b b nq a mq = a n m ( a) n m = a , kui m < 0, siis a 0 n m n m a = nm a Avaldisel 10 - 26 = 10 - 64 puudub väärtus, sest negatiivsel arvul pole paarisarvulise juurijaga juurt. TEHTED ASTMETE JA VÕRDSETE JUURIJATEGA JUURTEGA Tehete sooritamisel astmetega või võrdsete juurijatega juurtega on otstarbekas valida just see lahendusmeetod, mis tundub lahendajale lihtsam: 8 7 1 7 8 : 16 = 7 7 = 16 2 1 1 1 1 1 1 7
Põhivara 7. klass Protsendi mõiste: Ühte sajandikku osa mingist kogumist, tervikust nim. protsendiks (%). Jagatise väljendamine protsentides: Tihti on vaja teada, mitu % moodustab üks arv teisest. Kahe arvu jagatise väljendamiseks protsentides leiame selle jagatise esmalt kümnendmurruna ning korrutame siis sajaga. Näide: Arv 3 arvust 4 moodustab? 3 : 4 = 0,75 0,75 * 100 = 75% Tekstülesannete lahendamine % abil: Metsapäeval oli kavas istutada 2400 puud. Õpilased ületasid ülesande 16% võrra. Mitu puud istutati? Antud ülesannet saab lahendada kahel viisil. võimalus: 1% on 2400 : 100 = 24 16% on 16 * 24 = 384 16% 2400-st on 384 Kuna plaan ületati 16% võrra, mis vastab 384 puule, siis istutati 2400 + 384 = 2784 puud. võimalus: Mitu puud on 16% ? 2400 puud on 100% x puud on 16% x = 2400 * 16/100 = 384 Mitu puud istutati? 2400 + 384 = 2784
Reaalarvud NATURAALARVUD Naturaalarvudena mõistame arve 1, 2, 3, .... . On ka käsitlusi, kus ka 0 loetakse naturaalarvuks. Naturaalarvude hulka tähistatakse sümboliga N. Naturaalarvude hulga saame esitada kujul: N = {1;2;3;...;n-1;n;n+1;...} . 0 1 2 3 4 Naturaalarvude hulga omadusi. · Naturaalarvude hulk N on järjestatud lõpmatu hulk, milles on vähim, kuid pole suurim arvu. · Naturaalarvude hulk N on hulk, milles arvud järgnevad vahetult üksteisele ega kata kogu arvtelge. · Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes. (Kui kaks naturaalarvu liita või korrutada on tulemuseks alati naturaalarv.) · Naturaalarvude hulk ei ole kinnine lahutamise või jagamise suhtes. Naturaalarve, mis jaguvad 2-ga, nimetatakse paarisarvudeks, ülejäänuid paarituteks arvudeks. Ühest suuremat naturaalarvu , mis jagub vaid ühe ja iseendaga nimetatakse algarvuks, kõiki ülejäänud ühes
1) liita nende arvude absoluutväärtused 2) saadud arvu ette kirjutada miinusmärk 7. Kuidas liita erimärgilisi arve? Selleks, et liita kahte erimärgilist arvu tuleb: 1) lahutada suuremast absoluutväärtusest väiksem 2) saadud arvu ette kirjutada suurema absoluutväärtusega liidetava märk 8. Tehete järjekord Kõigepealt astendame, siis korrutame ja jagame ning lõpuks liidame ja lahutame. Kui avaldises on sulud, siis teeme esmalt sulgudes olevad tehted. 9. Kuidas leida tõenäosust? Selleks, et leida tõenäosust tuleb soodsate võimaluste arv jagada kõigi võimaluste arvuga. 10. Kuidas koostada sagedustabelit? Koostada tuleb tabel, kus on 3 tulpa. Esimeses tulbas on andmed, teises tulbas sagedus ja kolmandas tulbas suhteline sagedus. Suhtelise sageduse leidmiseks tuleb sagedus jagada objektide koguarvuga. 11. Mis on arvu ruutjuur? Miks negatiivsetel arvudel puudub ruutjuur?
Ülesanne 1 Aksioom (kreeka keeles axima 'see, mis on vääriline') tähendab üldkeeles väidet, mille tõesuses pole kahtlust. Algarvuks nimetatakse ühest suuremat naturaalarvu, mis jagub vaid arvuga 1 ja iseendaga. Algarvude hulk on lõpmatu. Sajast väiksemad algarvud ((100) = 25) on 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 ja 97. Kaksikuteks nimetatakse selliseid algarve, mille vahe on 2, näiteks 101 ja 103 või 1 000 000 007 ja 1 000 000 009. Ei ole teada, kas kaksikuid on lõpmata palju. Aritmeetiliseks keskmiseks nimetatakse arvu, mis saadakse antud arvude summa jagamisel liidetavate arvuga. Näide 1. On antud arvud 3, 4, 5 ja 6. Leiame nende arvude aritmeetilise keskmise. 1) Leiame summa: 3 + 4 + 5 + 6 = 18. 2) Jagame summa liidetavate arvuga 18 : 4 = 4,5. Seega nende arvude aritmeetiline keskmine on 4,5. Lahendamiseks sobib ka avaldis (3 + 4 + 5 + 6) : 4. Arvkiir on kiir, mille alguspunktis on märgitud arv 0. Edasi on vaba
X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b N korral a b b a . Liitmis kommutatiivsus. 2. Iga a, b N korral a b b a . Korrutamise kommutatiivsus. 3. Iga a, b, c N korral a b c a b c . Liitmise assotsiatiivsus. 4. Iga a, b, c N korral a b c a b c . Korrutamise assotsiatiivsus. 5. Iga a, b, c N korral a b c a b a c
X klassi matemaatika lühikonspekt (I periood) Arvuhulgad Naturaalarvudeks nimetatakse arve N={1; 2; 3; … ; n-1; n; n+1; …} Selles hulgas leidub esimene arv ja iga arvu korral sellele vahetult järgnev arv, kuid ei ole viimast arvu — niisugust naturaalarvu, mis oleks kõigist suurem. Naturaalarvude hulk on kinnine liitmise ja korrutamise suhtes, kuid mitte lahutamise ja jagamise suhtes. Liitmis- ja korrutamistehetel on hulgas N järgmised omadused: 1. Iga a, b N korral a b b a . Liitmis kommutatiivsus. 2. Iga a, b N korral a b b a . Korrutamise kommutatiivsus. 3. Iga a, b, c N korral a b c a b c . Liitmise assotsiatiivsus. 4. Iga a, b, c N korral a b c a b c . Korrutamise assotsiatiivsus. 5. Iga a, b, c N korral a b c a b a
1. Absoluutväärtus reaalarvuga x määratud mittenegatiivne reaalarv 2. Abstsisstelg x telg 3. Aksioom lause, mida loetakse õigeks ilma põhjenduseta. Aksioomid võetakse aluseks teiste väidete põhjendamisel. 4. Algarv Ühest suurem naturaalarv, mis jagub vaid ühe ja iseendaga. 5. Algebraline murd murd, mille lugejaks ja / või nimetajaks on muutujaid sisaldav avaldis. 6. Algebraline ruutjuur arv, mille ruut on antud arv a. 7. Algkoordinaat antud sirge ja ordinaattelje lõikepunkti ordinaat. 8. Algtegur naturaalarvu algarvuline tegur. 9. Algteguriteks lahutamine naturaalarvu esitamine algarvuliste tegurite korrutisena. 10. Alusnurk võrdhaarse kolmnurga või trapetsi aluse ja haara vaheline nurk. 11. Apoteem 1. korrapärase hulknurga keskpunktist küljele tõmmatud ristlõik. 12. 2. korrapärase püramiidi tipust külgtahule tõmmatud kõrgus. 13. Aritmeetiline keskmine suuruste summa jagatis nende suuruste arvuga. 14. Aritmeetiline
Kõik kommentaarid