Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Lineaarvõrrandi süsteem (0)

5 VÄGA HEA
Punktid
Lineaarvõrrandi süsteem #1 Lineaarvõrrandi süsteem #2 Lineaarvõrrandi süsteem #3
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 3 lehte Lehekülgede arv dokumendis
Aeg2012-11-01 Kuupäev, millal dokument üles laeti
Allalaadimisi 34 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Peeter Termomeeter Õppematerjali autor
Matemaatiline ülesanne lahendusega mille lahendamiseks on vaja kasutada lineaarvõrrandi süsteemi

Sarnased õppematerjalid

thumbnail
3
docx

Lineaarvõrrandisüsteemide lahendamine

Lineaarvõrrandisüsteemide lahendamine · Lineaarvõrrandisüsteemi üldkuju a1 x + b1 y = c1 a1 x + b1 y = c1 a2 x + b2 y = c2 a2 x + b2 y = c2 · Lineaarvõrrandisüsteemide lahendamisvõtted 1. Asendusvõte 13 + 2 y = 9 x 7x = 3y 3y 7x = 3y x = 7 3 y 13 + 2 y = 9 7 27 y 13 + 2 y = 7 13 - y = -13 y = 7 7 3 7 x= =3 7 Kontroll : v1 = 13 + 2 7 = 13 + 14 = 27 p1 = 9 3 = 27 v1 = p1 v2 = 7 3 = 21 x=3 p2 = 3 7 = 21 Vastus : y=7 v2 = p2 2. Liitmisvõte 4 x + 3 y = 21

Matemaatika
thumbnail
12
pdf

8. klassi raudvara: PTK 4

tundmatuga lineaarliige by ja vabaliige c; tähed a,b ja c tähistavad arve, need on laiendajad on 12;4;2;3 võrrandi kordajad; kahe tundmatuga võrrandil on samad põhiomadused, mis 48x-4(2x-5)=2(y+2)-3(2x-3y) ühe tundmatuga võrrandil 48x-8x+20=2y+4-6x+9y 48x-8x-2y+6x-9y=4-20 NB kaks kahe tundmatuga lineaarvõrrandit 46x-11y=-16 normaalkuju moodustavad lineaarvõrrandisüsteemi 2.Kahe tundmatuga lineaarvõrrandi Ül.901 normaaalkuju - võrrand üldkujul ax+by=c 3x-5(3y-4)=-3(x-2)+6 kirjutatakse nii, et lineaarliikmed on 3x-15y+20=-3x+6+6 tähestikulises järjekorras; murde, sulge või 3x-15y+3x=6+6-20 sarnaseid liikmeid sisaldava võrrandi 6x-15y=-8 normaalkuju puhul: korrutada pooli murdude ühise nimetajaga, sulgudest vabanemisel kasutada korrutamise jaotuvuse seadust a(b+c)=ab+ac; viia tundmatuid sisaldavad liikmed võrrandi vasakule ning vabaliikmed

Matemaatika
thumbnail
8
pdf

Determinandid gümnaasiumiõpikus

DETERMINANDI MÕISTE. KAHEREALISE DETERMINANDI Avaldanud esimesest võrrandist x-i ja asendanud saadud tulemuse teise võr- KASUTAMINE VÕRRANDISÜSTEEMIDE LAHENDAMISEL randisse, saame c1 b1 y Paljude sisult erinevate probleemide lahendamine viib ühe ja sama seaduse a1 x b1 y c1 x , kui a1 0. järgi koostatud avaldisteni. Sel juhul on otstarbekas uurida nende avaldiste a1 üldisi omadusi. c b y° a2 ¡¡ 1 1 ±± b2 y c2 a1 korrutame võrrandi pooli a1-ga Üheks selliseks av

Matemaatika
thumbnail
40
doc

Keskkooli matemaatika raudvara

.................................................................18 Absoluutväärtust sisaldav võrrand..........................................................................................18 Arvvõrratus, selle omadused.................................................................................................. 19 Ühe muutujaga lineaarvõrratus...............................................................................................19 Ühe muutujaga lineaarvõrratuse süsteem...............................................................................19 Ruutvõrratus........................................................................................................................... 20 Intervallide meetod.................................................................................................................20 Murdvõrratus.........................................................................................................................

Matemaatika
thumbnail
3
pdf

Sirge võrrand

r trtöös r r rr st sr rr t s t A(-3, 5; 2) B(1; -4, 5) t C(-3; 2) ts k = -1 t B(-4; 0) str s = (-2; -2) sr ts rt sr rr x-2 y+1 = 3 2 srt stst s rt s rr srt t srt r x-y+7=0 2x + y - 2 = 0 x + 2y - 1 2x + 4y + 3 = 0 s A(-3, 5; 2) B(1; -4, 5) st t äärt sr rr x - x1 y - y1 = x2 - x1 y2 - y1 x + 3, 5 y-2 = 1 + 3, 5 -4, 5 - 2 x + 3, 5 y-2 =

Matemaatika
thumbnail
14
doc

Matemaatiline analüüs II Teooria

|AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi x1 = 1(t) x2 = 2(t) .... xm = m(t) , t [T1, T2] . Antud süsteem määrab iga t [T1, T2] korral ühe kindla ruumi Rm punkti P =(x1, x2, . . . , xm). Üldiselt vastavad muutuja t erinevatele väärtustele erinevad ruumi punktid. Kui muutuja t jookseb läbi kogu lõigu [T1, T2], siis t-le vastav punkt kujundab ruumis Rm punktihulga, mida nimetatakse parameetriliseks jooneks. 2) Vektorid mitmemõõtmelises ruumis. Punkti kohavektor. Vektori suunaline sirge ja selle parameetrilised võrrandid. Vektorite skalaarkorrutis

Matemaatiline analüüs 2
thumbnail
14
doc

Teooria vastused II

|AB| |AC|+|CB| · Parameetrilised jooned ruumis Rm. Olgu lõigul [T1, T2] antud m funktsiooni x1 = 1(t), x2 = 2(t), . . . , xm = m(t). Vaatleme nende funktsioonidevõrranditest moodustatud süsteemi x1 = 1(t) x2 = 2(t) .... xm = m(t) , t [T1, T2] . Antud süsteem määrab iga t [T1, T2] korral ühe kindla ruumi Rm punkti P =(x1, x2, . . . , xm). Üldiselt vastavad muutuja t erinevatele väärtustele erinevad ruumi punktid. Kui muutuja t jookseb läbi kogu lõigu [T1, T2], siis t-le vastav punkt kujundab ruumis Rm punktihulga, mida nimetatakse parameetriliseks jooneks. 2) Vektorid mitmemõõtmelises ruumis. Punkti kohavektor. Vektori suunaline sirge ja selle parameetrilised võrrandid. Vektorite skalaarkorrutis

Matemaatiline analüüs 2
thumbnail
2
pdf

Eksam

~ KORGEMA ¨O MATEMAATIKA EKSAMITO ¨ 1. variant1 Perekonnanimi, nimi, kuup¨ aev.......................... 1. Antud 2 LVS laiendatud maatriksit 2 Milline LVS on lahenduv 1 0 15 3 5 1 0 5 3 · esimene 5 0 1 5 0 5 ja 0 1 - 45 0 1 5 · teine 0 0 1 0 0 0 0 0 0 1 · mitte u

Kõrgem matemaatika




Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun