Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

3 Terase legeerivat elementi - sarnased materjalid

kroom, titaan, metall, kroomi, sulamistemperatuur, karol, korrosioonikindlus, noad, potid, pannid, nõudepesumasinad, silmapaistev, puhastada, aatommass, perioodis, elektronskeem, 1083, eritakistus, varieerub, punasest, soojus, mehhaanilise, gaase, paljas, 1668, amfoteerne
thumbnail
5
doc

Vask

Tartu Kutsehariduskeskus Majutus-ja toitlustusosakond VASK Referaat Tartu 2009 VASK Üldiselt Vask ( ladina keeles cuprum; tähis Cu) on keemiline element järjenumbriga 29. Tal on kaks stabiilset isotoopi massiarvudega 63 ja 65. Aatommass on 63,54. Omadustelt on vask metall. Normaaltingimustes on vase tihedus 8,9 g/cm3. Vask asub IB rühmas ning 4. perioodis. Vase elektronskeem näeb välja: 2) 8) 18) 1). Tema sulamistemperatuur on 1083 Celsiuse kraadi. Vase eritakistus 20 °C juures on 16,78 n·m. Vase värvus varieerub punasest kuldkollaseni. Plastiline metall, mida hakati kasutama umbes 10 000 aastat tagasi. Vask on väheaktiivne metall ning ta ei reageeri hapetega ega veega. Leidumine Vaske leidub looduses peamiselt ühenditena , näiteks sulfiidina (Cu 2S) või rohelise malahhiidina, mis keemiliselt kujutab endast vaskhüdroksiidkarbonaati Cu2(OH)2CO3 ehk CuCO3 x Cu(OH)2

Keemia
78 allalaadimist
thumbnail
9
docx

Vask

................................... 7 4.2Messing ehk valgevask............................................................................. 7 Kokkuvõte......................................................................................................... 8 Kasutatud allikad.............................................................................................. 9 Sissejuhatus Vask on üks vanim kasutatud metallidest- juba vähemalt 10 000 aastat. Kerge saadavus maagist ja üsna madal sulamistemperatuur lubasid vasel olla üks esimesi inimkonna poolt enimkasutatavaid metalle. Enne vaske kasutati metallidest ainult kulda. Vanimad leiud pärinevad pronksiajast. Kogemused vase sulatamisega viisid edasi ka teiste metallide sulatamiseni nagu raud. Pronksiajal kasutati peamiselt vase ja tina sulamit pronksi, valmistamaks relvi, ehteid, raha jne. Tänapäeval on vask nõutud metall ja tema hind tõuseb pidevalt. Puhtal kujul kasutatakse vaske elektrotehnikas. Vase

Mittemetallid
2 allalaadimist
thumbnail
7
doc

Vask - Cu

Vask Referaat Siskukord 1) Sisukord lk 2 2) Üldiseloomustus lk 3 3) Leiduvus lk 4 4) Ajalugu lk 4 5) Mürgisus lk 4 6) Ühednid lk 5 7) Kasutusalad lk 6 8) Reaktsioonid lk 7 9) Kasutatud kirjandus lk 7 2 Üldiseloomustus Vask tähis Cu on keemiline element järjenumbriga 29. Aatommass on 63,54.Omadustelt on vask metall. Normaaltingimustes on vase tihedus 8,9 g/cm3.Vask asub IB rühmas ning 4. perioodis. Vase elektronskeem näeb välja: 2) 8) 18) 1).Tema sulamistemperatuur on 1083 Celsiuse kraadi. Vase eritakistus 20 °C juures on 16,78 n·m. Vase värvus varieerub punasest kuldkollaseni. Vask sepistatav, valtsitav ja traadiks tõmmatav metall. Ta on hea soojus- ja elektrijuht. Kuumutamisel õhus kattub vask musta värvusega vask(II)oksiidi kihiga. Kuivas õhus on vask püsiv. Niiskes õhus tekib vaskesemete

Keemia
80 allalaadimist
thumbnail
11
docx

Vase tootmine, tema sulamid ja kasutamine

Vase tootmine, tema sulamid ja kasutamine Referaat Keegi Teine Õppeaines: Tehnomaterjalid Juhendaja: Annika Koitmäe Rühm: eisaaõelda Tallinn 2013 1.1 VASE AJALUGU 1.2 Neoliitikum Kerge saadavus maagist ja üsna madal sulamistemperatuur lubasid vasel olla üks esimesi inimkonna poolt enimkasutatavaid metalle.Vask on üks vanim kasutatud metallidest- juba vähemalt 10000 aastat. Ainult kulda kasutati ennem vaske metallidest. Kogemused vase sulatamisega viisid edasi ka teiste metallide sulatamiseni nagu raud. Uue-kiviaja(10000eKr) ja pronksiaja vahel olnud Neuliitikumis (vase-kivi) kasutati vasest tööriistu,mis olid kasutusel koos kivitööriistadega või siis vahendeid,mis olid kombineeritud mõlemast materjalist. 1

Tehnomaterjalid
74 allalaadimist
thumbnail
1
pdf

Terase legeerivad elemendid

Terase legeerivad elemendid 1. Mangaan Mangaan on keemiline element järjenumbriga 25.Tal on üks stabiilne isotoop massiarvuga 55.Omadustelt on mangaan metall.Normaaltingimustel on ta tihedus 7,47 g/cm3. Tema sulamistemperatuur on 1244 Celsiuse kraadi.Mangaan laiendab austeniidi püsivusala kuni toatemperatuurini. Silmas tuleb siinjuures pidada seda, et polümorfsele muutusele on omane teatav aeglus. Mangaan moodustab terases karbiidid, mis avaldavad mõju eelkõige terase tugevusele. See element alandab martensiitmuutuse temperatuure. Tõstab Rm, HB, suurendab läbikarastuvust, soodustab austeniitstruktuuri teket. Kulumiskindlates terastes ca 13%

Materjaliteaduse üldalused
133 allalaadimist
thumbnail
2
doc

VASK

Vask. Vask (ladina keeles cuprum; tähis Cu) on keemiline element järjenumbriga 29. Omaduste poolest on vask metall. Normaaltingimustes on vase tihedus 8,9 g/cm³. Vask asub IB rühmas ning 4. perioodis. Vase elektronskeem näeb välja: 2) 8) 18) 1). Tema sulamistemperatuur on 1083 °C. Vase värvus varieerub punasest kuldkollaseni. Vask on plastiline metall. Seda hakati kasutama umbes 10 000 aastat tagasi. Kerge saadavus maagist ja üsna madal sulamistemperatuur lubasid vasel olla üks esimesi inimkonna poolt enimkasutatavaid metalle. Pronksiajal kasutati peamiselt vase ja tina sulamit pronksi, valmistamaks relvi, ehteid, raha jne. Vaske leidub looduses peamiselt ühenditena, näiteks sulfiidina (Cu2S) või rohelise malahhiidina, mis keemiliselt kujutab endast vaskhüdroksiidkarbonaati Cu2(OH)2CO3 ehk CuCO3 x Cu(OH)2. Et vaske leidub looduses ka ehedalt, siis kuulub ta vanimate tuntud elementide hulka

Keemia
3 allalaadimist
thumbnail
3
doc

Keemia: leelismetallid, leelismuldmetallid,Alumiinium(Al), Raud(Fe), Vask (Cu), oküdeerija, redutseerija

Looduses leidub ainult ühenditena, eelkõige karbonaatide, aga ka sulfaatide, silikaatide jt. Leegis annavad iseloomuliku värvuse. Mõnevõrra kõvemad ja kõrgema sulamistemperatuuriga kui leelismetallid. Alumiinium on keemiline element järjenumbriga 13. Tal on üks stabiilne looduslik isotoop massiarvuga 27. Radioaktiivne isotoop massiarvuga 26 tekib looduses kosmiliste kiirte mõjul. Alumiinium on hõbevalge metall tihedusega 2,7 g/cm³ ja sulamistemperatuuriga 660 °C. Alumiiniumi keemilise aktiivsuse tõttu teda looduses lihtainena ei esine. Alumiinium reageerib paljude lihtainete ja hapetega. Hapetest tõrjub ta välja vesinikku ning tekib sool. Amfoteersuse tõttu reageerib alumiinium ka leelistega, tõrjudes nende lahustest vesinikku välja ja moodustades aluminaate. Kõigis püsivamates ühendites on alumiiniumi oksüdatsiooniaste +3. Alumiiniumoksiid on amfoteerne oksiid.

Keemia
43 allalaadimist
thumbnail
2
pdf

Terase legeerivad elemendid

Terase legeerivad elemendid 1. Kroom Kroom on keemiline element järjenumbriga 24. Ta esineb looduses nelja isotoobina massiarvudega 50, 52, 53 ja 54. Kroom-50 arvatakse olevat radioaktiivne poolestusajaga üle 1017 aasta. Omadustelt on kroom metall. Nоrmааltingimustеl on kroomi tihedus 7,14 g/cm3. Tema sulamistemperatuur on 1857 kraadi Celsiust. Kroom laiendab temperatuurivahemikku, milles ferriit on püsiv. See ala laieneb legeerivate elementide sisalduse suurenеmisega, kuni fеrriit muutub stаbiilseks kogu temperatuurivahemikus. Cr tõstab terase struktuuriosa- ferriidi ja seega ka terase tõmbetugevust ja voolavuspiiri ja sellega koos ka kõvadust. Kroom moodustab terases karbiide, mis avaldavad mõju eelkõige terase tugevusele. See element takistab austeniiditera kasvu ja alandab martensiitmuutuse temperatuure

Materjaliõpetus
25 allalaadimist
thumbnail
12
docx

VASE TOOTMINE JA KASUTAMINE

..............................................11 7. Kasutatud kirjandus/materjalid.............................................................................................12 2 1. SISSEJUHATUS Me kõik puutume kokku vasega, võibolla mitte otseselt, kuid kaudselt ikka. Me kasutame igapäevaselt tehnikat ja mööda vaskjuhtmeid jõuab meieni elekter, mis teeb meie elu kergeks. Juba inimese aja algusest saadik on see metall väga väärtustatud oma omaduste poolest. Seda leidub maakoores palju ning tänu sellele on see odavam kui teised väärismetallid nagu kuld või hõbe. Ka vase sulamid on tähtsal kohal, nagu näiteks pronks ja messing, millele on inimesed leidnud väga häid kasutusviise tööriistadest kuni eheteni välja. Vaske peaaegu nagu igat metalli, leidub seda maakoores. Miljonite aastate jooksul vulkaanilise tegevuse tagajärje tõttu on seda suhteliselt palju. Tänu selle madala

Ainetöö
17 allalaadimist
thumbnail
3
docx

Messingid ja nende omadused

muutub jälle punakaks. Vasknõudel on ka oma miinus. Hapu ja soolane toit reageerivad vasega ja tekivad vasesoolad, mis mürgitavad inimese. Messingist täring Tuhatoosid (messingist) Kaelakett (valgevasest) Vask (ladina keeles cuprum; tähis Cu) on keemiline element järjenumbriga 29. Tal on kaks stabiilset isotoopi massiarvudega 63 ja 65. Aatommass on 63,54. Omaduste poolest on vask metall. Normaaltingimustes on vase tihedus 8,9 g/cm³. Vask asub IB rühmas ning 4. perioodis. Vase elektronskeem näeb välja: 2) 8) 18) 1). Tema sulamistemperatuur on 1083 °C. Vase eritakistus 20 °C juures on 16,78 n·m. Vase värvus varieerub punasest kuldkollaseni. Vask on plastiline metall. Seda hakati kasutama umbes 10 000 aastat tagasi. Ajalugu Kerge saadavus maagist ja üsna madal sulamistemperatuur lubasid vasel olla üks esimesi inimkonna poolt enimkasutatavaid metalle

Materjaliõpetus
19 allalaadimist
thumbnail
2
doc

Keemiline element - Vask

Sissejuhatus Vask (ladina keeles cuprum; tähis Cu) on keemilne element järjenumbriga 29. Vask asub IB rühmas ning 4. perioodis. Normaaltingimustes on vase tihedus 8,9 g/cm 3. Vasest Kerge saadavus ­ maagist, ja üsna madal sulamistemperatuur lubasid vasel olla üks esimesi inimkonna poolt enimkasutatavaid metalle. Pronksiajal kasutati peamiselt vase ja tina sulamit ­ pronksi, valmistamaks relvi, ehteid, raha jne. Suure tähtsusega on mitmesugused vasesulamid. Vase ja tina sulam - pronks kujunes umbes viis tuhat aastat tagasi peamiseks tööriista-, relva- ja ehtemetalliks, pannes niiviisi aluse pronksiajale. Mõned pronksliigid olid väliselt äravahetamiseni sarnased kullaga ning neid hinnati eriti kõrgelt.

Keemia
10 allalaadimist
thumbnail
10
pptx

Vask - selle kasutusalad, leidumine looduses jne

Vask Vask Vask- ladina keeles cuprum,tähis Cu.Keemiline element,mille järjenumbriks on 29. Kahe isotoobiga metall,mille massiarvud on 63 ja 65. Aatommass on vasel 63 ja 54.Vask on oma omadustelt metall.Vase tihedus on 8,9 g/cm3. Vask asub perioodilisuse tabelis IB rühmas ning 4. perioodis.Vase elektronskeem: 2) 8) 18) 1). Selle metalli sulamistemperatuur on 1083 Celsiuse kraadi. Vase värvus võib ulatuda punasest kuldkollaseni.Vaske hakati kasutama umbes 10 000 aastat tagasi. Ajalugu Vask on üks vanimaid inimkonnale teadaolevaid metalle, mis sulameina (koos tinaga pronksidena) on olnud kasutusel enam kui 5000 aastat. Täna-päeval on palju väga kasulikke vasesulameid, kuid metalli kõrgest hinnast tingituna on need paljudel juhtudel asendumas odavamate materjalidega nagu alumiinium ja plastid. Leidumine looduses

Keemia
41 allalaadimist
thumbnail
5
doc

Vask - referaat

Vask Vask- ladina keeles cuprum,tähis Cu.Keemiline element,mille järjenumbriks on 29.Kahe isotoobiga metall,mille massiarvud on 63 ja 65. Aatommass on vasel 63 ja 54.Vask on oma omadustelt metall.Vase tihedus on 8,9 g/cm3.Vask asub perioodilisuse tabelis IB rühmas ning 4. perioodis.Vase elektronskeem: 2) 8) 18) 1).Selle metalli sulamistemperatuur on 1083 Celsiuse kraadi.Vase eritakistus 20 °C juures on 16,78 n·m.Vase värvus võib ulatuda punasest kuldkollaseni.Vaske hakati kasutama umbes 10 000 aastat tagasi. Ajalugu Kerge saadavus ­ maagist, ja üsna madal sulamistemperatuur lubasid vasel olla üks esimesi inimkonna poolt enimkasutatavaid metalle. Pronksiajal kasutati peamiselt vase ja tina sulamit ­ pronksi, valmistamaks relvi, ehteid, raha jne. Leidumine looduses

Keemia
74 allalaadimist
thumbnail
4
rtf

Oksiidide leidumine looduses ja nende kasutamine

Laialt kasutatav metall alumiinium kattub õhuhapnikuga reageerimisel õhukese oksiidikihiga. See kiht on nii tihe, et kaitseb , metalli edasise oksüdeerumise eest. Seepärast on alumiinium tavatingimustes õhu ja vee suhtes hea vastupidavusega.Ka raua pinnal tekkiv rooste koosneb põhiliselt oksiidist. Raud : Lihtainena esineb rauda maailmaruumist Maale langenud meteoriitides, kuid ka mõningates magmakivimeis on hõbevalge keskmise kõvadusega metall. Lisandid muudavad raua kõvemaks. Raua tihedus on 7874 kg/m3 ja sulamistemperatuur 1539 kraadi. Tekkib:soomaagist . Inimesed kasutavad rauda tööstuseks. Naatrium on maakoores neljas kõige levinum metall ja kõige levinum leelismetall. Metallilist naatriumi saadakse tänapäeval naatriumkloriidi elektrolüüsil. Eraldi metallina kasutatakse naatriumi teiste metallide saamisel nende sooladest ning metallide puhastamiseks. Palju laiem on naatriumiühendite kasutus

Keemia
4 allalaadimist
thumbnail
36
odp

Vask

Pronksiajal kasutati peamiselt vase ja tina sulamit - pronksi, millest valmistati relvi, ehteid ja raha. Leidumine looduses Vaske leidub looduses peamiselt ühenditena (nt:sulfiidina (Cu2S) või rohelise melahhiidina. Veel leidub vaske ehedal kujul ja mineraalide koostises. Selle tõtttu, et vaske leidub looduses ehedalt, siis kuulub element vanimate tuntud elementide hulka. Looduslikud vasekristallid Füüsikalised omadused Vask on punakaspruun metall. Puhtal kujul on vask väga pehme. Sepistatav, valtsitav ja traadiks tõmmatav metall. Hea soojus- ja elektrijuht. Kuivas õhus vask ei muutu, niiskes õhus kattub roheka paatinakihiga. Korrosioonikindel. Kasutusalad Umbes 50% toodetavast vasest tarbivad elektritööstus (elektrijuhtmed ja- kaablid). Umbes 40% kulub vasesulamite tootmiseks. Valmistatakse torusid ja münte. Hea soojusjuhtivuse pärast kasutatakse vaske laialdaselt soojusagregaatide valmistamiseks (nt:

Üldkeemia
18 allalaadimist
thumbnail
12
doc

Referaat metallid

Suurim leiukoht maailmas on Kurski oblast. Püriiti (FeS2) tavaliselt rauamaagina ei kasutata , sest väävel halvendab püriidist saadud rauasulamite kvaliteeti. Püriiti kasutatakse väävelhappe tootmisel. Sideriit kujutab endast raudkarbonaati (Fe CO3). Raudkarbonaat reageerib süsinikdioksiidi sisalava veega, muutudes lahustuvaks raudvesinikkarbonaadiks : FeCO3+H2O+CO2=Fe(HCO3)2 Raua füüsikalised ja keemilised omadused Raud on hõbevalge keskmise kõvadusega metall. Lisandid muudavad raua kõvemaks. Raua tihedus on 7874 kg/m3 ja sulamistemperatuur 1539 kraadi. Raud on plastiline , mistõttu teda on võimalik valtsida ning sepistada. Ta on hea soojus- ja elektrijuht. Raud on magnetiseeritav. Raua kristallvõre muutub erinevatel temperatuuridel. Raud on keskmise aktiivsusega metall(asub metallide pingerea keskel). Kuivas õhus ta hapnikuga ei reageeri, kuid niiskuses kattub kergesti roostekihiga. Mida lisanditevabam on metall, seda püsivam on

Keemia
101 allalaadimist
thumbnail
32
docx

Materjaliõpetus

valgustatuse intensiivsusest jne.) Pooljuhid on kas keemilised elemendid või nende keemilised ühendid nagu germaanium, räni, seleen, telluur, arseen, fosfor, või ränikarbiid ning mitmesuguste metellide oksiidid (vaskoksiid, titaanoksiid jne.) ja sulfiidid (tsinksulfiid, hõbesulfiid, magneesiumsulfiid jt.).. Germaanium (Ge) on välimuselt hõbehall, metalse läikega, raskesti mehaaniliselt töödeldav ja rabe, sulamistemperatuur 958,5 °C., suhteline dielektriline läbitavus ε = 16. Germaaniumist valmistatakse pooljuhtdioode ja transistore, mis võivad töötada temperatuuridel –60°C...+70 °C. Räni (Si) hallikas, kõva, habras ja metalse läikega, sulamistemistemperatuur 1415 °C, suhteline dielektriline läbitavus ε = 12,5. . Rauasulamite koostises suurendab elektrotehnilise terase elektrilist eritakistust. Kasutatakse dioodide, transistoride, türistoride, pinge stabilisaatorite jne. valmistamisel.

Masinaelemendid
16 allalaadimist
thumbnail
20
docx

Materjaliõpetuse eksami kordamisküsimuste vastused.

Saame nn. klaas- või amorfse metalli või sulami (amorphous metal, amorphous alloy, metal glass, metaglas), millel puudub metallile või sulamile omane korrapärane aatomite paigutus. Amorfne olek on seda püsivam, mida keerulisem on metalli või sulami kristallivõre ja mida suurem on aatomite vastastikune mõju (suurem on ta metalli ja mittemetalli sulamite korral). Koostise poolest on kergemini saadavad ja püsivamad kahe- ja enamakomponentsed sulamid. Amorfsetel metallidel on suurepärane korrosioonikindlus, head elektri- ja magnetomadused (üldiselt suuremad kui vastavatel kristalsetel materjalidel). Difusioon Paljud metallides ja sulamites toimuvad protsessid, eriti kõrgetel temperatuuridel, on seotud difusiooniga (diffusion). Metalli aatomite liikumist kristallivõre sõlmpunktist naabersõlmpunkti või nende vahele temperatuuri mõjul nimetatakse omadifusiooniks (self-diffusion). Erisuguste aatomite

Materjaliõpetus
194 allalaadimist
thumbnail
8
docx

Kordamisküsimused aines Rakenduskeemia

·Mikroskoopiline tase: aatomite vaheliste sidemete muutumine jms. 6. Selgitage millest koosneb teaduslik meetod. ·Andmete kogumine. ·Seoste otsimine andmekogumites. ·Hüpoteesi(de) formuleerimine ja eksperimentaalne kontrollimine. ·Teooria formuleerimine: ­ kvalitatiivsed ja kvantitatiivsed teooriad; ­ ennustused teooria põhjal; ­ mudelid. 7. Materjalide füüsikalised omadused: nimetage ja iseloomustage neid. Tihedus, Sulamistemperatuur, Korrosioonikindlus Erinevaid materjaide grupid (metallid, plastid, keraamika) erinevad üksteisest eelkõige tiheduse (roo) poolest, mille ühik on mahuühikumass, kg/m3. Plastide tihedus on vahemikus 1000-2000kg/m3, keraamikal 1500-2500, metallidel 1700-22000kg/m3 piires. Temperatuuri, mil materjal läheb üle tardolekust vedelasse, nimetatakse sulamistemperatuuriks (Ts). Korrosiooniks nimetatakse materjali ja keskkonna (õhk, gaasid, vesi, kemikaalid) vahelist reaktsiooni, milles materjal hävib. 8

Rakenduskeemia
40 allalaadimist
thumbnail
52
odt

Materjaliõpetus

piirsisalduse. Tabel 1. Lisandite piirsisaldus mittelegeeterastes Element Al Bi Co Cu Cr Mn Mo Nb Ni Pb Se Ti V W Piirsisaldus 0,3 0,1 0,3 0,4 0,3 1,65 0,08 0,06 0,3 0,4 0,1 0,05 0,1 0,3 % Legeerterastes ületab vähemalt ühe legeeriva (st terase koostise lisatud) elemendi sisaldus tabelis 1 toodu ja teras ei kuulu roostevabade teraste alla. Roostevabades terastes peab kroomi sisaldus olema vähemalt 10,5% ja süsiniku sisaldus alla 1,2%. Kasutamise otstarbest lähtudes nõuab aga mõningate lisandite sisaldus eripiiranguid alla tabelis 1 näidatu, näiteks on auto kere valmistamiseks kasutatavas plekis vajalik piiratud ränisisaldus (üle 0,02%) 5. MITTELEGEERTERASTE LIIGITUS Mittelegeerteraseid liigitatakse mitme tunnuse järgi: a) Otstarve – konstruktsiooniterased (C=0,05-0,65%); tööriistaterased (C=0,7- 1,35%)

Materjaliõpetus
37 allalaadimist
thumbnail
14
doc

Raud, nikkel, koobalt

Raud. Fe. Ferrum Raud (Ferrum) on keemiline element järjenumbriga 26. Raud asub Perioodilisussüsteemi VIII B rühmas ja 4. perioodis. Tal on neli stabiilset isotoopi massiarvudega 54, 56, 57 ja 58. Omadustelt on raud metall. Normaaltingimustel on raud tahke aine tihedusega 7,87 g/cm 3. Raua sulamistemperatuur on 1535 Celsiuse kraadi. Raud esineb madalal rõhul nelja kristallmodifikatsioonina olenevalt temperatuurist. Raud on inimesele tuntud väga ammu. Oli ju pärast pronksiaega rauaaeg, mis Eestiski algas juba e. m. a. Metallidest on levikult raud teisel kohal pärast alumiiniumi, kuid toodangult esikohal, sest on kõige kättesaadavam metall.

Keemia
51 allalaadimist
thumbnail
19
rtf

Exami piletite vastused

terase elastsust; plastne deformatsioon on lubamatu. Seega on vedrumaterjalile peamine nõue kõrge voolavuspiir ja elastsusmoodul. Kuna vedrud töötavad vahelduvtsüklilistel koormustel, siis on tähtis ka vedruteraste väsimuspiir; sitkus- ja ka plastsusnäitajad olulist rolli ei mängi. Vedrud tehakse 0,5...0,7% süsinikusisaldusega terasest, mis on legeeritud räni ja mangaaniga. Vastutusrikaste vedrude korral kasutatakse teraseid, millele on lisatud kroomi ja vanaadiumi. 6) Tööriistaterased ja nende omadused. Kasutamine. Tööriistaterased moodustavad teraste suure grupi, mida iseloomustavad suur kõvadus, tugevus ja kulu- miskindlus, s.o. omadused, mis on vajalikud metallide lõike- ja survetöötlemisel, ja võime neid omadusi kuumenemisel säilitada ­ soojuskindlus. Eelkõige kõvaduse nõudest tulenevalt on tööriistateraste süsinikusisaldus võrreldes konstruktsiooniterastega suurem (reeglina 1...2%).

176 allalaadimist
thumbnail
20
docx

EMÜ keemia eksami kordamsiküsimused

muutused. Põlemine •Mikroskoopiline tase: aatomite vaheliste sidemete muutumine jms. 2Mg+02=2MGO 6. Selgitage millest koosneb teaduslik meetod. •Andmete kogumine. •Seoste otsimine andmekogumites. •Hüpoteesi(de) püstitamine ja eksperimentaalne kontrollimine. •Teooria teostamine: – kvalitatiivsed ja kvantitatiivsed teooriad; – ennustused teooria põhjal; – mudelid. 7. Materjalide füüsikalised omadused: nimetage ja iseloomustage neid. Tihedus, Sulamistemperatuur, Korrosioonikindlus, värvus Erinevaid materjaide grupid (metallid, plastid, keraamika) erinevad üksteisest eelkõige tiheduse (roo) poolest, mille ühik on mahuühikumass, kg/m3. Plastide tihedus on vahemikus 1000-2000kg/m3, keraamikal 1500-2500, metallidel 1700- 22000kg/m3 piires. Temperatuuri, mil materjal läheb üle tardolekust vedelasse, nimetatakse sulamistemperatuuriks (Ts). Korrosiooniks nimetatakse materjali ja keskkonna (õhk, gaasid, vesi, kemikaalid) vahelist

Keemia
51 allalaadimist
thumbnail
26
docx

Metallide tehnoloogia, materjalid eksam 2015

tõstetakse pendel ülemisse asendisse. Kui pendel vabastatakse, langeb ta alla ja purustab teimiku. 8. Väsimuskõver Tegelikkuses esinevad sagedamini vahelduvkorduvad (tsüklilised) koormused, mille tagajärjel tekivad märki muutvad pinged (surve-tõmbepinged),mis põhjustab pragude teket. Ehitusterased Ehitusterastena kasutatakse suhteliselt väikese 9. Metall ja mittemetallid süsiniku (kuni 0,2%) ja legeerivate elementide sisaldusega (Si ja Mn 1…2%) teraseid. Reeglina kasutatakse Metallidon ained, millel on tahkes olekus iseloomulik läige, ehitusteraseid mitmesuguse ristlõikega hea elektri- ja soojusjuhtivus ning tavaliselt ka hea profiilmetallina (nurkteras, talad, latid, armatuur jt.)

Materjaliõpetus
179 allalaadimist
thumbnail
47
docx

Tehnomaterjalide eksami materjal

elektronkontsentratsioon. Karbiidi, nitriidid ja boriidid ­ ülemineku grupi metallid (Fe, Mn, Cr, Mo, W jt) moodustavad väikese aatomi raadiusega mittemetallidega (C, N, B, H) sisendusfaasidena tuntud keemilisi ühendeid, kusjuures metalli ja mittemetalli aatomi raadiuste erinevus on suur (RM/RX 1,7 või RX/RM 0,59). Sisendusfaaside komponentide aatomite arvu suhe on lihtne täisarvkordne ja selliste keemiliste ühendite valemiteks on M4X, M2X, MX, MX2 jne (kus M on metall ja X on mittemetall) ja nende kristallvõred on sarnased sisendustardlahuste kristallvõredega (tavaliselt esinevad võretüübid K8, K12 või H12). Sisendusfaase süsinikuga nim. karbiidideks, lämmastikuga nitriidideks, booriga boriidideks jne. Tuntuimaks sisendusfaasiks rauasüsiniku- sulameis on Fe3C (raudkarbiid), kus raua ja süsiniku aatomite suhe (baasaatomite suhe) on 0,60. Kui rauale on omane kuupvõre (K8 või K12), süsinikule

Tehnomaterjalid
450 allalaadimist
thumbnail
7
docx

Metallide tehnoloogia kontrolltöö kordamiseks

Noolutamine ­ analoogselt terastele karastuspingete kõrvaldamine, sitkuse tõstmine Alumiinium Enam levinud element maakoores.Looduses esineb ühendeina.Al saadakse põhiliselt boksiidist. Tootmisprotsess: boksiidist saadakse alumiiniumoksiid ja seejärel viiakse läbi elektrolüüs (puhtus 99,5%...99,8%).Põhilisteks lisanditeks Fe, Si ja Mn Suurema puhtusega Al (kuni 99,9%) saadakse sulaalumiiniumi rafineerimise teel. Omadused: Hea korrosioonikindlus (tänu oksiidpindele) Väike tihedus Väga plastne Vormitav Hea elektrijuhtivus Toodete saamise (valmistamise) mooduse järgi liigitatakse alumiiniumisulamid kahte gruppi: a) deformeeritavad (survetöödeldavad) sulamid, b) valusulamid. Lähtudes termotöödeldavusest liigitatakse sulamid samuti kahte gruppi: a) vanandatavad sulamid, b) mittevanandatavad sulamid. Alumiiniumi deformeeritavad sulamid

Materjalitehnika
37 allalaadimist
thumbnail
19
docx

Keemia ja materjaliõpetus kokkuvõte

· Lahustuvus, · Oksüdeerumine, redutseerumine Materjal ­ keemiline aine, mille kasutamisel ei toimu keemilisi muutusi. Materjaliteadus ­ uurib materjalide struktuuri, omadusi ja kasutamist. Materjalid võivad olla: · Lihtained (puhtad gaasid, - metallid), · Lihtainete segud (õhk), · Liitainete segud, · Liht- ja liitainete segud. Materjalide omadused: · Tihedus, · Sulamistemperatuur, · Kõvadus, · Värvus, · Tugevus, · Elektrijuhtivus, · Soojusjuhtivus, · Soojusväsimus jne. Segu ­ koosneb kahest või enamast lihtainest või keemilisest ühendist, mis pole keemiliselt üksteisega seotud ja võivad seetõttu esineda segus mistahes vahekorras. Puudub kindel keemiline koostis. Homogeenne segu ­ segu, mille koostis on igas ruumipunktis identne (igas olekus, nt. õhk).

Keemia ja materjaliõpetus
214 allalaadimist
thumbnail
32
docx

Mõisted

N/mm2 N/mm2 % Terased Konstruktsiooniterased -3- DC01 0,12 - 280 410 28 Vastutusrikaste vedrude korral kasutatakse teraseid, DC04 0,08 - 210 350 38 millele on lisatud kroomi ja vanaadiumi. DC06 0,02 - 180 350 38 S355MC 0,12 1,5 Al, V 355 430 19 S500MC 0,12 1,7 Nb 500 550 12 Tabel 1.13. Surveotstarbelised terased S700MC 0,12 2,1 Ti 700 750 10 (EN10028) 1) keskmine Margi- Ots- Koostis %, Omadused,

70 allalaadimist
thumbnail
86
pdf

Materjalid

................................... 14 1.2.2. Alumiinium ja alumiiniumisulamid .............................................................................................. 30 1.2.3. Vask ja vasesulamid................................................................................................................... 33 1.2.4. Nikkel ja niklisulamid .................................................................................................................. 35 1.2.5. Titaan ja titaanisulamid............................................................................................................... 36 1.2.6. Magneesium ja magneesiumisulamid ........................................................................................ 36 1.2.7. Tsink, plii, tina ja nende sulamid ................................................................................................ 37 1.2.8. Metallide markeerimine ..............................................

335 allalaadimist
thumbnail
24
docx

Rakenduskeemia kordamisküsimused

iseseisev osake on moleku Molekul - aine väikseim osake, millel on antud aine keemilised omadused ning mis võib iseseisvalt eksisteerida (O2 , CO2 , H2O). Aatomid molekulis on seotud keemilise sidemega. 11. Mis meetodiga saab segud lahutada? Dekanteerimine, filtreerimine, destilleerimine, kromatograafia 12. Aine füüsikalised ja keemilised omadused Füüsikalisi omadusi saab mõõta ja jälgida ilma ainet ja tema koostist muutmata(värvus, sulamistemperatuur, keemistemp, tihedus) Keemilised omadused on seotud aine koostise muutusega, keemiliste reaktsioonidega.(vesiniku põlemine hapnikus) 13. Lihtaine ja liitaine mõisted ja näited nendest. Lihtained- moodustub ainult ühe ja sama keemilise elemendi aatomitest. Vesinik Liitained- koosneb erinevatest keemilistest elementidest NaCl 14. Kirjeldage aine põhiolekud. Tahkes aines on molekulid tihedalt koos ja nende liikumine pole võimalik

Rakenduskeemia
11 allalaadimist
thumbnail
88
pdf

Materjaliõpetus

Tln Lasnamäe Mehaanikakool Materjaliõpetus Konspekt autotehnikutele Koostaja Mati Urve 2009 Teemad 1. Materjalide omadused, 2. Terased, 3. Malmid, 4. Magnetmaterjalid, 5. Metallide termiline töötlemine 6. Vask ja vasesulamid, 7. Alumiinium ja alumiiniumisulamid, 8. Magneesiumisulamid, 9. Titaan ja selle sulamid, 10. Laagriliuasulamid , 11. Kermised, 12. Metallide korrosioon, 13. Plastid , 14. Klaas, 15. Värvid, 16. Värvide liigitus, 17. Värvimisviisid, 18. Pindade ettevalmistamine, 19. Metallide konversioonkatted, 20. Metallkatted, 21. Kütuste koostis, 22. Kütuste koostis, 23. Nafta koostis ja kasutamine, 24. Nafta töötlemise viisid, 25. Kütuse põlemine , 26. Vedelkütuste üldised omadused ja nende kontrollimine, 27. Bensiinid, 28. Petrooleum, 29

182 allalaadimist
thumbnail
88
pdf

Materjaliõpetus

Tln Lasnamäe Mehaanikakool Materjaliõpetus Konspekt autotehnikutele Koostaja Mati Urve 2009 Teemad 1. Materjalide omadused, 2. Terased, 3. Malmid, 4. Magnetmaterjalid, 5. Metallide termiline töötlemine 6. Vask ja vasesulamid, 7. Alumiinium ja alumiiniumisulamid, 8. Magneesiumisulamid, 9. Titaan ja selle sulamid, 10. Laagriliuasulamid , 11. Kermised, 12. Metallide korrosioon, 13. Plastid , 14. Klaas, 15. Värvid, 16. Värvide liigitus, 17. Värvimisviisid, 18. Pindade ettevalmistamine, 19. Metallide konversioonkatted, 20. Metallkatted, 21. Kütuste koostis, 22. Kütuste koostis, 23. Nafta koostis ja kasutamine, 24. Nafta töötlemise viisid, 25. Kütuse põlemine , 26. Vedelkütuste üldised omadused ja nende kontrollimine, 27. Bensiinid, 28. Petrooleum, 29

Materjaliõpe
60 allalaadimist
thumbnail
15
doc

Keemia ja materjaliõpetuse Eksami kordamisküsimuste vastused

Nii liht- kui liitained võivad esineda gaasilises, vedelas või tahkes olekus. 5. Tahkes aines on molekulid tihedalt koos ja nende liikumine pole võimalik. Vedelikus on molekulide vaheline kaugus mõnevõrra suurem ja nad võivad üksteisest mööduda. Gaaside puhul on molekulide vaheline kaugus suur ja nad võivad täiesti vabalt liikuda. Molekulidevahelised jõud on väikesed. . 6. Füüsikalisi omadusi saab mõõta ja jälgida ilma ainet ja tema koostist muutmata (värvus, sulamistemperatuur, keemistemperatuur ja tihedus). Keemilised omadused, on seotud aine koostise muutusega, keemiliste reaktsioonidega (vesiniku põlemine hapnikus). 7. Materjal on keemilisest seisukohast mistahes keemiline aine, mille kasutamisel (töötlemisel) ei toimu keemilisi muutusi. Keemiliste omaduste olulisus sõltub vastava aine või materjali kasutamise eesmärgist (viisist) või käitlemise ja hoidmise tingimustest. Teades mingi aine või materjali omadusi, nii üldisemalt kui täpsemalt,

Keemia ja materjaliõpetus
416 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun