k-arvuks z1=a1+b1i. Arvutamine z1+z2= (a1+a2)+(b1+b2)i, z1-z2= (a1-a2)+(b1-b2), z1*z2= (a1+b1i)*(a2+b2), 2. K.geomeetriline kujutamine, trigonomeetriline kuju.korrutamine ja jagamine trigonomeetrilisel kujul. geomeetriline kujutamine k-arv/reaalarvu paar (a,b).saab k-arvu z=a+bi kujutada xy tasandil kus kordinaadid a-reaal osa, b- imaginaar osa ja vastavalt X-telg k-arvu reaal telg ja Y-telg ­ imaginaar telg.XY tasandi iga punkt M(x,y) ongi z=x+iy trigonomeetriline kuju tähistame nurk X-teljel ja vektori pikkus r ,siis a=rcos ja b=rcos.avaldist z=r(cos+isin) ongi trigon...

Lineaaralgebra
950 allalaadimist
thumbnail
2
odt

Eukleides ja tema aksioomid

,,Eukleides" Eukleides: Eukleides oli Kreeka matemaatik, keda tuntakse ka ,,geomeetria isana". Eukleides oli esimeste peaaegu täielikult säilinud matemaatikateoste autor. Eukleidese tähtsaim teos, 13 raamatust koosnev ,,Elemendid", sisaldab peaaegu kogu elementaargeomeetria. See tohutu suur, 465 lauset (definitsioonid, aksioomid, teoreemid) hõlmav töö on kirjutatud ranges loogilises järjekorras ja on olnud paljude aastasadade vältel geomeetriaõpikute koostamise aluseks. Eukleidese aksioomid : Tema põhiteos on 13nest raamatust koosnev "Elemendid", mis kujutab endast kogu Vana-Kreeka matemaatika suursaavutusi. Teos sisaldab geomeetria kõige varasema loogiliselt range ülesehituse. Selle 13nest raamatustt I ­ VI on pühendatud planimeetriale, VII ­ IX aritmeetikale, X ühismõõdututele suurustele, XI ­ XIII stereomeetriale....

Matemaatika
15 allalaadimist
thumbnail
2
doc

Determinandid

Vektorid Skalaarsed ja vektoriaalsed suurused Suurusi mis on kirjeldatavad üksnes arvulise väärtusega nagu aeg, lõigu pikkus, kujundi pindala jne, nim skalaarseteks suurusteks ehk skalaarideks. Suurusi mille iseloomustamiseks on vaja teada peale arvulise väärtuse ka suunda nagu jõud, kiirus jne, nim vektoriaalseteks suurusteks ehk vektoriteks. Vektori pikkus Iga vektorit võime geomeetriliselt kujutada kindla pikkuse ja suunaga sirglõiguna. Vektori pikkuseks ehk moodduliks nim vektori kui lõigu pikkust. *Vektorit, mille moodul võrdub ühega nim ühikvektoriks. Nullvektoriks nim vektorit mille alguspunkt ja lõpp-punkt ühtivad. Vektorite võrdsus Kaht vektorit nim võrdseteks kui nad on võrdse pikkusega ja samasuunalised ja vektorite võrdsus erineb lõikude võrdsusest. Vabavektor- see on veektorid mille alguspunkti valik ei ole millegagi kitsendatud. Vektorite kollineaarsus ja komplanaarsus Vektoreid nim kollineaarseteks, kui peale ühisesse alg...

Algebra ja Analüütiline...
34 allalaadimist
thumbnail
5
doc

algebra konspekt

Sirged ja tasandid Joonte ja pindade võrrandite mõiste Võrdust F(x,y,z)=0 nim pinna S võrrandiks antud koordinaatide süsteemis, kui selle pinna kõikide punktide koordinadid rahuldavad seda võrdust ja nende punktide koordinadid, mis ei asu sellel pinnal, ei rahulda seda võrdust. Sfäär on niisuguste punktide hulk, milliste kaugus keskpunktist on võrdne raadiusega r. Tähistades sfääri meelevaldse punkti M koordinadid (x,y,z) ning avaldades võrduse |OM| =r koordinatide kaudu. Võrdust (x-a)² + (y-b) ² + (z-c)² = r² nim sfääri võrrandiks vaadeldavas koordinaatide süsteemis. Kui pinna võrrand on esitatav kujul F(x,y,z)=0, kus F(x,y,z) on n-astme polünoom, siis nim pinda n-järku algebraliseks pinnaks. Algebralistest pindadest lihtsaim on esimest järku pind ehk tasand. Sfäär on teist järku pind, sest selle võrrandis esinevad tundmatud on teisel astmel.Võrdust F(x,y)=0 nim joone L võrrandiks antud koordinaatide süsteemis tasandil, kui teda rahuld...

Algebra ja Analüütiline...
130 allalaadimist
thumbnail
81
pdf

Kõrgem matemaatika / lineaaralgebra

Maatriksi definitsioon. Maatriksi elemendid. Lineaarsed tehted maatriksitega (liitmine ja skalaariga korrutamine). Nullmaatriks. Transponeeritud maatriks 2. Maatriksite korrutise definitsioon. Korrutamise omadused ja seosed lineaarsete tehete ning korrutamise vahel. Ühikmaatriks. 3. Teist ja kolmandat järku determinandid. 4. Permutatsiooni definitsioon. Inversiooni definitsioon. n-järku determinandi definitsioon. Determinandi põhiomadused 5. Maatriksi elemendi minor. Alamdeterminant. Determinandi arendus rea ja veeru järgi. Determinantide teooria põhivalem. 6. Regulaarse maatriksi mõiste . Pöördmaatriksi definitsioon ja elementide leidmise eeskiri. Pöördmaatriksi omadused. 7. Lineaarse võrrandisüsteemi definitsioon. Võrrandisüsteemi kordajad, vabaliikmed, lahend. Vasturääkiv, kooskõlaline, määratu süsteem. Süsteemi maatriks ja laiendatud ma...

Algebra I
198 allalaadimist
thumbnail
19
doc

VEKTORALGEBRA PÕHIMÕISTEID

Suurusi, mis on iseloomustatud oma 1) arvväärtuse (pikkuse), 2) sihi ja 3) suunaga, nimetatakse vektoriteks. Tähistame neid a, b,... . MÄRKUS. Geomeetriliselt on vektor a määratud kahe punktiga oma alguspunktiga A ja lõpp-punktiga B. Tähistame a = AB, kusjuures: 1) arvväärtuse määrab punktide vaheline kaugus, 2) sihi määrab punktidega antud sirge s(A,B), 3) suund on määratud punktide järjestusega. OLULISED VEKTORID: Vektoreid, mille arvväärtus (pikkus) on üks, nimetatakse ühikvektori- = 1. teks. Kasutatakse tähistust e, st e Vektoreid, mille arvväärtus (pikkus) on null, nimetatakse nullvektoriteks. Kasutatakse tähistust 0. Nullvektori siht ja suund on määramata. VEKTORITE VASTASTIKUSED SEOSED: Vektorid...

Kõrgem matemaatika
50 allalaadimist
thumbnail
4
pdf

Lineaaralgebra I osaeksam 2013

Kompleksarvu mõiste , imaginaarühik, kaaskompleksarv, kompleksarvude võrdsus ja nulliga võrdumise tingimus. Kompleksarvu moodul, argument ja trigonomeetriline kuju. Kompleksarvuks z nimetatakse avaldist z = a + bi, (1) kus a ja b on reaalarvud ja i on nn. imaginaarühik, mis on määratud võrdustega i = - 1 või i 2 = -1 . Kaht kompleksarvu z = a + bi ja z = a - bi , mis erinevad ainult imaginaarosa märgi poolest, nimetatakse kaaskompleksarvudeks. Kokkuleppe põhjal 1) kaht kompleksarvu z1 = a1 + b1i ja z 2 = a 2 + b2 i loetakse võrdseteks ( z1 = z 2 ) , kui a1 = a 2 ja b1 = b2 , s.t. kui nende reaalosad on võrdsed ja imaginaarosad on võrdsed; 2) kompleksarv võrdub nulliga, s.o. z = a + bi = 0 siis ja ainult siis, kui a = 0 ja b = 0. z = a + bi = r cos + i sin ehk z = r (cos + i sin ) Avaldist võrduse paremal poolel nimetatakse kompleksarvu z = a + bi trigonomeetriliseks kujuks; suurust r nimetatakse kompleksarvu z mooduliks ja suur...

Lineaaralgebra
416 allalaadimist
thumbnail
14
doc

Matemaatiline analüüs II Teooria

Kaugus mitmemõõtmelises ruumis. Kauguse omadused. Parameetrilised jooned. · Mitmemõõteliseks ruumiks nimetakse hulka , mille elementideks on kõik reaalarvust koosnevad järjestatud süsteemid ( a1, a2, ..., an). · Mitmemõõtmelise ruumi punktiks nim mitmemõõtmelise ruumi ( a1, a2, ..., an) süsteemi A=( a1, a2, ..., an). · Kaugus mitmemõõelises ruumis. Kui A=( a1, a2, ..., an) ja B=( b1, b2, ..., bn) siis |AB|= (a1-b1)+ (a2-b2)+ ...+ (an-bn) · Kauguste omadused: A=B siis ja ainult siis, kui |AB|=0 |AB|=|BA| |AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi...

Matemaatiline analüüs 2
184 allalaadimist
thumbnail
24
rtf

Lineaaralgebra eksam

Kompleksarv kui reaalarvude paar. Tehted kompleksarvudega. Tehete omadused. Kompleksarvu algebraline kuju. Tuletatavad tehted ja nende omadused. Kompleksarvuks nimetatakse reaalarvude paari (x,y). C = {(x;y) | x, y R} Tehted kompleksarvudega: z1 = (x1; y1) C; z2 = (x2; y2) C 1. liitmine: z1 + z2 = (x1 + x2; y1 + y2) 2. korrutamine: z1 * z2 = (x1x2 - y1y2; x1y2 + x2y1) Kompleksarvudega tehete omadused 1. liitmine on kommutatiivne, st z1 + z2 = z2 + z1 z1, z2 C korral 2. liitmine on assotsiatiivne, st (z1 + z2) + z3 = z1 + (z2 + z3) z1, z2, z3 C korral 3. liitmise suhtes leidub nullelement (reaalarv 0, 0 + z = z + 0 = z z C korral), st leidub C, nii et z + = + z = z z korral; = (0; 0) = 0 4. igal kompleksarvul z = (x; y) = x + yi leidub (liitmise suhtes) vastandarv, st selline arv w C, et z + w = w + z = 0; w = -z 5. korrutamine on kommutatiivne, st z1z2 = z2z1 z1, z2 C korral 6. korrutamine on assotsiatiiv...

Lineaaralgebra
197 allalaadimist
thumbnail
86
docx

Kõrgem Matemaatika 2

Eksami mõisted (35 punkti), igale küsimusele võivad lisanduda näited. I osa Algebra ja geomeetria (8 punkti) 1. Vektorruumi mõiste, omadused. 2. Vektorruumi alamruum. Lineaarkate - alamruumi oluline näide. 3. Vektorsüsteemi lineaarne sõltuvus ja sõltumatus. 4. Moodustajate süsteem. 5. Vektorruumi baas. Vektori koordinaadid baasi suhtes. 6. Vektorid. Geomeetrilise vektori mõiste. Lineaartehted, tehete omadused. Vektori projektsioon sirgele, teljele. Vektori pikkus. Vektori ja punkti koordinaadid 3- mõõtmelises ruumis. 7. Skalaarkorrutise mõiste. Skalaarkorrutise omadused....

Kõrgem matemaatika ii
63 allalaadimist
thumbnail
156
pdf

Kõrgem matemaatika

00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksi...

Kõrgem matemaatika
94 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun