TALLINNA TEHNIKAÜLIKOOL Automaatikainstituut Automaatjuhtimise ja süsteemianalüüsi õppetool TEHISNÄRVIVÕRGUD JA NENDE RAKENDUSED Õppematerjal Koostas: Eduard Petlenkov Tallinn 2004 1 Sisukord Eessõna .......................................................................................................................................2 1. Tehisnärvivõrgud ........................................................................................3 1.1. bioloogiline neuron ja bioloogilised närvivõrgud .......................................3 1.2. tehisneuron ...........................................
TALLINNA TEHNIKAÜLIKOOL Automaatikainstituut Automaatjuhtimise ja süsteemianalüüsi õppetool HÄGUSAD SÜSTEEMID Õppematerjal Koostas: Andri Riid Tallinn 2004 Sissejuhatus 2 Sissejuhatus Viimaste aastakümnete jooksul on hägus loogika leidnud edukat rakendust mitmesuguste juhtimis- ja modelleerimisprobleemide lahendamisel. Informatsiooni esitus hägusloogikasüsteemides on lähedane nendele mehhanismidele, mida inimene igapäevaelus otsuste tegemisel kasutab, mis võimaldab hägusloogikasüsteemide kaudu teha kättesaadavaks traditsioonilistele vahenditele halvasti alluv inimteadmus näiteks protsesside modelleerimis- ja juhtimisrakendustes. Teksti esimeses peatükis antakse kompaktne, kuid piisav ülevaade hägusloogikasüsteemide aluseks olevast hägusast hulgateooriast, hägusloogik...
Diskreetaja süsteemi käitumine on määratud diskreetsetel, isoleeritud ajahetkedel, milliseid võib olla lõpmatu, kuid loenduv hulk. 2. Dünaamiliste süsteemide modelleerimine. Milliseid mudeleid kasutatakse lineaarsete statsionaarsete pidevaja süsteemide kirjeldamisel? Algolekud - nullised ja mittenullised. Avage nende sisu. Millistel tingimustel ja eeldustel on pidevaja süsteem esitatav ekvivalentse diskreetaja süsteemina? Avage probleemi olemus ja tähtsus süsteemiteooria seisukohalt. 1. Dünaamiliste süsteemide modelleerimine: dünaamiline süsteem: Enamus süsteeme on dünaamilised, see on süsteem, milles esinevad ajaliselt muutuvad protsessid(siirdeprotsessid), s.t. aeg on üheks süsteemi mudeli muutujaks. See mudel seob muutujate väärtusi erinevatel ajahetkedel või muutujate tuletisi. Mudeli eripärast tingituna tekivad teatud seaduspärasusega kulgevad ajalised protsessid süsteemis. s.t nad on ajas muutuvate olekutega
RAKENDUSLIK SÜSTEEMITEOORIA 2012 EKSAMIKÜSIMUSED 1. Süsteemiteooria põhilised mõisted (süsteem, elemendid, sisendid, väljundid, operaator, olek, käitumine). Süsteemide liigitamine. Süsteemide omadused, struktuur, entroopia. Süsteem objekt, mis koosneb osadest ehk elementidest ja kus osade vahel on seosed ning kogu see osade kooslus moodustab terviku / süsteem on omavahel seostatud elementide hulk, mida vaadeldakse kui tervikut. Elemendid asjad või objektid, millest süsteem koosneb (võivad olla materiaalsed nt aatomid, või siis
Sisendi signaali nulli koondumise järgi Question9 Hinded: 1 Selgita, mida ja kuidas täpselt tuleb muuta, et saada nõutud siire 2 korda kiiremaks? Missugused süsteemi parameetrid/elemendid sellega muutuvad? Vastus: Question10 Kui soovid, siis võid (ei ole kohustuslik) tagasisideks siia kirjutada, kuidas selliselt Moodle testide abiga korraldatud praktikumide ülesehitus Süsteemiteooria sisu omandamisele mõjus? (nt. kas mugavam, kui paberil vormistada | andis/ei andnud paremat,tihemini tagasisidet asjast arusaamise kohata | oli kergem/raskem(miks?) omandada, kui harjutustundides | jms.) Vastus:
Ühendamise puhul peavad erinevate süsteemide teatavad muutujad olema samad või siis moodustub uus muutuja, mis on nende muutujate summa. agasisideühendusel on võime tekitada kogusüsteemile teistsuguseid omaväärtusi, omab see põhimõttelist tähtsust. Kui näiteks osasüsteemi dünaamilised omadused meid ei rahulda, siis ühendades külge täiendava osasüsteemi võime saavutada kogusüsteemile sobivad omadused. See on süsteemiteooria ja -tehnika olulisematest tulemustest. See kinnitab ka printsiipi: keerukas süsteemis on võimalikud omadused, mida lihtsamates ei õnnestu realiseerida. Kui väljendada tagasisideühenduse eripära olekugraafidele omase tehnoloogia kaudu võime öelda, et tagasisideühendus loob süsteemis täiendavaid suletud tuure, mis aga muudavad süsteemi determinanti ja sellega ka omaväärtusi. 7.1Lineaarse statsionaarse diskreetaja süsteemi sisend-väljund mudelid (ehk ülekandemudelid)
docstxt/14859812787539.txt
docstxt/14859813022402.txt
docstxt/14859812955849.txt
docstxt/14859812876298.txt
docstxt/14859812842207.txt
docstxt/14859812913128.txt
docstxt/135006260598.txt
docstxt/135006218014.txt
taktihetkedeks. Enamik tehnilisi süsteeme on diskreetsed, diskreetne signaal on arvude jada. Dünaamiliste süsteemide modelleerimine. Milliseid mudeleid kasutatakse lineaarsete statsionaarsete pidevaja süsteemide kirjeldamisel? Algolekud – nullised ja mittenullised. Avage nende sisu. Millistel tingimustel ja eeldustel on pidevaja süsteem esitatav ekvivalentse diskreetaja süsteemina? Avage probleemi olemus ja tähtsus süsteemiteooria seisukohalt. Dünaamiliste süsteemide modelleerimine: Modelleerimisel tehakse kindlaks vajalik sisendite arv ning sisendite seos väljunditega. Süsteemi matemaatilise mudeli liigid: 1.Algebralised, seovad omavahel muutujate iga ajahetke väärtusi. 2. Diferentsiaalvõrrandid, seovad muutujaid kirjeldavaid ajafunktsioone. 3. Lineaarsed võrrandid, võivad sisaldada liikmetena vaid muutujaid esimeses astmes, muutujate
2. praktiline töö Tagasisidestatud süsteemi süntees ja analüüs 1. B=[1;1] C=[0 1] Sel juhul on süsteem juhitav ja jälgitav 2. eig(A) ans = -2 1 Mittestabiilne, kuna 1 pole negatiivne 3. y()= 4 .Polünoomi valik ksii = 0.999 Sel juhul stabiliseerub graafik aeglaselt ning võngub nõrgalt. 5. Tagasisidestatud süsteemide süntees L=place(A',C',P)' L = 12.6837 5.0000 K=place(A,B,P) K = 15.3673 -10.3673 6. Süsteemi väljund käitub, nagu tabelis nõutud 7. Tagasisidestatud süsteem on stabiilne, erinevalt algsest süsteemist