Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Kodutöö nr 3, neetliide - sarnased materjalid

nurkteras, needi, neet, nurkterase, tugevustingimus, keevis, neetide, neto, tõmbel, sisejõud, 1033, lõikepinge, ruukki, tingliku, tõmbepinge, inertsmoment, tugevusmoment, konstruktsioon, 1010, summaarne, 1mpa, 140000, 60mm, õppetool, mhe0011, tugevusõpetus, juhendaja, neetliide, ristlõikepindala, equal, angles, 25cm, põikjõud, 3126, flat, bars
thumbnail
10
doc

Kodutöö 101

A. Neetliide 1. Ülesande püstitus 2d 3d 3d 2d b1 F a z0 Andmed: [ ] = 160 MPa - lubatav tõmbepinge [ ] = 100 MPa - lubatav lõikepinge bg = 350 MPa - lubatav muljumispinge F = 300 kN - ülekantav koormus Määrata ja arvutada: · Sobivad nurkterased · Needi läbimõõt (d) · Needirea kaugus nurkterase servast (a) · Neetide arv (n) · Sõlmlehe paksus () ja laius (b1 ) 2. Nurkterase valik · Ühe nurkterase sisejõud tõmbel, kN F 300 N L = FL = ; N L = = 150 kN 2 2 · Tõmbe tugevustingimus N = L [ ] AL · Ühe nurkterase ristlõike nõutav netopindala, m² N 150 103

Tugevusõpetus i
259 allalaadimist
thumbnail
11
docx

NEET-KEEVIS

A. Neetliide 1. Ülesande püstitus 2d 3d 3d 2d b1 F a z0 Andmed: [ ] = 235/2,9 = 81 Mpa - lubatav tõmbepinge [ ] = 0,56*81 = 45 MPa - lubatav lõikepinge [ S ] = 2,9 - varutegur []c = 3*81 = 243 Mpa - lubatav muljumispinge F = 260 kN - ülekantav koormus Leida: 1. Sobiv nurkteras või terased 2. Needi läbimõõt (d) 3. Neetide arv (n) 4. Needirea kaugus nurkterase servast (a) 5. Sõlmlehe paksus () ja laius (b1 ) 2. Nurkterase valik · Ühe nurkterase sisejõud tõmbel, kN F 260 N L = FL = ; N L = = 130kN 2 2 · Tõmbe tugevustingimus N = L [ ] AL · Ühe nurkterase ristlõike nõutav netopindala, m² N 130 10 3

Tugevusõpetus i
40 allalaadimist
thumbnail
15
docx

Liidete tugevusarvutus lõikele

A. Neetliide Andmed: 2d 3d 3d 2d b1 F a z0 1. Nurkterase valik. 1.1. Arvutan ühe nurkterase sisejõu tõmbel. 1.2. Tõmbe tugevustingimus. 1.3. Ühe nurkterase ristlõike nõutav pindala. 1.4. Suurendan leitud pindala 15% võrra. 1.5. Valin (RUUKKI) tabelist nurkterase, lähtudes nõudest Sobib nurkprofiil 80x80x10 1.6. Tabelist saadud andmed. T = 10 Nurkprofiili telje asukoht, cm 4,4 cm 2. Neetide asukoht ja läbimõõt. 2.1. Läbimõõt. Nurkterase 70 75 80 90 100 110 125 laius, mm d, mm 20 20 23 23 26 26 26 a, mm 40 40 45 50 55 60 70 Needi läbimõõt d = 23 mm Needirea kaugus nurkterase servast a = 45 mm

Tugevusõpetus
54 allalaadimist
thumbnail
11
docx

Neetliite ja keevitusliite tugevusarvutused

Õppejõud: Priit Põdra Üliõpilane: Matrikli number: Rühm: Kuupäev: Tallinn 2010 Neetliide: 1.Ülesande püstitus: Andmed: Ülekantav koormus F = 360 kN Lubatav tõmbepinge [] = 160 Mpa Lubatav lõikepinge [] = 100 Mpa Lubatav muljumispinge [] = 350 Mpa Määrata ja arvutada: - Sobivad nurkterased - Neetide paigutus ( a ja r) - Neetide arv (n) - Neetide läbimõõt (d) - Vahelehe mõõtmed ( ja b) 2. Nurkterase esmane valik Ühe nurkterase ristlõike nõutav netopindala: AL Kuna ei ole teada neediavavajalik läbimõõt, ega ka nurkterase seinapaksus, Siis leian nurkterase korrigeeritud ristlõikepindala, kus lähtudes inseneripraktikast moodustab neediava pikipindala 15% nurkterase ristlõikepindalast.

Tugevusõpetus i
120 allalaadimist
thumbnail
8
docx

Tugevusõpetuse kodutöö nr.3

Neetliide: 1.Ülesande püstitus:Andmed: Ülekantav koormus F = 220 kN Lubatav tõmbepinge [] = 140 Mpa Lubatav lõikepinge [] = 100 Mpa Lubatav muljumispinge [] = 350 Mpa Määrata ja arvutada: - Sobivad nurkterased - Neetide paigutus ( a ja r) - Neetide arv (n) - Neetide läbimõõt (d) - Vahelehe mõõtmed ( ja b) 2. Nurkterase esmane valik Ühe nurkterase ristlõike nõutav netopindala: AL Kuna ei ole teada neediavavajalik läbimõõt, ega ka nurkterase seinapaksus, Siis leian nurkterase korrigeeritud ristlõikepindala, kus lähtudes inseneripraktikast moodustab neediava pikipindala 15% nurkterase ristlõikepindalast. Vastavalt nõudest ( kus on tabelis toodud profiili pindala ja vajalik profiili pindala) Sobib nurkprofiil 80 x 80 x 10

Tugevusõpetus
337 allalaadimist
thumbnail
9
docx

Liidete tugevusarvutus lõikele

112592 MATB32 A.Sivitski Töö esitatud: Töö parandada: Arvestatud: Neetliide 2d 3d 3d 2d b1 F a z0 Andmed: [ ] =355/3,1= 114,5 Mpa [ S ]= 3,1 F= 240 kN Materjal: S355 Re= 175 Mpa Rm= 290 MPa Leian ühe nurkterase sisejõu tõmbel: NL=FL=F/2=240/2= 120 kN Tõmbe tugevustingimus: NL = [ ] AL Ühe nurkterase ristlõike nõutav pindala: Valin RUUKKI kataloogist sobiva mudeli, milleks on 80x80x8 ning selle ristlõike pindala on 12,3 . Profiili inertsmoment: Ix= 72,3 cm4 Profiili tugevusmoment: Wx= 12,6 cm3 Määran neetide asukoha ja läbimõõdu d1= 23mm (needi läbimõõt) a= 45mm (needirea kaugus nurkterase servast) d0= d1 + 1; d0=23+1= 24 mm -neediava läbimõõt Eeldus: Kõik needid on võrdselt koormatud

Masinamehaanika
50 allalaadimist
thumbnail
16
docx

Tugevusõpetuse 3. kodutöö, vene keeles

bT 75 - T = 10 - AT 14,1cm 2 - I X 71,4cm 4 - W X 13,5cm 3 - bT = 75 , cm 71,4 I z 0 7,5 2,21cm z 0 bT x ; 13,5 Wx 2. , - Nurkteras e 70 75 80 90 100 110 125 laius, mm d, mm 20 20 23 23 26 26 26 a, mm 40 40 45 50 55 60 70 d = 20 mm - a = 40 mm - , d , d0 (mm) (mm) 4...10 d + 0,5 d + 0,7 12...18 d + 0,5 d + 1,0 20..

Tugevusõpetus i
31 allalaadimist
thumbnail
15
pdf

LIIDETE TUGEVUS LÕIKEL

F u yx u y Joonis 4.2 Priit Põdra, 2004 53 Tugevusanalüüsi alused 4. LIIDETE TUGEVUS LÕIKEL 4.3. Sisejõud ja pinged lõikel 4.3.1. Põikjõud ja lõikepinge Sirgele lühikesele vardale on rakendatud põiksihiline välisjõud F ning lõikepindadele rakenduvad osakoormused F1 ja F2 (Joon. 4.3): · vardas tekib nihkedeformatsioon (ja ka varda pinnal survedeformatsioon); · piisavalt tugeva koormuse korral varras puruneb (kihtide nihkumisega); · deformatsioone ja purunemist takistavad vardas sisejõud, s.t. jõud, mis

Materjaliõpetus
6 allalaadimist
thumbnail
15
pdf

LIIDETE TUGEVUS LÕIKEL

F u yx u y Joonis 4.2 Priit Põdra, 2004 53 Tugevusanalüüsi alused 4. LIIDETE TUGEVUS LÕIKEL 4.3. Sisejõud ja pinged lõikel 4.3.1. Põikjõud ja lõikepinge Sirgele lühikesele vardale on rakendatud põiksihiline välisjõud F ning lõikepindadele rakenduvad osakoormused F1 ja F2 (Joon. 4.3): · vardas tekib nihkedeformatsioon (ja ka varda pinnal survedeformatsioon); · piisavalt tugeva koormuse korral varras puruneb (kihtide nihkumisega); · deformatsioone ja purunemist takistavad vardas sisejõud, s.t. jõud, mis

Materjaliõpetus
11 allalaadimist
thumbnail
4
doc

Neet- ja keevisliide kodutöö

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT Neet- ja keevisliide Tallinn 2007 Neetliide Materjalid: Terased: [ ] Tämme = 160 MPa [ ] Surve = 80 MPa [ ] C = 100 MPa [ ] Lõige = 350 MPa (muljumine) h = 480 mm b = 450 mm k = 3 mm = 7 mm d = 8 mm z 0 (lõikepinnad ) = 3 - 1 = 2 pinda Määrata liitele lubatav koormus F, arvestades: · neetide lõikeohtu; · neetide ja lehtmaterjali muljumisohtu; · lehtmaterjalide purunemisohtu tõmbel. Tegemist on kahelõikelise neetliitega. Seega kahelõikelisele needile lubatud jõud on: z n d 2 F = 0 [ ] Lõige = 60,29 kN 4 Seega tugevustingimus lõikele on: 4 F 4 60,29 10 3 = 2 [ ] = = 100 kN []lõige d n z0 0,008 2 6 2 Tugevustingimus muljumisele:

Masinatehnika
139 allalaadimist
thumbnail
15
doc

Kodutöö (plokiratas)

Sissejuhatus Teise kodutöö ülesandeks aines konstruktsiooni elemendid on konstrueerida plokiratas. Lähteandmeteks tuli võtta plokiratta trossile mõjuv jõud (matrikli numbri 4-5 viimast numbrit) F=3143N. Jõud mõjub trossi kummagis harus võrdselt. Trossi ja plokiratta haardenurgaks valisin 180 ° . Plokiratas on kahel veerelaagril ,mis toetuvad teljele . Telg omakorda toetub kronsteinile, mis on koostatud keevis konstruktsioonina ja on kinnitatud keermesliidete abil tugiseinale. Eesmärgiks on saada kogemusi konstrueerimise vallas. 3 Trossi valik. Trossi valikul osutus määravaks ette antud jõud , mis mõjus mõlemale trossi harule võrdselt. Kuna valisin trossi haarade vahel olevaks nurgaks 180° siis on trossile mõjuv kogujõud mõlemale haarale mõjuvate jõudude summa. F12=F1+F2 kus F12 on trosslie

Konstruktsiooni elemendid
38 allalaadimist
thumbnail
6
doc

ME Kodutöö nr 3 - Keerukama Keevisliite Arvutus

Jõuga F koormatud konsoolne tala ­ terasleht (S235) on kinnitatud karpprofiili (kolonni) külge. Projekteerida keevisliide. Karpprofiili number (U - nr), jõu F õlg l ja koormuse F väärtus valida vastavalt õppekoodi viimasele numbrile A. Teraslehe paksus valida vastavalt õppekoodi eelviimasele numbrile B. 1. Teha keevisliite esialgne skeem, skeemil märkida külg- ja laupõmblused, koormused, vajalikud konstruktsiooni mõõtmed, sisejõud ja keevisõmluses tekkivad nihkepinged. 2. Leida lehe laius b. 3. Määrata keevisõmbluste pikkused. 4. Kontrollida keevisõmblused lõikele. 5. Teha konstruktsiooni joonis (mõõtkavas), joonisele märkida keevituse tähistuse. 6. Nimetada keevisliite eelised ja puudused võrreldes eelmises kodutöö ülesandes arvutatud poltliitega. A 0 1 2 3 4 5 6 7 8 9

Masinaelemendid i
132 allalaadimist
thumbnail
27
pdf

Detailide tugevus paindel

kui koormus kaob (elastsus). · ristlõiked pöörduvad algasendi (ja üksteise) suhtes (pea- Puhas paine = tasandites); varda tööseisund, · varda telg kõverdub ja varda pikkus teljel ei muutu; kus: · ristlõiked jäävad tasapinnalisteks ja nende pindala ei muutu. 6.3. Sisejõud paindel 6.3.1. Paindemoment Sirgele vardale on rakendatud painutav põikkoormus F (Joon. 6.4): · põikkoormus tekitab detailis pöördemomendi ja see paindub (tekivad paindedeformatsioonid, tekivad ka nihkedeformatsioonid, kuid neid analüüsitakse eraldi); · piisavalt tugeva koormuse F korral varras puruneb paindel (siin vaadeldakse

Materjaliõpetus
30 allalaadimist
thumbnail
27
pdf

Detailide tugevus paindel

kui koormus kaob (elastsus). · ristlõiked pöörduvad algasendi (ja üksteise) suhtes (pea- Puhas paine = tasandites); varda tööseisund, · varda telg kõverdub ja varda pikkus teljel ei muutu; kus: · ristlõiked jäävad tasapinnalisteks ja nende pindala ei muutu. 6.3. Sisejõud paindel 6.3.1. Paindemoment Sirgele vardale on rakendatud painutav põikkoormus F (Joon. 6.4): · põikkoormus tekitab detailis pöördemomendi ja see paindub (tekivad paindedeformatsioonid, tekivad ka nihkedeformatsioonid, kuid neid analüüsitakse eraldi); · piisavalt tugeva koormuse F korral varras puruneb paindel (siin vaadeldakse

Materjaliõpetus
35 allalaadimist
thumbnail
14
doc

KODUTöö AINES "MASINATEHNIKA"

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT KODUTÖÖ AINES "MASINATEHNIKA" SEINARIIULI PROJEKTEERIMINE ÜLIÕPILANE: KOOD: JUHENDAJA: Igor Penkov TALLINN 2006 TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT MASINATEHNIKA MHE0061 ÜLESANNE NR. 1 Projekteerida seinariiul. Arvutada plaadi paksus ning valida pikkusega l = 1500 mm konsoolide ristlõige. Kontrollida ühendust ääriku ja seina vahel. Kandevõime m = 200 kg Talade vahe l1 = 3000 mm Töö välja antud: 28.10.2006 a. Esitamise tähtpäev: 21.12.2006 a. Töö väljaandja: I. Penkov Tähistus F ­ jõud, N; FE ­ poldi eelpingutusjõud, N; R ­ reaktsioonijõud, N; q ­ lauskoormuse joonintensiivsus, N/m; M ­ paindemoment, Nm; m ­ mass, kg; l ­

Masinatehnika
230 allalaadimist
thumbnail
252
doc

Rakendusmehaanika

EESTI MEREAKADEEMIA RAKENDUSMEHAANIKA ÕPPETOOL MTA 5298 RAKENDUSMEHAANIKA LOENGUMATERJAL Koostanud: dotsent I. Penkov TALLINN 2010 EESSÕNA Selleks, et aru saada kuidas see või teine masin töötab, peab teadma millistest osadest see koosneb ning kuidas need osad mõjutavad teineteist. Selleks aga, et taolist masinat konstrueerida tuleb arvutada ka iga seesolevat detaili. Masinaelementide arvutusmeetodid põhinevad tugevusõpetuse printsiipides, kus vaadeldakse konstruktsioonide jäikust, tugevust ja stabiilsust. Tuuakse esile arvutamise põhihüpoteesid ning detailide deformatsioonide sõltuvuse väliskoormustest ja elastsusparameetritest. Detailide pinguse analüüs lubab optimeerida konstruktsiooni massi, mõõdu ja ökonoomsuse parameetrite kaudu. Masinate projekteerimisel omab suurt tähtsust detailide materjali õige valik. Masinaehitusel kasutatavate materjalide nomenklatuur täieneb pidevalt, rakendatakse efekti

Materjaliõpetus
142 allalaadimist
thumbnail
15
docx

Masinatehnika eksam 2010/2011

Iy = Kolmnurgal alusega ühtiva kesktelje suhtes) 12 4 22. Konstruktsioonile mõjuvate väliskoormuste liigitus. 1) Rotoorsed jõud Fm 2) kasuliku koormuse jõud Fk 3) Raskusjõud Fg 4) Deformatsioonijõud Fd 5) keskkonnatakistuse jõud Fkt 1-5 on aktiivsed välisjõud Veel tegelikult inertsjõud Fi Sõltuvad ajast: stabiilne, dünaamiline 23. Kuidas määratakse konstruktsioonielemendis tekkivad sisejõud? Sisejõudusid mingi tarindit läbiva pinna ulatuse määratakse lõikemeetodiga, mis põhineb tõsiasjal, et tasakaalus oleva keha igasugune kujutletava lõikega eraldatud osa on samuti tasakaalus. Lõikega eraldatud osade tasakaalu tõttu saab sisejõud leida tasakaalutingimustest. (osale rakendatud jõudude projektsioonid vabalt valitud telgedele ja momendid nendes telgede suhtes võrduvad nulliga) Sisejõud on alati lõikepinna ulatuses jaotatud ja võivad pinna eriosades mõjuda erineva

Masinatehnika
225 allalaadimist
thumbnail
18
odt

ELEKTRIAJAMIGA TRUMMELVINTS

teras C45E tinglik voolavuspiir ­ Rp0,2 (Y) = 370 MPa tõmbetugevus ­ Rm (U) = 630 MPa väsimuspiir - -1 = 275 MPa, -1 = 165 MPa terase elastsusmoodul ­ E = 2,1*105 MPa terase nihkeelastsusmoodul ­ G = 8,1*104 MPa 2. Ajami kinemaatiline skeem Joonis 1: Kinemaatiline skeem. 1 - raam, 2 - mootorreduktor, 3 - kettülekanne, 4 ­ trummel 3. Trossi valik ja trumli läbimõõdu arvutus Maksimaalne trossi sisejõud peab rahuldama tingimusi Fmax [F] = Fkr/S Maksimaalne pingutusjõud Fmax = mg = 800 kg * 9,81 7484 N kus: g= 9,81 m/s2 ­ raskuskiirendus; m ­ tõstetav mass Joonis 2: Tross TEK 13310 Nõutav varutegur [S] = 5,5 [2] Trossi kriitiline jõud Fkr= Fmax * [S] = 7484 * 5,5 41162 N 42 kN Pidades silmas trossi võimaliku keeramist nii trumlile kui ka alt olevate trossi

Masinatehnika
131 allalaadimist
thumbnail
20
docx

Masinaelemendid kodutöö 3: Keevisliide

zc 105 a=π −arctan =π −arctan =2,5 rad b−x c 210−70 Punktide O1 ja O2 summaarne nihkepinge: t O 1=√ t 2Q +t 2T −2∙ t Q ∙ t T ∙ cosα=√(7937 a−1 )2+(77 ∙ 103 ∙ a−1 )2−2∙( 7937 a−1) ∙(77 ∙10 3 ∙ a−1 )∙ cos 2,5=69,1∙ 103 ∙a− 4. Nurkõmbluse kaatet 4.1 Keevisõmbluse voolepiir nihkel t y ,K =0,56 ∙ σ y =0,56 ∙350=196 MPa 4.2 Keevisõmbluse tugevustingimus tO 1 ≤ t y , K 69 ∙103 ∙ a−1 ≤ 196 ∙10 6 4.3 Keevisõmbluse vähim paksus 69 ∙ 103 −6 a≥ 6 =352∙ 10 m≈ 1 mm 196 ∙ 10 4.4 Keevisõmbluse kaatet z=√ 2∙ 1=1,41 ≈ 2 mm Kuna kaatet tuli väiksem, kui 3mm, tuleks muuta keevituse pikkust või keevituse konstruktsiooni. Sellisel juhul peab keevisõmbluse vähim paksus olema vähemalt 2mm.

Mehhatroonika
19 allalaadimist
thumbnail
6
docx

Keevisliited

MHE0041 MASINAELEMENDID I Kodutöö nr. 3 Variant nr. Töö nimetus: Keevisliited A-2 B-9 Üliõpilane (matrikli nr ja nimi) Rühm: Juhendaja: 112592 MATB32 Igor Penkov Töö esitatud: Töö parandada: Arvestatud: Ülesanne : Projekteerida teabetahvli aluspost. Arvutada posti ja alusplaadi keevitusühendus. Konstruktsiooni kõrgus l = 7,0 m Tahvli kõrgus h = 2,0 m Tahvli laius b = 3,0 m Tahvli mass mT = 550 kg Paigaldamisala linnaväline maastik 1. Tuulejõu määramine Tuulejõud määratakse avaldisest [1] Fw = q ref ce ( z )c f Aref c d (1) 2 kus qref ­ keskm

Automaatika
33 allalaadimist
thumbnail
25
doc

PROJEKT: ELEKTRIAJAMIGA TRUMMELVINTS

2. Ajami kinemaatiline skeem 1 2 3 4 Sele 1. Kinemaatiline skeem. 1 ­ raam, 2 ­ mootorreduktor, 3 ­ kettülekanne, 4 - trummel 3. Trossi valik ja trumli läbimõõdu arvutus Maksimaalne trossi sisejõud peab rahuldama tugevustingimust F Fmax [F ] = kr S Maksimaalne pingutusjõud Fmax = mg = 680 9,81 6671 N, kus g 9,81 m/s ­ raskuskiirendus; m ­ tõstetav mass. Nõutav varutegur [S] = 5,5 [2]. Sele 2. Tross TEK 13308. Siis trossi kriitiline jõud Fkr = Fmax [S ] = 6671 5,5 36,7 kN.

Masinatehnika
102 allalaadimist
thumbnail
13
docx

Tala tugevusanalüüs

Tala tugede vahekaugus a valida vastavalt üliõpilaskoodi eelviimasele numbrile B. INP-profiili andmed võib võtta nt Ruukki tootekataloogist. Vajalikud etapid: 1. Koostada valitud mõõtkavas arvutusskeem (vastavalt väärtustele A ja B); 2. Arvutada toereaktsioonide väärtused; 3. Koostada valitud mõõtkavades paindemomendi M ja põikjõu Q epüür; 4. Tuvastada tala ohtlikud ristlõiked (või ohtlik ristlõige), koostada painde tugevustingimus ning määratleda vähima võimaliku materjalimahuga sobiv INP-profiil; 5. Koostada valitud mõõtkavas selle INP-profiiliga tala ristlõike kujutis ning ohtlike ristlõigete (või ohtliku ristlõike) normaalpinge ja nihkepinge epüürid; 6. Arvutada ohtlike ristlõigete (või ohtliku ristlõike) varutegurid normaalpinge ja nihkepinge järgi ning kontrollida tala tugevust; 7

Tugevusõpetus i
199 allalaadimist
thumbnail
15
doc

KODUTöö AINES "MASINATEHNIKA"

TALLINNA TEHNIKAÜLIKOOL MEHHATROONIKAINSTITUUT KODUTÖÖ AINES "MASINATEHNIKA" TIGUÜLEKANNE JA VÕLLIKOOSTU PROJEKTEERIMINE ÜLIÕPILANE: KOOD: JUHENDAJA: Igor Penkov TALLINN 2006 Sisukord 1. Mootori valik ................................................................................................... 3 2. Tiguülekanne arvutus ....................................................................................... 4 3. Võlli projektarvutus ......................................................................................... 7 4. Võlli kontrollarvutus ........................................................................................ 9 5. Liistu arvutus ................................................................................................... 10 6. Siduri valik ........................................................................

Masinatehnika
224 allalaadimist
thumbnail
13
pdf

Varrastarindi tugevusanalüüs pikkele MES0240 KT1

koormatud vertikaalse koormusega F, mis mõjub komponente ühendavale liigendile. Arvutada puitvarda optimaalne läbimõõt d jakoormuse F suurim lubatav väärtus lähtudes komponentide omavahelisest asendist ja komponentide tugevusomadustest (valmistamise tolerantse, pingekontsentratsiooni ja puitvarda võimalikku nõtket arvestamata). Trossi nimiläbimõõt on 8 mm, elastsusmoodul E = 117 GPa ja piirjõud FLim = 40,8 kN, männipuidu (niiskusesisaldus 15 %) tugevus pikikiudu tõmbel ja survel on vastavalt u,Tõmme = 80 MPa ja u,Surve = 40 MPa. Tugevusvaruteguri nõutav väärtus [S] = 6. Vajalikud etapid (võib kasutada ka mõnd teist lahendusprotseduuri): 1. Joonestada valitud mõõtkavas varrastarindi skeem (vastavalt väärtustele A ja B); 2. Avaldada trossi ja puitvarda sisejõud funktsioonidena koormusest F; 3. Koostada komponentide tugevustingimused ja arvutada puitvarda optimaalne läbimõõt

Tugevusõpetus
10 allalaadimist
thumbnail
14
docx

Tugevusõpetus Kodutöö I

koormatud vertikaalse koormusega F, mis mõjub komponente ühendavale liigendile. Arvutada puitvarda optimaalne läbimõõt d jakoormuse F suurim lubatav väärtus lähtudes komponentide omavahelisest asendist ja komponentide tugevusomadustest (valmistamise tolerantse, pingekontsentratsiooni ja puitvarda võimalikku nõtket arvestamata). Trossi nimiläbimõõt on 8 mm, elastsusmoodul E = 117 GPa ja piirjõud FLim = 40,8 kN, männipuidu (niiskusesisaldus 15 %) tugevus pikikiudu tõmbel ja survel on vastavalt u,Tõmme = 80 MPa ja u,Surve = 40 MPa. Tugevusvaruteguri nõutav väärtus [S] = 6. Vajalikud etapid: 1. Joonestada valitud mõõtkavas varrastarindi skeem (vastavalt väärtustele A ja B); 2. Avaldada trossi ja puitvarda sisejõud funktsioonidena koormusest F; 3. Koostada komponentide tugevustingimused ja arvutada puitvarda optimaalne läbimõõt d täissentimeetrites (lähtudes nõudest, et mõlema komponendi

Materjalitehnika
133 allalaadimist
thumbnail
23
pdf

Liitkoormatud detailide tugevus

+ W Wz y + Wy My Wy y My epüür M = M y2 + M z2 Tugevustingimus Tugevustingimus My Mz M max = min = + [ ] ; max = min = [ ] ; Wy Wz W lubatav tõmbepinge [ ]Tõmme , kui [ ]Tõmme [ ]Surve kus: [ ] =

Materjaliõpetus
30 allalaadimist
thumbnail
136
pdf

Raudbetooni konspekt

I Vello Otsmaa Johannes Pello 2007.a Raudbetoonkonstruktsioonide üldkursus 1 SISSEJUHATUS 1 Raudbetooni olemus Raudbetoon on liitmaterjal (komposiitmaterjal), kus koos töötavad kaks väga erinevate oma- dustega materjali: teras ja betoon. Neist betoon on suhteliselt odav kohalik materjal, mis töö- tab hästi survel, kuid üsna halvasti tõmbel (betooni tõmbetugevus on 10-15 korda väiksem survetugevusest). Teras seevastu töötab ühteviisi hästi nii survel kui ka tõmbel, kuid tema hind on küllalt kõrge. Osutub, et survejõu vastuvõtmine betooniga on kordi odavam kui tera- sega, tõmbejõu vastuvõtmine on kordi odavam aga terasega. Siit tulenebki raudbetooni ma- janduslik olemus: võtta ühes ja samas konstruktsioonis esinevad survesisejõud vastu be- tooniga, tõmbesisejõud aga terasega.

Raudbetoon
418 allalaadimist
thumbnail
25
pdf

Lintkonveieri ajam 5

Marko Kuldsaar TEHNILINE ÜLESANNE LINTKONVEIERI AJAM Õppeaines: MASINAELEMENDID Transporditeaduskond Õpperühm: KAT-31/41 Juhendaja: Mart Tiidemann Esitamiskuupäev:................ Üliõpilase allkiri:................. Õppejõu allkiri: .................. Pärnu 2018 1. Leian ajami tööea: Lh = La·365·Ka·24 Köp 16 Köp = 24 = 0,66 Lh = 7 365 0,85 24 0,66 = 34400,52 h ~35000h Lh=35000 Võtame keskmise kvaliteediga valmistamis- ja ekspluatatsioonitingimused. g = 0,5 2. Määran lintkonveieri nõutava võimsuse: Lindkonveierinõutava võimsuse Ptm saan kui korrutan lindi veojõu ja lindi k

Masinaelemendid
69 allalaadimist
thumbnail
19
pdf

Detailide tugevus tõmbel ja survel

12 Tugevusanalüüsi alused 2. DETAILIDE TUGEVUS TÕMBEL JA SURVEL 2. DETAILIDE TUGEVUS TÕMBEL JA SURVEL 2.1. Detaili arvutusskeem tõmbel ja survel Arvutusskeem ei arvesta tühiseks loetud mõjureid, Iga tugevusanalüüs algab s.t. näiteks antud juhul (Joon. 2.1): aluse vibratsioon, arvutusskeemi koostamisega tuule mõju, varda kõikumise dünaamika, hõõrdumine

Materjaliõpetus
24 allalaadimist
thumbnail
127
pdf

Metallkonstruktsioonid

Joon. 1.2 Tüüpilisi terasprofiilide ristlõikeid Teras 1 11 2. Teraskonstruktsioonide projekteerimise alused 2.1 Kasutatavaid tähiseid - fy ; (fyd); fu ; (fud); - tugevused - N; M; V; NEd; NRd; Npl.Rd; Nb.Rd; jne. - sisejõud, kandevõime - gk ; gd ; qk ; qd ; G; Q; jne - koormused - y- ja z-telg (vahel ka y-y või z-z) - ristlõike teljed; - x-telg - varda pikitelg - tw ; tf ; - paksused; - h; b; - kõrgus, laius; -c - vöö väljaulat. laius; -d - plaadi laius -L - sille (ava), pikkus; - l, leff, Leff - nõtkepikkus;

Teraskonstruktsioonid
390 allalaadimist
thumbnail
20
pdf

Detailide tugevus väändel

Puhas vääne = varda · varda telg jääb sirgeks ja varda pikkus ei muutu; tööseisund, kus: · ristlõiked jäävad paralleelseteks ja risti teljega; · ristlõiked jäävad tasapinnalisteks ja ei muuda kuju. NB! Puhas vääne on võimalik vaid ümarvarraste korral 3.3. Sisejõud väändel 3.3.1. Väändemoment Sirgele võllile on rakendatud väänavad pöördemomendid M (Joon. 3.3): · võll väändub (tekib väändedeformatsioon); · piisavalt tugeva pöördemomendi korral võll puruneb; · väändumist ja purunemist takistavad võllis sisejõud, s.t. jõud, mis mõjuvad võlli osakeste vahel. Priit Põdra, 2004

Materjaliõpetus
21 allalaadimist
thumbnail
47
doc

Kivikonstruktsioonid projekt

TTÜ Kivikonstruktsioonid ­ projekt EER0022 Koostas N.N 2011 1 TTÜ Kivikonstruktsioonid ­ projekt EER0022 Sisukord 1. Lähteandmed....................................................................................................................................3 2. Tuulekoormus...................................................................................................................................5 3. Lumekoormus...................................................................................................................................8 4. Hoonele mõjutavad koormused........................................................................................................9 5. Seinade esialgne dimensioneerimine ja survekandevõime.............................................................10 6. Tuulekoormuse jaotus põ

Kivikonstruktsioonid
234 allalaadimist
thumbnail
12
doc

Masinatehnika eksamiküsimuste vastused

geomeetrilist karakteristikut, mis on määratud integraaliga 4) Deformatsioonijõud Fd 5) keskkonnatakistuse jõud Fkt 1-5 on aktiivsed välisjõud Veel tegelikult inertsjõud Fi Sõltuvad ajast: stabiilne, dünaamiline 23. Kuidas määratakse konstruktsioonielemendis tekkivad sisejõud? Detaili sisejõudude leidmiseks kasutatakse lõikemeetodit: tasakaalus kehast mõtteliselt eraldatud osa on samuti tasakaalus ning sisejõu väärtuse saab leida selle osa tasakaalutingimustest

Masinatehnika
286 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun