1. Süsteemi moiste. Süsteemimudel. Muutujad ja parameetrid. Sisend-, oleku- ja valjundmuutujad. Millest soltub süsteemi kaitumine. Süsteemi matemaatiline mudel ja selle koostamine. Algolek ja selle sisu. Dunaamiline süsteem. Pidev-ja diskreetaja süsteemid. 1.1. Süsteemi mõiste Süsteem on omavahel seotud objektide terviklik kogum. Süsteemi mõiste komponendid on element/objekt (süsteemi osis, mida kasitletakse süsteemi suhtes jagamatuna, tervikuna), sidemed (mistahes laadi seosed elementide vahel, mis võivad olla orienteeritud, vastastikused, muutlikud, juhuslikud jne) ning terviklikkus (võib tähendada elementide koosluse täielikkust, mõtestatust, teatavat ühtset sihipära, eesmärki, otstarvet, naabruslikkust, kokkuseotust jne, s.o põhjust või võimalikkust vaadelda teatavat kooslust süsteemina, võimaldab süsteemi vaadelda ka jagamatu tervikuna ja samas ümbrusest eristuvana)
Süsteemi mõiste. Süsteemimudel. Muutujad ja parameetrid. Sisend-, oleku- ja väljundmuutujad. Millest sõltub süsteemi käitumine. Süsteemi matemaatiline mudel ja selle koostamine. Algolek ja selle sisu. Dünaamiline süsteem. Pidev- ja diskreetaja süsteemid. Süsteemi mõiste: Süsteem on omavahel seotud objektide terviklik kogum. Süsteem on see, mida saab vaadelda süsteemina (süsteem on subjektiivne – kui tahan, vaatan süsteemina, kui ei taha, ei vaata). Süsteem on funktsioon sisendist ja siseolekust, kui see võrrand teada, siis see võrrand on süsteem ehk süsteemimudel. Süsteemi omadused: element/objekt, sidemed (mistahes seosed elementide vahel, võivad olla orienteeritud, vastastikused, muutlikud, juhuslikud jne), terviklikkus, süsteemil on hierarhia, süsteemil on kindel käitumine. Põhiülesanded: süsteemide modelleerimine (mudelite koostamine), süsteemide analüüs (meetodid
Süsteemiteooria 3.kontrolltöö kordamisküsimused 1. Süsteemi mõiste- Süsteem on omavahel seotud objektide terviklik kogum. Süsteemi mõiste komponendid on element/objekt (süsteemi osis, mida käsitletakse süsteemi suhtes jagamatuna, tervikuna), sidemed (mistahes laadi seosed elementide vahel, mis võivad olla orienteeritud, vastastikused, muutlikud, juhuslikud jne) ning terviklikkus (võib tähendada elementide koosluse täielikkust, mõtestatust, teatavat ühtset sihipära, eesmärki, otstarvet, naabruslikkust, kokkuseotust jne, s.o põhjust või võimalikkust vaadelda teatavat kooslust süsteemina, võimaldab süsteemi vaadelda ka jagamatu tervikuna ja samas ümbrusest eristuvana)
........................................................................................................... 3 1. Laplace'i teisendus ................................................................................................................ 5 2. Ülekandemudel, hilistumisega süsteemide ülekandefunktsioonid ja siirdeprotsessid .......... 8 3. Süsteemide kompositsioon .................................................................................................. 13 4. Lineaarse pidevaja süsteemi olekumudel, selle lahend ja maatrikseksponendi leidmine ... 18 5. Diferentsiaalvõrrandite süsteemi ja olekumudeli seos ........................................................ 22 6. Ülekandekarakteristikud...................................................................................................... 26 7. Olekumudeli ja ülekandemudeli seos. Ülekandefunktsioonide, impulsskajade ja hüppekajade maatriksid .............................................................................
Tänapäeval üks populaarsemaid mõisteid juhtimisteoorias on Närvivõrk. Vaatleme mis on närvivõrk, millest võrk koosneb, kuidas seda kasutada ja missugused praktilised ülesanded võivad olla lahendatud nende abil. Tehisnärvivõrk on väga lihtsustatud bioloogilise närvivõrgu mudel. Tema tööalgoritmid on ka tulnud bioloogiliste närvivõrkude tööprintsiibist. 1.1 Bioloogiline neuron ja bioloogilised närvivõrgud Inimese aju on väga keeruline ja võimas süsteem. Ta on võimeline mõtlema, mäletama, ja lahendama probleemi. Seepärast teda tööd katsetakse simuleerida arvuti mudeli abil. Aju koosneb omavahel seotud rakkudest neuronitest. Bioloogiline neuron (joonis 1.1) on lihtne andmeid töötlev süsteem. Ta saab informatsiooni dendriitide kaudu. Dendriit-id on bioloogilise närvivõrgu sisendid. Sisendsignaalideks on närvi
Tänapäeval üks populaarsemaid mõisteid juhtimisteoorias on Närvivõrk. Vaatleme mis on närvivõrk, millest võrk koosneb, kuidas seda kasutada ja missugused praktilised ülesanded võivad olla lahendatud nende abil. Tehisnärvivõrk on väga lihtsustatud bioloogilise närvivõrgu mudel. Tema tööalgoritmid on ka tulnud bioloogiliste närvivõrkude tööprintsiibist. 1.1 Bioloogiline neuron ja bioloogilised närvivõrgud Inimese aju on väga keeruline ja võimas süsteem. Ta on võimeline mõtlema, mäletama, ja lahendama probleemi. Seepärast teda tööd katsetakse simuleerida arvuti mudeli abil. Aju koosneb omavahel seotud rakkudest neuronitest. Bioloogiline neuron (joonis 1.1) on lihtne andmeid töötlev süsteem. Ta saab informatsiooni dendriitide kaudu. Dendriit-id on bioloogilise närvivõrgu sisendid. Sisendsignaalideks on närvi
..........................................................6 Praktikum 1_1: Etalonmudeliga adaptiivsüsteemid Esimene praktikum toimus 12.09. Kuna mul ei olnud siis veel aimugi (enda tähelepanematusest tingituna), et lõpuks on vaja kõigist laboritest aruanded teha, ei mäleta ma nüüd enam väga hästi mis seal täpselt toimus. Katsun siiski materjalide ja märkmete põhjal midagi kirjutada. Esimeses osas vaatlesime etalonmudeliga adaptiivsüsteeme. Etalonmudeliga süsteemi puhul antakse regulaatorile näidismudeli abil ette soovitud objekti käitumine, mida regulaator siis täita püüab. Tavapärasest etteantavast seadesuurusest erineb etalonmudel sellepoolest, et näitab lisaks ka käitumise soovitud tulemuseni jõudmiseks. Adaptiivse süsteemi puhul vaatab regulaator etalonmudeli väljundit. Etalonmudeli väljund muutub ajas, seadesuurus ei muutu. Selleks, et süsteem oleks lihtsalt häälestatav, peab etalonmudel olema võimalikult lihtne
Automaatika alused 1. Põhimõisted 1.1 Milles seisneb automaatjuhtimine? Automaatika on teaduse ja tehnika haru, mis tegeleb automaatseadmete ning automatiseeritavate tehniliste protsesside kontrollimise ja juhtimise meetodite ja vahenditega. Definitsiooni kohaselt on automaatikal kaks põhiharu: automaatkontroll ja automaatjuhtimine. 1.2 Milles seisneb süsteemi orienteeritus? Süsteemi orientatsioon e suunatoime väljendub süsteemi signaalipaaride vastastikuse toime olulises ebasümmeetrias, millel põhinebki süsteemi sisendsignaali (edaspidi sisend) ja väljundsignaali (edaspidi väljund) eristamine. Sisend mõjutab väljundit, viimase tagasimõju sisendile aga puudub (on reaalses süsteemis tühine). Orientatsioon on tarvilik igasuguse informatsiooni ülekandmisel. 1.3 Mis iseloomustab süsteemi sisendit? Sisend on süstee-mist sõltumatu ja peab süsteemi analüüsil olema teada. 1
Kõik kommentaarid