Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Tuumareaktor (5)

4 HEA
Punktid
Elu - Luuletused, mis räägivad elus olemisest, kuid ka elust pärast surma ja enne sündi.

Esitatud küsimused

  • Mis on tuumareaktsioon?
  • Kuidas oleneb tuumade seoseenergia massiarvust?
  • Missugustes tingimustes on võimalik kergete tuumade ühinemine?
  • Kui palju eraldub selles energiat?
  • Kuidas toimub raskete tuumade lõhustamine?
  • Missuguste elementide missugused isotoobid on põhiliseks tuumkütuseks?
  • Kui palju energiat eraldub uraani tuuma 235U lõhustumisel?
  • Mis on kriitiline mass?
  • Kui suur on see 235U jaoks?
  • Kust saadakse ahelreaktsiooni käivitavad neutronid?
  • Milleks kasutatakse tuumareaktoreid?
  • Millised on tuumaasjandustega seotud põhilised looduskaitseprobleemid?
  • Millised on bioloogilistele organismidele ohtlikud kiirgused?
  • Mis on kiirgusdoos?
  • Millistes ühikutes seda mõõdetakse?
  • Mis on dosimeeter?
  • Mis on kiiritushaigus?
  • Millised on kiiritushaiguse esmased nähtused?
  • Millised on põhilised kiirguskaitse meetmed?

Lõik failist

1. Mis on tuumareaktsioon ? Võrdle seda keemilise reaktsiooniga.
Protsesse, kus tuumad võivad ühineda, ümber korralduda ja laguneda, nim tuumareaktsioonideks.
Keemiline reaktsioon on protsess, mille käigus ühest või mitmest keemilisest ainest (lähteaine(te)st) tekib keemiliste sidemete katkemise ja/või moodustumise tulemusena üks või mitu uute omadustega keemilist ainet.
Tuumareaktsioonide võrrandeid võib kirjutada täpselt nagu keemiliste reaktsioonide võrrandeid.
Erinevalt tuumareaktsioonidest, ei toimu keemilises reaktsioonis
Tuumareaktor #1 Tuumareaktor #2
Punktid 50 punkti Autor soovib selle materjali allalaadimise eest saada 50 punkti.
Leheküljed ~ 2 lehte Lehekülgede arv dokumendis
Aeg2010-12-16 Kuupäev, millal dokument üles laeti
Allalaadimisi 200 laadimist Kokku alla laetud
Kommentaarid 5 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor ddropdeadd Õppematerjali autor
1. Mis on tuumareaktsioon? Võrdle seda keemilise reaktsiooniga.
2. Mis on seoseenergia. Too näiteid
3. Kuidas oleneb tuumade seoseenergia massiarvust?
4. Missugustes tingimustes on võimalik kergete tuumade ühinemine?
5. Too näide lihtsamast sünteesireaktsioonist! Kui palju eraldub selles energiat?
6. Kuidas toimub raskete tuumade lõhustamine?
7. Missuguste elementide missugused isotoobid on põhiliseks tuumkütuseks?
8. Kui palju energiat eraldub uraani tuuma 235U lõhustumisel?
9. Mis on kriitiline mass? Kui suur on see 235U jaoks?
10. Kust saadakse ahelreaktsiooni käivitavad neutronid?
11. Kirjelda tuumareaktori ehitust
12. Milleks kasutatakse tuumareaktoreid?
13. Millised on tuumaasjandustega seotud põhilised looduskaitseprobleemid?
14. Millised on bioloogilistele organismidele ohtlikud kiirgused?
15. Mis on kiirgusdoos? Millistes ühikutes seda mõõdetakse?
16. Mis on dosimeeter?
17. Mis on kiiritushaigus?
18. Millised on kiiritushaiguse esmased nähtused?
19. Millised on põhilised kiirguskaitse meetmed?
20. Tuumaenergeetika ja tema elukeskkond


Sarnased õppematerjalid

thumbnail
4
docx

Mikromaailma füüsika

Aatom on keemilise elemendi väikseim osake, läbimõõt 10-10m. Aatomi tuuma suurus 10-15 m. Aatomituum koosneb nukleonidest – positiivse laenguga prootonitest ja laenguta neutronitest. Thomsoni aatomimudel: aatomit kujutati positiivselt laetud kerana, millesse olid pikitud elektronid. Rutherfordi planetaarse aatomimudeli järgi on aatomil tuum ja selle ümber liiguvad elektronid. Katses uuriti alfaosakeste hajumist, nende läbi minekut õhukesest metalllehest. Kõige olulisem tulemus: sündis uus nn planetaarne aatomimudel, mille järgi aatomil on olemas tuum ja tuuma ümber liiguvad elektronid. Bohri 3 postulaati: 1)statsionaalsete olekute postulaat – aatom võib viibida ainult kindlate energiatega olekutes. 2)lubatud orbiitide postulaat – lektronid võivad aatomis asetseda ainult kindlatel orbiitidel. 3)kiirguse postulaat – üleminekul ühelt lubatud orbiidilt teisele, aatom kiirgab või neelab valgust kindlate kvantide kaupa. Aatom kiirgab kvandi, kui elektron siirdub kõr

Mikromaailm
thumbnail
1
doc

Füüsika küsimused

Füüsika küsimused. Aatomituum Missugune asjaolu torkab silma elementide aautommasse jälgides? Aatommassid on väga lähedased täisarvule. Mis on tuuma massiarv? Ümardatud aatommass. Miks ei saa tuumade universaalseks koostisosaks olla ainuüksi vesiniku tuum? Puudub neutron. Mida nimetatakse tuuma laenguarvuks, mida see väljendab? P. Arvu tuumas Mis on isotoobid? Keemilise elemendi teisend, prootonid samad, neutronid erinevad. Millest koosneb aatomituum? Prootonitest ja neutronitest. Millega võrdub tuuma massiarv? Pr. Ja N. Arv. Mis on looduslik radioaktiivsus? Aatomituumade iseenelik muundumine. Missugused on radioaktiivsuse põhiliigid (kiirgused)? a,b,y. Kuidas need kiirgused käituvad magnetväljas? a kaldub kõrvale, b kergelt, y ei muuda. Mis on alfaosake? Heeliumiaatomituum. Mis on beetaosake? Elektron. Mida kujutab endast gammakiirgus? Elektromagnet laine. Missugune on radioaktiivsete kiirguste erinevate liikide läbimisvõime? a halb, b keskmine, y hea. Mida kujutab e

Füüsika
thumbnail
1
doc

Füüsika küsimused ja vastused

Füüsika küsimused. Aatomituum Missugune asjaolu torkab silma elementide aautommasse jälgides? Aatommassid on väga lähedased täisarvule. Mis on tuuma massiarv? Ümardatud aatommass. Miks ei saa tuumade universaalseks koostisosaks olla ainuüksi vesiniku tuum? Puudub neutron. Mida nimetatakse tuuma laenguarvuks, mida see väljendab? P. Arvu tuumas Mis on isotoobid? Keemilise elemendi teisend, prootonid samad, neutronid erinevad. Millest koosneb aatomituum? Prootonitest ja neutronitest. Millega võrdub tuuma massiarv? Pr. Ja N. Arv. Mis on looduslik radioaktiivsus? Aatomituumade iseenelik muundumine. Missugused on radioaktiivsuse põhiliigid (kiirgused)? a,b,y. Kuidas need kiirgused käituvad magnetväljas? a kaldub kõrvale, b kergelt, y ei muuda. Mis on alfaosake? Heeliumiaatomituum. Mis on beetaosake? Elektron. Mida kujutab endast gammakiirgus? Elektromagnet laine. Missugune on radioaktiivsete kiirguste erinevate liikide läbimisvõime? a halb, b keskmine, y hea. Mida kujutab e

Füüsika
thumbnail
1
txt

Tuuma kohta töö

Kergete tuumade hinemiseks on vaja likrget,kmnetesse ja sadadesse miljonitesse kraadidesse ulatuvat temperatuuri rasked tuumad lhustuvad eriti hsti aeglaste neutronite toimel, tekivad kaks "kildtuuma" ja kaks-kolm neutronit pjhiliseks tuumaktuse elementideks/isotoopideks-Plutoonium 239Pu ja uraani isotoop 235U Kriitiline mass on vhim tuumktuse kogus, milles tuumalhustumine saab toimuda iseseisva ahelreaktsioonina, Uraani 235 U kriitiline mass on 50kg ahelreaktsiooni kivitavad neutronid saadakse maa atmosfri,kus tekivad neutronid kosmiliste kiirte mjul tuumareaktoreid kasutatakse tuumktuse saamiseks, energiaallikatena tuumaelektrijaamades ja -laevadel ningi tuumafsika-alasteks teaduslikeks uuringuteks philised looduskaitseprobleemid-radioaktiivsed jtmed, katastroofi vimalused, halb kiirguste mju elusorganismidele Kiirgusdoos on aines neeldunud kiirguse energia ja selle aine massi suhe. Kiirgusdoosi hikuks on 1 J/kg dosimeeter-mterist kiirgusdooside mtmiseks kiiritushaiguseks nim. haigus

Füüsika
thumbnail
2
doc

Aatomituuma ehitus ja tuumajõud

Kui keemilistes reaktsioonides toimuvad aatomite ja molekulide ümberkorraldumisedjne siis tuumareaktsioonides toimuvad protsessid, kus tuumad võivad ühineda ümber korralduda ja laguneda . Tuumade ühinemisi , ümberkorraldumisi ja lagunemisi nim tuumareaktsioonideks, mis tavaliselt toimuvad aatomituumade põrkumisel teiste tuumade või elementaarosakestega, radioaktiivse lagunemise jaoks pole aga väliseid põhjuseid vaja. Liitosakese seoseenergia on võrne minimaalse tööga mis kulub selle liitosa lõhkumiseks koostisosadeks. Tuuma seoseenergia oleneb üsna omapärasel viisil massiarvus, mugavaim on seda sõltuvust jälgida , kui tuuma seoseenergia jagada massiarvuga, st. vaadata ühe nukleoni kohta tulevat seoseenergiat. Tuumajõudude ja tuumade seoseenergia olenevus massiarvust viib selleni , et tuumareaktsioonidest on võimalik suuremal hulgal energiat saada kahes piirkonnas ­ kergete tuumade ühinemisel ja raskete tuumade lõhustumisel. Tuumade seoseenergiad on u miljon

Füüsika
thumbnail
12
doc

Tuumaenergia materjal

Tuumaenergia Tuumaenergeetika on üks süsinikuvaba energeetika liike, sest tema tootmisel ei toimu süsinikku sisaldava kütuse põletamist ning õhku satub väga vähe globaalset soojenemist põhjustavaid süsinikuühendeid. Samas ei ole tuumaenergia taastuvenergia, sest teda saadakse tänapäeval fossiilsest kütusest ­uraanist - mille varud on lõplikud ja ammenduvad lähema saja aasta jooksul. Füüsikalised alused Kasutatud jooniseid veebidest http://230nsc1.phy-astr.gsu.edu/hbase/hframe.html ja http://www.hpwt.de/Kerne.htm Keemilised elemendid ja isotoobid Aatomid koosnevad positiivselt laetud tuumast, milles sisalduvad prootonid ja neutronid; ning tuuma ümber tiirlevatest elektronidest, mille arv võrdub prootonite arvuga. Prootonite arv tuumas määrab ära, mis elemendiga on tegemist. Perioodsuse tabelis on elemendid sorteeritud just prootonite arvu järgi. Igal elemendil v

Füüsika
thumbnail
4
odt

Füüsika kokkuvõte/õpimapp

Sulamine ja tahkumine Sulamine on üleminek tahkest olekust vedelasse Temperatuuri, mille juures aine sulab nimetatakse sulamistemperatuuriks Samal temperatuuril toimub ka antud aine tahkumine Massiühiku aine sulatamiseks sulamistemperatuuril kuluvat soojushulka nim. sulamissoojuseks. Sulamisoojus näitab kui suur soojushulk kulub 1 kg aine sulamiseks või kui suur soojushulk eraldub 1 kg aine tahkumisel sulamistemperatuuril. Valemid: Aurumine ja kondendseerumine Aurumise kiirus sõltub: 1) õhu liikumise kiirusest 2) õhuniiskusest 3) vedeliku temperatuurist 4) ainest Aurustumisel vedelik jahtub. Aurustumissoojus on soojushul, mille peab andma kindlale hulgale massiühikule, et muuta see aina sama temperatuuriga auruks. Aurustumissoojus näitab, kui palju energiat kulub 1kg aine aurustamiseks Valemid: Keemine Vesi keeb kindlal temperatuuril. Keemise iseloomulik tunnus on mulin. Keemistemperatuur sõltub rõhus

Füüsika
thumbnail
2
docx

Tuumakütus, tuumapomm ja reaktor

Kriitiline mass: · Kriitiline mass on vähim tuumkütuse kogus, milles tuumalõhustumine saab toimuda iseseisva ahelreaktsioonina. Sõltub nt tuumkütuse tihedusest, geomeetrilisest kujust, temperatuurist, puhtusest · Tuumkütuse massi kriitilisust mõõdetakse neutronkordaja (k) abil, kus: · k = ntekkinud - nkaotatud · k on väiksem kui 1 -> alakriitiline. Kiirgab neutronkiirgust, selle suurus oleneb k'st. · ..suurem..->ülekriitiline. · Kõik tuumarelvad vajavad plahvatamiseks ülekriitilise massi saavutamist. · K=1 on kriitiline. Kõik tuumajaamad töötavad selles reziimis. Tuumakütuseks sobivad elemendid: · Enamuse reaktorite kütuseks olev uraan koosneb eelkõige kahest isotoobist, milleks on uraan-235 ja uraan-238 · Mõnedes reaktorites üritatakse kasutada kütusena ok

Termodünaamika




Kommentaarid (5)

Astonmart5 profiilipilt
Astonmart5: Materjal oli väga põhjalik ja aitas mind hädast välja! 5+!
21:31 10-05-2011
sugumees profiilipilt
sugumees: kõik mis vaja oli leidsin siit, ülihea ! (y)
20:52 11-12-2011
Karlteesalu1 profiilipilt
Karlteesalu1: Natuke pikalt seletatud aga uidu hea!
22:21 19-01-2012



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun