1.ptk Üksliikmed 8.klass Õpitulemused Näited 1.Üksliige - korrutis, mis koosneb muutujatest ja on normaalkujulised; ja arvudest ei ole normaalkujulised 2.Üksliikme kordaja - esimesel kohal olev kordaja on 10 arvuline tegur normaalkujulises üksliikmes 3.Sarnased üksliikmed - üksliikmed, mis ja on sarnased, sest täheline osa on erinevad ainult kordaja poolest või ei erine üldse samasugune 4.Üksliikme teisendamine normaalkujule - kirjutame arvuliste tegurite korrutise esimesele kohale ning asendame samade muutujate korrutised astmetega astmealuste tähestikulises järjekorras 5.Üksliikmete koondamine - tuleb teha vastav Õ ül.161 tehe vaid üksliikmete kordajatega, täheline osa jääb muutmata NB k
KESKKOOLI MATEMAATIKA RAUDVARA 1. osa Andres Haavasalu dikteeritud konspekti järgi koostanud Viljar Veidenberg. 2003. aasta 1 Sisukord Sisukord........................................................................................................................................2 Arvuhulgad............................................................................................................................... 5 Naturaalarvude hulk N..........................................................................................................5 Negatiivsete täisarvude hulk z ...........................................................................................5 Täisarvude hulk Z.................................................................................................................5 Murdarvu
Üksliikmed Raudvara 1.osa Üksliige Üksliikmeid nimetatakse arvuliste ja täheliste tegurite korrutist. x·2·x·y·3·(-5)·z=-15x2yz Kordaja 1 ja -1 jäetakse kirjutamata. Kordaja -1 asemel kirjutatakse lihtsalt märk. 1abc=abc -1abc=-abc Sarnased üksliikmed, sest täheline osa on sama. 3ab+4c-2ab-c=ab+3c Astmete korrutamine ja jagamine Ühe ja sama arvu astmete korrutamisel astendajad liidetakse. am·an=am+n 37·311=37+11=318 (-4)5·(-4)7=(-4)5+7=(-4)12=412 Ühe ja sama arvu astmete jagamisel astendajad lahutatakse. Murrujoonel on jagamismärgi tähendus. am:an=am-n ehk. = am-n 75:72=75-2=73 Astme astendamine Astme astendamisel astendajad korrutatakse. (am)n=am·n (23)4=23·4=212 -82= -64 (2x3)4= 24·(x3)4=16x12 (-32·x3·y4)6=312·x18·y24 Negatiivne astendaja Kui arv ei ole murruna, siis tehakse see murruks ja vahetatakse lugeja ja nimetaja
Arvu ruut Arvu ruut Näide 1. Arvu 5 ruut on 25, sest 52 = 5 · 5 = 25. Ruutjuur Antud mittenegatiivse arvu a ruutjuureks nimetatakse sellist mitte- negatiivset arvu b, mille ruut võrdub arvuga a. a =b b2 = a ! Negatiivsest arvust ei saa ruutjuurt võtta. Juure korrutis ab= a b Mittenegatiivsete arvude korrutise ruutjuur võrdub tegurite aritmeetilise ruutjuure korrutisega Jagatise ruutjuur a a = b b Positiivsete arvude jagatiste aritmeetiline ruutjuur võrdub nende arvude aritmeetiliste ruutjuurte jagatisega. Ruut võrrand Võrrandit ax²+bx+c=0, milles a, b ja c on antud arvud (a0) ja x on tundmatu, nimetatakse ruutvõrrandiks. ax² + bx + c = 0 a ruutliikme kordaja ax² ruutliige b lineaarliikme kordaja bx lineaarliige c vabaliige Valem. Ruutvõrrandiks nimetatakse võrrandit, mida saab esitada kujul . Seejuures tähistavad a, b ja c reaalarvulisi kordajaid. Ruutvõrrandi lahen
mõõtmistulemustega. Ning alati on kõik mõõtmistulemsed ligikaudsed. Ligikaudsete arvude korral peab teadma mis veaga on need antud. Peab teadma niisuguste ligikaudsete arvude kirjutusviisiga, mille korral arvu kirjutisest järeldub kohe ka selle arvu vea ülemmäär. Nimelt kirjutatakse arv ainult õigete numbritega. Õigeks loetakse sellist numbrit, mille kümnendkohale vastav ühik on suurem vea ülemmäärast. [2] Kasutatud kirjandus 1.Allar Veelma. Matemaatika 8, I osa, Tallinn ''Mathema'' 2000 2.Kersti Kaldmäe, Anneli Kontson, Kärt Matiisen, Enno Pais. Matemaatika 8, I osa, AS BIT, 2006 3.Allar Kivi
Ligikaudne arv ja selle tüvenumbrid .Ligikaudse arvutuse eeskirjad Matemaatika referaat : Nimi : Klass : Õpetaja Tallinn 2011 Sisukord 2 Mis on ligikaudsed arvud?..........................................3 .1 Mis on tüvenumbrid?................................................3 .2 Ligikaudse arvutuse eeskirjad.......................................4 .3 Kasutatud kirjandus...................................
5.ptk Ringjoon ja korrapärane kolmnurk 8.klass Õpitulemused Näited 1.Ringjoone kaar ja kõõl - kaar: ringjoone osa, Ül.1060 saadakse vähemalt kahe punkti märkimisel Ringjoone punktist on joonestatud kaks ringjoonele; tähistamine: kirjuatatakse raadiusega võrdset kõõlu. Leida kõõlude otspunktide tähised (vajadusel lisatakse veel vaheline nurk. kolmas täht vahele) ja tõmmatakse kohale joonestada kõõlude otspunktidesse raadiused kaareke; mõõdetakse kaarekraadides; kõõl: tekivad kaks võrdkülgset kolmnurka ringjoone kaht punkti ühendav lõik, kõige iga nurk on 60° pikem kõõl on ringjoone diameeter kõõlude vahele jääb kaks sellist nurka seega kõõlude vaheline nurk on 2 60°=120° NB kesknurk suurusega 1° toetub kaarele, mis moodustab ringjoonest 2.Kesknurk - ringjoone kahe
6.ptk Ruutvõrrand 8.klass Õpitulemused Näited 1.Arvu ruut - kahe võrdse teguri korrutis Ül.1262,1263 2 a a=a ; mistahes ratsionaalarvu ruut on Leida arvu ruut taskuarvuti abil. mittenegatiivne 2 2 2 2 15 =225; 28 =784; 41 =1681; 57 =3249 Lihtsustada avaldis ja arvutada. 2 2 2 2 2,4 2 =(2,4 2) =4,8 =23,04 NB ruutjuure pöördtehe; saab kasutada 2 näiteks ruudu ja ringi pindala arvutamisel =3,5 =12,25 2 2 2 2 2 (-4,5) 4 -8 (-1,5) =(-4,5 4) -(-8
Kõik kommentaarid