Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

PP Rauast - sarnased materjalid

malm, metall, rauamaak, fe2o3, fe3o4, sulamid, mariell, ühenditeks, sisaldada, 7874, sulamistemperatuur, soojus, elektrijuht, kristallvõre, temperatuuridel, rauamaagid, hematiit, magnetiit, püriit, fes2, tähtsaimad, rauasulamid, valumalm, fe3c, malmiks, roostevaba, rauatagi, 7h2o, raudvitriool, kasutust, skeemide, ioonid, hemoglobiini, puudusel
thumbnail
5
doc

Raud

Raud Raud (Ferrum) on keemiline element järjenumbriga 26. Raud asub Perioodilisussüsteemi VIII B rühmas ja 4. perioodis. Tal on neli stabiilset isotoopi massiarvudega 54, 56, 57 ja 58. Omadustelt on raud metall. Normaaltingimustel on raud tahke aine tihedusega 7,87 g/cm3. Raua sulamistemperatuur on 1535 Celsiuse kraadi. Raud esineb madalal rõhul neljakristallmodifikatsioonina olenevalt temperatuurist. Raud on kõige levinum element Maa koostises ning levimuselt maakoores metallidest alumiiniumi järel teisel kohal. Raua asetus perioodilisussüsteemis ja aatomi ehitus Raud asub perioodilisusüteemis VIII rühma kõrvalalarühmas. Raua aatomi

Keemia
77 allalaadimist
thumbnail
4
doc

Vask plii raud tsink

See on sinise värvusega kristallaine, mida kasutatakse puidu immutamiseks ja taimekaitsevahendite valmistamiseks. Suure tähtsusega on mitmesugused vasesulamid. Vase ja tina sulam - pronks kujunes umbes viis tuhat aastat tagasi peamiseks tööriista-, relva- ja ehtemetalliks, pannes niiviisi aluse pronksiajale. Mõned pronksliigid olid väliselt äravahetamiseni sarnased kullaga ning neid hinnati eriti kõrgelt. Juba muistsest ajast on vask olnud tornikella metall. Kellapronksis on keskmiselt 20 % tina. Teistsuguse koostisega on relvapronks, mis pidi olema kõva elastne ja kulumiskindel. Relvapronksis oli umbes 10 % tina. Vase sulam tsingiga ­ valgevask ehk messing ­ on heade mehaaniliste omadustega, hästi valatav ja kergesti töödeldav. Valgevasest tehakse autoradiaatoreid, torujuhtmeid, padrunihülsse, münte, mälestusmedaleid jm. Vask on hea elektrijuht. Elektrijuhtivuselt ületab teda ainult hõbe.

Keemia
26 allalaadimist
thumbnail
1
odt

Raud

Raud Hõbevalge metall, tihedus 7874 kg/m3, sulamistemperatuur 1811 K (1538 °C). Allpool Curie punkti 768 °C on raud ferromagneetik. Sobivad tugevus, kõvadus ja töödeldavus on teinud raua (rauasulamid) asendamatuks tööriistade ja masinate valmistamisel, ehitustegevuses. Alates rauaajast on inimtsivilisatsioon olnud suuresti rauatsivilisatsioon. Raua puuduseks on ta intensiivne roostetamine, mille vältimiseks kasutatakse erinevaid pinnakatteid või raua legeerimist korrosiooni vähendavate lisanditega

Keemia
2 allalaadimist
thumbnail
3
doc

Raua ja naatriumi töö

RAUD Raua keemilised omadused · Raud on hõbevalge keskmise kõvadusega metall. Lisandid muudavad raua kõvemaks. Raua tihedus on 7874 kg/m3 ja sulamistemperatuur 1539 kraadi. · Raud on plastiline , mistõttu teda on võimalik valtsida ning sepistada. Ta on hea soojus- ja elektrijuht. · Raud on magnetiseeritav. Raua kristallvõre muutub erinevatel temperatuuridel. · Raud on keskmise aktiivsusega metall(asub metallide pingerea keskel). Kuivas õhus ta hapnikuga ei reageeri, kuid niiskuses kattub kergesti roostekihiga. Mida lisanditevabam on metall, seda püsivam on ta korrosiooni suhtes.

Keemia
12 allalaadimist
thumbnail
1
docx

Raud

Raua aatomi ehitus - raua aatomi tuumas on 26 prootonit, ja 56-26=30 neutronit. Raud on neljanda perioodi element, järelikult asuvad tema elektronkatte 26 elektroni neljal elektronkihil : Fe : +26/2)8)14)2) Füüsikalised ja Keemilised omadused - *Raud on hõbevalge keskmise kõvadusega metall. Lisandid muudavad raua kõvemaks. *Raua tihedus on 7874 kg/m3 ja sulamistemperatuur 1539 kraadi. *Raud on plastiline , mistõttu teda on võimalik valtsida ning sepistada. Ta on hea soojus- ja elektrijuht. *Raud on magnetiseeritav. Raua kristallvõre muutub erinevatel temperatuuridel. *Raud on keskmise aktiivsusega metall(asub metallide pingerea keskel). Kuivas õhus ta hapnikuga ei reageeri, kuid niiskuses kattub kergesti roostekihiga. Mida lisanditevabam on metall, seda püsivam on ta korrosiooni suhtes. Raua sulamid -

Keemia
7 allalaadimist
thumbnail
4
pdf

RAUD kristallvõre teine kodutöö

RAUD Raud (Ferrum) on keemiline element järjenumbriga 26. Raud asub perioodilisussüsteemi VIII B rühmas ja 4. perioodis. Raud on omaduselt metall. Normaaltingimustel on raud tahke aine tihedusega 7,87 g/cm3. Raua sulamistemperatuur on 1539 Celsiuse kraadi. Raud esineb madalal rõhul nelja kristallmodifikatsioonina olenevalt temperatuurist. Raud on kõige levinum element Maa koostises ning levimuselt maakoores metallidest alumiiniumi järel teisel kohal. Raud asub perioodilisusüteemis VIII rühma kõrvalalarühmas. Raua aatomi järjenumbrist (26) ja täisarvuni ümardatud aatommassist (56) järeldub, et

tehnomaterjalid
10 allalaadimist
thumbnail
8
docx

Rauasulamid

Rauasulamid Sulam on kahe (või enama) metalli või metalli ja mittemetalli kokkusulatamisel või nende pulbrilise segu paagutamisel saadud materjal. Sulamite omadused erinevad koostismetallide omadustest: sulamid on tavaliselt kõvemad ja madalama sulamistemperatuuriga. ühtlased sulamid e. tahked lahused- läbisegi paiknevate erinevate aatomite ühine kristallvõre ebaühtlased sulamid- erinevate koostisosade väikest kristallikeste segu Rauasulamid: Malm (Fe+üle 2% C), habras, raskesti töödeldav (pliidirauad) Teras (Fe+alla 2% C), hästi töödeldav (mitmesugused tööriistad) Eriterased (Fe+ mitmesugused legeerivad lisandid), eriomadustega Roostevaba teras (+Cr), tööriistad, noad, käärid jm. Damaskuse teras (+W+Al+Si), relvad Samuraiteras (+Mo), mõõgad,

Materjaliõpetus
16 allalaadimist
thumbnail
12
doc

Referaat metallid

magmakivimeis. Maa tuum koosneb metallilisest rauast. Meteoriitset rauda hakkas inimkond arvatavasti ka esimalt kasutama. Peamine kogus rauda sisaldub maakoores ühenditena. Rauaühendeid, mida kasutatakse malmi ja terase tootmisel , nimetatakse rauamaakideks. Maagi kaevandamisel saadakse koos rauaühenditega ka kivimeid ja mineraale , mis rauamaagi töötlemisel pole enamasti vajalikud. Selliseid jääkaineid nimetakse aheraineteks. Tähtsamad rauamaagid on järgmised : Punane ja pruun rauamaak sisaldavad põhiühendina raud(III)-oksiidi (Fe2O3), mis on hüdratiseeritud vee molekulidega (2Fe2O3, 3H2O jt ). Magnetiidi põhiosa moodustav triraudtetraoksiid on musta värvusega kristalne magnetiline aine. Magnetiit on kõige rauarikkam ja puhtam rauamaak. Suurim leiukoht maailmas on Kurski oblast. Püriiti (FeS2) tavaliselt rauamaagina ei kasutata , sest väävel halvendab püriidist saadud rauasulamite kvaliteeti. Püriiti kasutatakse väävelhappe tootmisel.

Keemia
101 allalaadimist
thumbnail
2
docx

Raud ehk Fe

III-sel juhul loovutab raua aatom 2 elektroni väliskihi s-orbitaalilt ja 1 elektori 3d- orbitaalit Raua püsivam oksüdatsiooniaste on III, ebapüsivam II Levik looduses Kõigist melementidest on Fe levikult 4. Kohal, metallidest aga 2. Kohal Puhast (ehedat) rauda leidub looduses väga harva. Fe-aatom kuulub hemoglobiini koostisse. Hemoglobiin on valk, mis transpordib vere punalibledes hapnikku ja süsihappegaasi. Raua ühendid Fe2O3 ­ raud(III)oksiid, pruun või punane rauamaak e. Hematiit. Hematiiti kasutatakse raua tootmiseks. Punase värvusega raud(III)oksiidi ­ rauamennikut kasutataksekeedu- ehk rootsi värvides pigmendina (värvimullana). Fe3O4 ­ magnetiit, segaoksiid (FeIII oksiid), magnetiliste omadustega. Magnetiiti kasutatakse raua tootmiseks Hüdroksiidid Fe(OH)3 ­ raud(III)hüdroksiid, nn ,,sooraud", mida leidub ka mitme pool Eestis

Keemia
16 allalaadimist
thumbnail
6
odp

Keemia slaidi töö rauast.

Raud Raud (Ferrum) on keemiline element järjenumbriga 26. Raud asub Perioodilisussüsteemi VIII B rühmas ja 4. perioodis.Tal on neli stabiilset isotoopi massiarvudega 54, 56, 57ja 58.Omadustelt on raud metall. Normaaltingimustel on raud tahke aine tihedusega 7,87 g/cm3. Raua sulamistemperatuur on 1535 Celsiuse kraadi. Raud esineb madalal rõhul nelja kristallmodifikatsioonina olenevalt temperatuurist. Raud on kõige levinum element Maa koostises ning levimuselt maakoores metallidest alumiiniumi järel teisel kohal. Raua asetus perioodilisussüsteemis ja aatomi ehitus Raud asub perioodilisusüteemis VIII rühma kõrvalalarühmas

Keemia
22 allalaadimist
thumbnail
5
rtf

Raud

Olles universumi igaveste rändurite meteoriitide koostises, mis juhuslikult leidsid varjupaiga meie planeedil, oli meteoriitraud selleks materjaliks, millest inimene esmakordselt valmistas raudesemeid. Möödus sadu ja tuhandeid aastaid, enne kui inimene õppis maagist rauda tootma. Sellest momendist algas rauasajand, mis kestab ka käesoleval ajal. Teadlaste hulgas on domineeriv seisukoht, et rauda õppis inimkond tundma umbes 5000-6000 aastat tagasi. Omadused Hõbevalge metall,tihedus 7874 kg/m3, sulamistemperatuur 1811 K ( 1538°C) Raud on plastiline, mistõttu teda on võimalik sepistada ning valtsida. Hea soojus- ja elektrijuht. Magnetiseeritav, raua kristallvõre muutub erinevatel tepmeratuuridel. Keskmise aktiivsusega. Leidumine Maakera pinnal on raud levinud kõikjal. Teda leidub peaaegu kõikides savides, liivades ja kivimites. Raua massisisaldus maakoores on 6 % . Ehedal kujul eksisteerib rauda looduses vaid

Keemia
9 allalaadimist
thumbnail
8
doc

Raud

..............................8 2 SISSEJUHATUS Autor valis antud referaadi teemaks raud, kuna sellega puututakse kokku igapäevaselt. Samuti on raud Maa koostises üks levinuimatest elementidest. Referaadi eesmärgiks on saada rohkem teada rauast. Ülesanneteks on uurida, millised on raua omadused ja millised on tema sulamid. Töö koosneb ühest peatükist, milles räägitakse rauast üldiselt, selle omadustest ja selle kahest sulamist. 3 1. RAUD Raud on lihtaine ning ehedalt leidub rauda ainult meteoriitide koostises ja ka paljude ühendite koostises. Näiteks: vees, liivas, savides, mineraalides, taimedes, inimese veres, maasikates ja nõgestes. (Protonizer, 2007) Raua järjenumber on 26

Keemia
82 allalaadimist
thumbnail
14
doc

Raud, nikkel, koobalt

Raud. Fe. Ferrum Raud (Ferrum) on keemiline element järjenumbriga 26. Raud asub Perioodilisussüsteemi VIII B rühmas ja 4. perioodis. Tal on neli stabiilset isotoopi massiarvudega 54, 56, 57 ja 58. Omadustelt on raud metall. Normaaltingimustel on raud tahke aine tihedusega 7,87 g/cm 3. Raua sulamistemperatuur on 1535 Celsiuse kraadi. Raud esineb madalal rõhul nelja kristallmodifikatsioonina olenevalt temperatuurist. Raud on inimesele tuntud väga ammu. Oli ju pärast pronksiaega rauaaeg, mis Eestiski algas juba e. m. a. Metallidest on levikult raud teisel kohal pärast alumiiniumi, kuid toodangult esikohal, sest on kõige kättesaadavam metall.

Keemia
51 allalaadimist
thumbnail
8
pdf

Raud

Raud Raud asub perioodilisusüteemis VIII B rühmas ja 4. perioodis. Normaaltingimustel on raud tahke aine, tihedusega 7,87 g/cm3. Raua sulamistemperatuur on 1539 kraadi. Raud on kõige levinum element Maa koostises ning levimuselt maakoores teine metall alumiiniumi järel. Raual on neli stabiilset isotoopi massiarvudega 54, 56, 57 ja 58. Aatommass on 55,847 amü, raua aatomi tuumas on 26 prootonit ja 56-26=30 neutronit, elektronide koguarv elektronkattes on võrdne prootonite arvuga ehk 26. Raud on neljanda perioodi element,

Keemia
45 allalaadimist
thumbnail
11
rtf

Raud, koobalt, nikkel

Fe:+26/2)8)14)2) Raua aatom võib loovutada keemiliste reaktsioonide käigus sõltuvalt reaktsioonitingimustest 2 või 3 elekrtoni. Vastavalt sellele võib aatomist moodustuda raud(II)ioon või raud(III)ioon: Fe-2e=Fe2+ raud(II)ioon Aatom võib loovutada ühe elektroni ka eelviimasest elektronkihist siis tekib: Fe-3e=Fe3+ raud(III)ioon Vastavalt sellele on raua oksüdatsiooniaste ühendites II ja III. füüsikalised omadused: Raud on läikiv hallikasvalge värvusega metall. Tema tihedus =7,874g/cm3. Raud on sulamistemperatuuriga 1538oC ja keemistemperatuuriga 2861oC. Tüüpolekuna on tahke 25oC juures. Raud on plastiline ning võimaldab sepistamist ja valtsimist. Raud tõmbub magneti külge. keemilised omadused: Raud on keskmise keemilise aktiivsusega metall. Tavalised rauasulamid teras ja malm hakkavad niiskes õhus kergesti roostetama. Puhas raud on korrosioonikindlam. 1. reageerimine hapnikuga

Keemia
22 allalaadimist
thumbnail
4
docx

Raud

rikkalikult raud(II)ühendeid, peamiselt raudvesinikkarbonaati. Rauabakterid on looduses väga levinud, nad moodustavad üle poole veekogude bakterplanktonist ja kuni 20% mulla mikrofloorast. Tihti esineb rauabakterite kolooniaid veevärgi torudes, kus nad moodustavad toru pinnale limase kihi ja võivad põhjustada isegi toru ummistust. Elutegevuse käigus oksüdeerivad nad raud(II) ühendeid raud(III) ühenditeks ning kasutavad seejuures reaktsioonil vabanevat energiat. On välja arvutatud, et ühe grammi orgaaniliste ühendite sünteesil protoplasmasse tekitavad bakterid 428g raud(III) hüdroksiidi. Bakterite heitainetest ja surnud bakterite kehadest moodustuvad soorauamaak ja järverauamaak. · Eestis toodeti rauda soorauamaagist, kus soorauamaak peenestatakse, kuivatatakse, segatakse puusöega, räbustiks võeti lubjakivi, õhku pumbati koldesse lõõtsaga. Saadud

Keemia alused
30 allalaadimist
thumbnail
15
docx

Keemia põhi- ja keskoolile

2. keskmised ­ H2SO3, H3PO4, HNO2 3. nõrgad ­ H2S, H2CO3 2. vesinike arvu järgi 1. üheprootonilised ­ HNO3, HCl 2. mitmeprootonilised ­ H2SO3, H3PO4 3. hapniku sisaldavuse järgi 1. hapnikku sisaldavad happed ­ H2SO3, H3PO4 4. hapnikku mitte sisaldavad happed ­ HCl, HBr, HI Keemilised omadused: 1. hape + ALUS = sool + vesi 2HCl + Mg(OH)2 = MgCl2 + 2H2O 2. hape + ALUSELINE OKSIID = sool + vesi 2HCl + MgO = MgCl2 + H2O 3. hape + METALL = sool + vesinik (vt. pingerida) (va. HNO3 ja konts. H2SO4 puhul ei redutseeru vesinikioon) 2HCl + Mg = MgCl2 + H2 4. hape + SOOL = uus sool + nõrgem või lenduvam hape 2HCl + Na2S = 2NaCl + H2S 5. hapnikhape = vastav oksiid + vesi H2CO3 = CO2 + H2O Saamine: 1. hapnikhappeid saadakse vastava happelise oksiidi reageerimisel veega. (va. Ränihapet) N: SO3 + H2O = H2SO4 2. hapnikku mittesisaldavaid happeid saadakse 5

Keemia
28 allalaadimist
thumbnail
9
doc

Anorgaaniline keemia

happeanioonidest ehk happejäägist. NaCl naatriumkloriid Na2SO4 ­ naatriumsulfaat Soolade liigitamine Lihtsoolad KCl NaCl keedusool Na2CO3 (pesu) sooda KNO3 kaaliumnitraat Vesiniksoolad NaHCO3 söögisooda KH2PO4 kaaliumdivesinikfosfaat Hüdroksiid soolad Cu2(OH)2CO3 Mg(OH)Cl Liitsoolad KAl(SO4)2 * 12H2O AlK(SO4)2*12H2O Soolade keemilised omadused 1. sool + metall = UUS SOOL + UUS METALL Ba + CuCl2 2Na + 2H2O = 2NaOH + H2 Li + FeCl3 2NaOH + CuSO4 = Cu(OH)2 + Na2SO4 CuSO4 + Ag CuSO4 + Fe = FeSO4 + Cu 2. sool + leelis = UUS SOOL + UUS ALUS FeCl3 + 3KOH = 3KCl + Fe(OH)3 3. sool + hape = UUS SOOL + UUS HAPE CaCO3 + 2HCl = CaCl + H2O + CO2 4. sool + sool = UUS SOOL + UUS SOOL Happed koosnevad vesiniku aatomi(te)st ja happejäägist. Happeid

Keemia
95 allalaadimist
thumbnail
24
docx

Materjaliteaduse üldalused eksamiküsimused

osakesed puutuvad üksteisega vahetult kokku. Sellisel juhul osakese liikumine jõu toimel lükkab naaberosakese võresõlmest välja. TTK võre korral on libisemispindadeks {111} pinnad (joon 5-13) ja neil omakorda libisemissuundadeks suunad <110> 5.5 Metallide tugevdamise meetodid Metalli plastiline deformatsioon on seotud väga suure hulga dislokatsioonide samaaegse liikumisega. Seega mida kergemini dislokatsioonid metallis liiguvad, seda kergemini metall plastiliselt deformeerub. Metalli tugevusomadused (elastsuspiir, voolamispiir, tõmbetugevus, kõvadus) sõltuvad aga sellest, kui kergesti metall plastiliselt deformeerub. Seetõttu kõik metallide tugevdamise meetodid põhinevad tegelikult dislokatsioonide liikumise takistamises. Kasutatakse järgmisi metallide tugevdamise meetodeid. 1) Terade mõõtmete vähendamine. Kristalliitide vahelisel pinnal lõpeb dislokatsiooni liikumine (libisemine), kuna: - katkeb osakeste vahetu kontakt;

Materjaliteaduse üldalused
17 allalaadimist
thumbnail
12
doc

Lühikokkuvõte

Etanool on hea sünteeside lähteaine (kummi tootmise, aga ka ravimite, värv- ja lõhnaainete valmistamisel ning alkohoolsete jookide koostisosa, meditsiinis konservandina ja antiseptilise vahendina). Kasutatakse termomeetrites, sest külmumistemperatuur on ­112 oC. Kõrge kütteväärtuse tõttu kasutatakse kütusena reaktiivmootorites, sisepõlemismootorites. Etanooli mõju organismile on keerukas. Ensüümide toimel oksüdeerub etanool organismis mitmesugusteks ühenditeks ning lõpuks süsihappegaasiks ja veeks. Alkoholi toime avaldub organismis koheselt, veres leidub 4-5 minuti pärast. Peamine osa imendub verre peensoolest. Kõige suurem on alkoholi sisaldus veres umbes 1 tund pärast etanooli sissevõtmist. Koheselt algab organismis ka alkoholi lõhustumine. Osa alkoholist eraldub uriini ja väljahingatava õhu kaudu muutumatult, ülejäänud lammutatakse organismis. Skemaatiliselt toimub lagunemine järgmiselt: etanool etanaal etaanhape .... CO2 ja H2O

Keemia
349 allalaadimist
thumbnail
22
rtf

Materjaliteaduse üldalused 2012 kevad

osakesed puutuvad üksteisega vahetult kokku. Sellisel juhul osakese liikumine jõu toimel lükkab naaberosakese võresõlmest välja. TTK võre korral on libisemispindadeks {111} pinnad (joon 5-13) ja neil omakorda libisemissuundadeks suunad <110> 5.5 Metallide tugevdamise meetodid Metalli plastiline deformatsioon on seotud väga suure hulga dislokatsioonide samaaegse liikumisega. Seega mida kergemini dislokatsioonid metallis liiguvad, seda kergemini metall plastiliselt deformeerub. Metalli tugevusomadused (elastsuspiir, voolamispiir, tõmbetugevus, kõvadus) sõltuvad aga sellest, kui kergesti metall plastiliselt deformeerub. Seetõttu kõik metallide tugevdamise meetodid põhinevad tegelikult dislokatsioonide liikumise takistamises. Kasutatakse järgmisi metallide tugevdamise meetodeid. 1) Terade mõõtmete vähendamine. Kristalliitide vahelisel pinnal lõpeb dislokatsiooni liikumine (libisemine), kuna: - katkeb osakeste vahetu kontakt;

Materjaliteaduse üldalused
47 allalaadimist
thumbnail
32
docx

Materjaliteaduse üldaluste eksamiküsimused vastustega 2013

Monokristallides toimub plastiline deformatsioon libisemispindadel (slip planes) toimuva libisemise tulemusel. Polükristalse materjali korral toimub selle tulemusel terade pikenemine. Võib toimuda ka kaksikute tekkimine. 5.5 Metallide tugevdamise meetodid Metalli plastiline deformatsioon on seotud väga suure hulga dislokatsioonide samaaegse liikumisega. Seega mida kergemini dislokatsioonid metallis liiguvad, seda kergemini metall plastiliselt deformeerub. Metalli tugevusomadused (elastsuspiir, voolamispiir, tõmbetugevus, kõvadus) sõltuvad aga sellest, kui kergesti metall plastiliselt deformeerub. Seetõttu kõik metallide tugevdamise meetodid põhinevad tegelikult dislokatsioonide liikumise takistamises. Kasutatakse järgmisi metallide tugevdamise meetodeid. 1) Terade mõõtmete vähendamine. Kristalliitide vahelisel pinnal lõpeb dislokatsiooni liikumine (libisemine), kuna: - katkeb osakeste vahetu kontakt;

Materjaliõpetus
40 allalaadimist
thumbnail
32
docx

Mõisted

kasutatakse teda vähe. Põhilised tehnomaterjalid Mangaan tõstab märgatavalt terase valmistatakse rauasulamitest. Nende kasutusala on tugevust, alandamata seejuures plastsust, ning umbes kümme korda laiem kui teistel metallidel ja samal ajal vähendab väävlisisaldusest tingitud nende sulamitel. Suurem osa rauasulamitest on kahjulikku mõju. süsinikku sisaldavad sulamid – rauasüsinikusula- Malmidele on peale suurema süsinikusisal- mid, mis jagunevad järgmiselt: duse omane ka suur ränisisaldus (1...3%). Räni - terased, mille süsinikusisaldus on kuni 2,14%; peamine mõju on selles, et koos süsinikuga soodus- - malmid, mille süsinikusisaldus on üle 2,14% tab ta grafiidi eraldumist. (tavaliselt kuni 4%). Väävel ja fosfor. Väävel ja fosfor on

70 allalaadimist
thumbnail
52
odt

Materjaliõpetus

1. -2. MALMID, STRUKTUUR, TOOTMINE, LIIGITUS Malm toodetakse kõrgahjudes rauamaagist raua taandamisega. Taandamine toimub kivisöekoksi põlemisel tekkivate gaasidega. Vedelas rauas lahustub 3,5-4% C, samuti Mn, Si ja kahjulike lisandeina ka S ja P. Kõrgahjus toodetakse: 1) toormalmi, mis läheb terase sulatamisel (kuni 90% kogutoodangust); 2) valumalme, mis sulatatakse ümber, et saada valandeid (valatud esemeid) 3) ferrosulameid – suure Mn või Si sisaldusega rauasulameid, mida kasutatakse

Materjaliõpetus
37 allalaadimist
thumbnail
47
docx

Tehnomaterjalide eksami materjal

elektronkontsentratsioon. Karbiidi, nitriidid ja boriidid ­ ülemineku grupi metallid (Fe, Mn, Cr, Mo, W jt) moodustavad väikese aatomi raadiusega mittemetallidega (C, N, B, H) sisendusfaasidena tuntud keemilisi ühendeid, kusjuures metalli ja mittemetalli aatomi raadiuste erinevus on suur (RM/RX 1,7 või RX/RM 0,59). Sisendusfaaside komponentide aatomite arvu suhe on lihtne täisarvkordne ja selliste keemiliste ühendite valemiteks on M4X, M2X, MX, MX2 jne (kus M on metall ja X on mittemetall) ja nende kristallvõred on sarnased sisendustardlahuste kristallvõredega (tavaliselt esinevad võretüübid K8, K12 või H12). Sisendusfaase süsinikuga nim. karbiidideks, lämmastikuga nitriidideks, booriga boriidideks jne. Tuntuimaks sisendusfaasiks rauasüsiniku- sulameis on Fe3C (raudkarbiid), kus raua ja süsiniku aatomite suhe (baasaatomite suhe) on 0,60. Kui rauale on omane kuupvõre (K8 või K12), süsinikule

Tehnomaterjalid
450 allalaadimist
thumbnail
20
docx

Materjaliõpetuse eksami kordamisküsimuste vastused.

struktuurile. Saame nn. klaas- või amorfse metalli või sulami (amorphous metal, amorphous alloy, metal glass, metaglas), millel puudub metallile või sulamile omane korrapärane aatomite paigutus. Amorfne olek on seda püsivam, mida keerulisem on metalli või sulami kristallivõre ja mida suurem on aatomite vastastikune mõju (suurem on ta metalli ja mittemetalli sulamite korral). Koostise poolest on kergemini saadavad ja püsivamad kahe- ja enamakomponentsed sulamid. Amorfsetel metallidel on suurepärane korrosioonikindlus, head elektri- ja magnetomadused (üldiselt suuremad kui vastavatel kristalsetel materjalidel). Difusioon Paljud metallides ja sulamites toimuvad protsessid, eriti kõrgetel temperatuuridel, on seotud difusiooniga (diffusion). Metalli aatomite liikumist kristallivõre sõlmpunktist naabersõlmpunkti või nende vahele temperatuuri mõjul nimetatakse omadifusiooniks (self-diffusion). Erisuguste aatomite

Materjaliõpetus
194 allalaadimist
thumbnail
86
pdf

Materjalid

............. 33 1.2.4. Nikkel ja niklisulamid .................................................................................................................. 35 1.2.5. Titaan ja titaanisulamid............................................................................................................... 36 1.2.6. Magneesium ja magneesiumisulamid ........................................................................................ 36 1.2.7. Tsink, plii, tina ja nende sulamid ................................................................................................ 37 1.2.8. Metallide markeerimine .............................................................................................................. 38 1.3. Mittemetalsed materjalid.................................................................................................................... 40 1.3.1. Tehnoplastid ........................................................................

335 allalaadimist
thumbnail
37
docx

Materjaliteadus

vahetult kokku. Sellisel juhul osakese liikumine jõu toimel lükkab naaberosakese võresõlmest välja. TTK võre korral on libisemispindadeks {111} pinnad ja neil omakorda libisemissuundadeks suunad <110> (joon 5-13). Millised on libisemispinnad ja libisemissuunad RTK ja SPH võre korral? 5.5 Metallide tugevdamise meetodid Metalli plastiline deformatsioon on seotud väga suure hulga dislokatsioonide samaaegse liikumisega. Seega mida kergemini dislokatsioonid metallis liiguvad, seda kergemini metall plastiliselt deformeerub. Metalli tugevusomadused (elastsuspiir, voolamispiir, tõmbetugevus, kõvadus) sõltuvad aga sellest, kui kergesti metall plastiliselt deformeerub. Seetõttu kõik metallide tugevdamise meetodid põhinevad tegelikult dislokatsioonide liikumise takistamises. Kasutatakse järgmisi metallide tugevdamise meetodeid. 1) Terade mõõtmete vähendamine. Kristalliitide vahelisel pinnal lõpeb dislokatsiooni liikumine (libisemine), kuna: - katkeb osakeste vahetu kontakt;

Materjaliteaduse üldalused
107 allalaadimist
thumbnail
36
docx

Materjalide keemia

tahke kristallvõresse kas võre sõlmedesse või interstitsiaalsetesse tühimikesse. Kuna plastne deformatsioon toimub metalli sulamistemperatuurist madalamal temperatuuril, siis tavaliselt nimetatakse seda protsessi ka külmsurvetöötluseks. Deformatsioonide tihedus metallis kasvab külmsurvetöötlusel. Energeetiliselt dislokatsioonid tõukuvad üksteisest. Mida rohkem dislokatsioone on tekkinud, seda raskem on nende liikumine. Mida rohkem on metall deformeeritud, seda rohkem jõudu tuleb kasutada edasiseks deformeerimiseks. Kruntvärve kasutatakse vahekihina, kui värv ei nakku hästi aluspinnaga. Plastifitseeritud kruntvärv amortiseerib põhivärvi kelme aluspinda deformatsioonil, poorsete materjalide värvimisel vähendab põhivärvi kulu ning on antikorrosiooniomadustega metallkonstruktsiooni värvimisel. Roostekihi võib mehaaniliselt eemalda või keemiliselt muuta. Roostemuundid H3PO4 ja H2CrO4 baasil

Materjalide keemia
24 allalaadimist
thumbnail
30
docx

Keemia ja materjaliõpetuse eksami küsimuste vastused

nimi! (Erandid ­ hapnik moodustab osooni; süsinik moodustab teemanti, grafiiti, tahma.) Segadusse ajab näiteks lause: veri sisaldab rauda ­ kas veri sisaldab raua aatomeid sisaldavaid aineid, lihtaine raua pulbrit või mõlemaid? ­ tegemist on siiski raua aatomitega, mis on aine hemoglobiin koostises. 2) Nii puhaste ainete kui ainete segude koostise väljendamine teatud ühendite kaudu, milliseid konkreetne aine ei pruugi üldse sisaldada. Näitelause: kivim on aluseline kui SiO2 sisaldus on 45 ­ 52 % ­ Kivimites võivad Si aatomid olla mineraalis kvarts (valem on SiO 2) ja paljudes silikaatides. Antud lauses 45 ­ 52% on summa kvartsi sisaldusest ja Si aatomite sisaldusest silikaatides, ümberarvutatuna SiO 2-ks. 3) Ühel ja samal tähisel ja mõistel võib olla erinevates valdkondades sageli erinev sisu. Näide: Mõiste "aluselisus" ­ Keemias

Keemia ja materjaliõpetus
309 allalaadimist
thumbnail
25
docx

Konspekt eksamiks

(Erandid ­ hapnik moodustab osooni; süsinik moodustab teemanti, grafiiti, tahma.) Segadusse ajab näiteks lause: veri sisaldab rauda ­ kas veri sisaldab raua aatomeid sisaldavaid aineid, lihtaine raua pulbrit või mõlemaid? ­ tegemist on siiski raua aatomitega, mis on aine hemoglobiin koostises. 2) Nii puhaste ainete kui ainete segude koostise väljendamine teatud ühendite kaudu, milliseid konkreetne aine ei pruugi üldse sisaldada. Näitelause: kivim on aluseline kui SiO2 sisaldus on 45 ­ 52 % ­ Kivimites võivad Si aatomid olla mineraalis kvarts (valem on SiO 2) ja paljudes silikaatides. Antud lauses 45 ­ 52% on summa kvartsi sisaldusest ja Si aatomite sisaldusest silikaatides, ümberarvutatuna SiO 2- ks. 3) Ühel ja samal tähisel ja mõistel võib olla erinevates valdkondades sageli erinev sisu. Näide: Mõiste "aluselisus" ­ Keemias väljendab

Keemia ja materjaliõpetus
276 allalaadimist
thumbnail
34
pdf

Füüsikaline ja kolloidkeemia

Harilikult tõlgendatakse teooriat mudelina. 7. Aatomiehitus. Aatomi ehituse seosed perioodilisustabeliga. Aatom koosneb positiivse elektrilaenguga aatomituumast, mida ümbritseb negatiivselt laetud elektronkate ehk elektronkest. Viimane jaguneb elektronkihtideks, mis omakorda koosnevad negatiivse elementaarlaenguga elektronidest. Perioodilisustabelist saame teada elemendi elektronide arvu elektronkihtidel, aatommassi suurust ning mis metall see aine on. Liikudes tabelis vasakult paremale ja alt üles suurenevad elementide mittemetallilised omadused ja vähenevad metallilised omadused.Liikudes rühmas ülevalt alla suurenevad metallide keemilised aktiivsused. See on tingitud sellest, et elektronkihtide kasvades kaugeneb väline elektronkiht aatomituumast ja nende külgetõmme väheneb.Liikudes rühmas alt üles suurenevad mittemetallide keemilised aktiivsused. See on tingitud sellest, et elektronkihtide

Füüsikaline ja kolloidkeemia
58 allalaadimist
thumbnail
27
doc

Keemia kordamisküsimused

Hallmalm- kogu süsinik või suurem osa sellest on vabas olekus liblelise (helbelise) grafiidina (head valuomadused, hästi lõiketöödeldav, kulumiskindel), suuremõõtmelised tooted; Tempermalm - süsinik on pesalise grafiidina (suurem löögitugevus, head valamisomadused), saadakse perliit ­ tsementiitstruktuuriga valgemalmist; Valgemalm - kogu süsinik on Fe-ga seotud tsementiidina (Fe3C) (suure kõvadusega, habras ning halvasti lõiketöödeldav), kasut. toormalmina. Kõrgtugev malm - süsinik on keraja grafiidina "pesadena", saadakse hallmalmist (suur tugevus, plastsus) 91. Terased: liigitus, omadused. Tootmisviis, kasutusala (nt konstruktsiooniteras), kvaliteet, keemiline koostis, struktuuri järgi Vastavalt otstarbele on terase koostis erinev. Tema põhikomponendiks on raud. Roostevaba teras, kuumustugevad terased 92. Värvilised metallid. a) tiheduse järgi: · kergemetallid - 5000 kg/m3 (Al, Mg, Ti), · keskmetallid 5000 - 7800 kg/m3 (Sn, Zn, Cr),

Keemia ja materjaliõpetus
10 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun