Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
Ega pea pole prügikast! Tõsta enda õppeedukust ja õpi targalt. Telli VIP ja lae alla päris inimeste tehtu õppematerjale LOE EDASI Sulge

Soojustehnika - küsimused vastustused - sarnased materjalid

soojus, kütus, gaas, ringprotsess, termodünaamilise, turbiin, soojusvaheti, soojushulk, entalpia, siseenergia, soojuskandja, külmutus, soojusjuht, välj, soojusvahetus, termiline, soojusjuhtivus, grad, kütteväärtus, erald, termodünaamika, erisoojus, kuumutamise, entroopia, soojuslik, põlemine, voolus, gaasiturbiin, jaht, const, isotermiline
thumbnail
54
pdf

SOOJUSTEHNIKA EKSAMI VASTUSED

Töötava keha olekuparameetrid. Neande all mõistetakse füüsikalisi makrosuurusi, mis määravad kindlaks töötava keha oleku. Intensiivseteks nim. selliseid töötava keha parameetreid, mis ei sõltu termodün.süsteemis oleva keha massist või osakeste arvust. Intensiivne parameeter on nt. rõhk ja temp. Aditiivseteks e. ekstensiivseteks termodün parameetriteks on parameetrid, mis on proportsionaalsed süsteemis olevate kehade massiga või osakeste arvuga. Nt. maht, energia, entroopia, entalpia. Parameetreid, mille kaudu iseloomustatakse soojuse ja töö vastastikust muundumist, nim. termilisteks olekuparameetriteks. Termodünaamilise keha termilisteks olekuparameetriteks on erimaht (tihedus), rõhk ja temp. Soojuslikeks oleku-parameetriteks on aga suurused, mis iseloomustavad termodünaamilise süst. energeetilist olukorda. Nendeks on: siseenergia u,[J/kg]; entalpia h,[J/kg]; entroopia s,[J/kg]. Sõltumatud olekuparameetrid on: 1.Erimaht(keha massiühiku maht) v=1/, [m3/kg]. 2

Soojustehnika
46 allalaadimist
thumbnail
2
doc

Soojustehnika teooria eksamiks

vahemikus 0- kindlaks töötava keha oleku. Intensiivseteks nim. siseenergiaks, mis on keha molekulide kulg -ja 100C, alla 0 on ta tahkes ja üle 100 gaasilises. Aine selliseid töötava keha parameetreid, mis ei sõltu pöörlemisliikumiseenergia, aatomite võnkumisenergia jt. faasilise oleku väljendamiseks kasut. faasimuutuse termodün.süsteemis oleva keha massist või osakeste energiate summa. siseenergia antakse tavaliselt keha 1kg diagramme. Nt. pt- diagramm, Ts- diag., Pv, hs- diag. arvust. Intensiivne parameeter on nt. rõhk ja temp. kohta. Siseenergia on ekstensiivne suurus. Siseen. kui Aditiivseteks e. ekstensiivseteks termodün parameetriteks olekufunktsiooni väärtuse määravad keha kaks on parameetrid, mis on proport-sionaalsed süsteemis meelevaldset olekuparameetrit, sagedamini valitakse olevate kehade massiga või osakeste arvuga. Nt

Soojustehnika
727 allalaadimist
thumbnail
90
pdf

Soojustehnika eksami küsimused

Tehniline termodünaamika käsitleb ainult mehaanilise töö ja soojuse vastastikuseid seoseid. Termodünaamiline süsteem on kehade kogu, mis võivad olla nii omavahel kui ka väliskeskkonnaga energeetilises vastasmõjus. Väliskeskkond on termodünaamilist süsteemi ümbritsev suure energia mahtuvusega keskkond, mille teatud olekuparameetrid (T, p jne.) ei muutu, kui süsteem mõjutab teda soojuslikul, mehaanilisel või mõnel muul viisil. Termodünaamilise süsteemi üks lihtne näide on gaas balloonis. Süsteemi ja ümbruskeskkonna vaheline piir on ballooni sisepind, ümbruskeskkonna moodustab aga balloon ise koos seda ümbritseva õhuga. Termodünaamiline süsteem võib olla homogeenne või heterogeenne. Homogeenses süsteemis on aine füüsikalis-keemilised omadused kõigis punktides ühesugused. Sellise süsteemi näiteid on gaas, vesi ja jää. Heterogeenseks nimetatakse süsteemi, mille üksikosade füüsikalis-keemilised omadused

tehnomaterjalid
121 allalaadimist
thumbnail
19
doc

Soojustehnika eksami küsimuste vastused

mõõtühikud. Termodünaamilised kehad ­ gaasid ja aurud(veeaur) sest nad muudavad oma mahtu väga suurtes piirides nende soojuslikul ja mehaanilisel mõjutamisel. Termilised olekuparameetrid: erimaht, absoluutne rõhk ja abs. Temperatuur. 1) Erimaht ­ aine massiühiku maht (v) [ m³/kg] 2) Rõhk ­ Pinnaühiku normaali suunasmõjuv jõud (p) [Pa, N/m², mmHg, atm, bar, psi] 3) Temperatuur ­ Absoluutne temperatuur (T) [K] Energeetilised olekuparameetrid: Siseenergia, entalpia, entroopia 1) Siseenergia (U) [J] 2) Entalpia (H) [J] 3) Entroopia (S) [J/K] 7. Absoluutse rõhu , ülerõhu ja alarõhu mõiste. Absoluutne rõhk ­ gaasi tegelik rõhk ja saadakse siis kui rõhu mõõtmisel võtta 0-nivooks absoluutne vaakum. Ülerõhk ­ rõhk mis on kõrgem atmosfääri rõhust. Nim. ka manomeetriline rõhk Alarõhk ­ rõhk mis on madalam atmosfääri rõhust. Nim. ka vaakummeetriline rõhk. 8. Temperatuuri skaalad.

Soojustehnika
59 allalaadimist
thumbnail
19
doc

Soojustehnika eksamiküsimused (vastused)

mõõtühikud. Termodünaamilised kehad ­ gaasid ja aurud(veeaur) sest nad muudavad oma mahtu väga suurtes piirides nende soojuslikul ja mehaanilisel mõjutamisel. Termilised olekuparameetrid: erimaht, absoluutne rõhk ja abs. Temperatuur. 1) Erimaht ­ aine massiühiku maht (v) [ m³/kg] 2) Rõhk ­ Pinnaühiku normaali suunasmõjuv jõud (p) [Pa, N/m², mmHg, atm, bar, psi] 3) Temperatuur ­ Absoluutne temperatuur (T) [K] Energeetilised olekuparameetrid: Siseenergia, entalpia, entroopia 1) Siseenergia (U) [J] 2) Entalpia (H) [J] 3) Entroopia (S) [J/K] 7. Absoluutse rõhu , ülerõhu ja alarõhu mõiste. Absoluutne rõhk ­ gaasi tegelik rõhk ja saadakse siis kui rõhu mõõtmisel võtta 0-nivooks absoluutne vaakum. Ülerõhk ­ rõhk mis on kõrgem atmosfääri rõhust. Nim. ka manomeetriline rõhk Alarõhk ­ rõhk mis on madalam atmosfääri rõhust. Nim. ka vaakummeetriline rõhk. 8. Temperatuuri skaalad.

Soojustehnika
764 allalaadimist
thumbnail
21
doc

Soojustehnika küsimuste vastused

seadus)....................................................................................................................................................4 8.Mehaaniline töö e.(mahumuutuse töö), arvutamine (valem) ja kujutamine olekudiagrammil...........5 9.Tehniline töö e.(rõhumuutuse töö), arvutamine (valem) ja kujutamine olekudiagrammil.................5 10.Siseenergia ja soojuse mõiste (kuidas leitakse siseenergia, muutuse määramine protsessis)...........5 11.Termodünaamika esimene seadus (sõnastus ja matemaatiline avaldis)........................................... 6 12.Entroopia mõiste ja TS-diagramm....................................................................................................6 13.Soojushulga määramine entroopia abil (Soojushulga kujutamine TS-diagrammil).........................7 14

Soojustehnika
400 allalaadimist
thumbnail
21
docx

Soojustehnika konspekt

3. (Nersti soojusteoreem) seadus käsitleb kehade käitumist ja nende omadusi väga madalatel t0C (absoluutsele 0-le ligilähedastele temperatuuridele) Uurimis objektiks termodünaamikas on termodünaamilinesüsteem (kitsamas mõttes termodünaamiline keha).Üheks termodünaamika eripäraks on see, et kõikidele teistele ümbritsevatele kehadele vastandatakse termodünaamiline keha, kussjuures neid ümbritsevaid kehi nimetatakse väliskeskonnaks. Termodünaamika kasutab termodünaamilise süsteemi või keha uurimiseks makroparameetreid, mida saab mõõta vastavate mõõteriistade ja seadmetega. Põhilisteks makroparameetriteks on rõhk, erimaht ja temperatuur. Termodünnamika uurib makroskoopilisi süsteeme (süsteeme, mis koosnevad väga suurest arvust mikroosakestest). 1.2 Põhimõisted termodünaamikast. See termodünaamika osa, mis tegeleb nimelt soojuse ja mehhaanilise töö vastastikuse muundumistega nimetatakse Tehniline Termodünaamika.

Soojustehnika
134 allalaadimist
thumbnail
57
rtf

TEHNILINE TERMODÜNAAMIKA

TEHNILINE TERMODÜNAAMIKA SISSEJUHATUS Termodünaamika on teadus energiate vastastikustest seostest ja muundumistest, kus üheks komponendiks on soojus. Tehniline termodünaamika on eelmainitu alaliigiks, mis uurib soojuse ja mehaanilise töö vastastikuseid seoseid. Tehniline termodünaamika annab alused soojustehniliste seadmete ja aparaatide (näiteks katelseadmete, gaasiturbiinide, sisepõlemismootorite, kompressorite, reaktiivmootorite, soojusvahetusseadmete, kuivatite jne.) arvutamiseks ja projekteerimiseks. Tehniline termodünaamika nagu termodünaamika üldse tugineb kahele põhiseadusele.

Termodünaamika
17 allalaadimist
thumbnail
11
pdf

Termodünaamika eksamiküsimused 2013

Termodünaamika I kordamisküsimused 2013 1. Nimetada termodünaamika kolm printsiipi. Esimene printsiip on energia jäävuse seadus, millest järeldub siseenergia U kui olekufunktsiooni olemasolu. Kui ainehulk on jääv, siis siseenergia muutus U=Q-W, kus Q on süsteemi sisestatud soojushulk ja W süsteemi tehtud töö. Teine printsiip määrab iseeneslike protsesside suuna. Klassikalised sõnastused, mille kohaselt soojus ei saa iseenesest minna külmemalt kehalt soojemale ja ei ole võimalik ehitada perioodiliselt töötavat soojusjõumasinat, mille tegevuse ainus tulemus on soojuse muundumine tööks Kolmas printsiip määrab termodünaamilises tasakaalus olevate süsteemide käitumise absoluutse nullpunkti ligidal: tasakaalulises süsteemis on entroopia absoluutse nullpunkti juures süsteemi olekust sõltumatu 2. Mida uurib statistiline , klassikaline ja tehniline termodünaamika

Masinamehaanika
30 allalaadimist
thumbnail
25
doc

Termodünaamika I eksamiküsimused vastustega

1) Nimetada termodünaamika 3 printsiipi: Termodünaamika esimene printsiip on energia jäävuse seadus, millest järeldub siseenergia U kui olekufunktsiooni olemasolu. Kui ainehulk on jääv, siis siseenergia muutus U=Q- W, kus Q on süsteemi sisestatud soojushulk ja W süsteemi tehtud töö. Termodünaamika teine printsiip määrab iseeneslike protsesside suuna. Klassikalised sõnastused, mille kohaselt soojus ei saa iseenesest minna külmemalt kehalt soojemale ja ei ole võimalik ehitada perioodiliselt töötavat soojusjõumasinat, mille tegevuse ainus tulemus on soojuse muundumine tööks Termodünaamika kolmas printsiip määrab termodünaamilises tasakaalus olevate süsteemide käitumise absoluutse nullpunkti ligidal: tasakaalulises süsteemis on entroopia absoluutse nullpunkti juures süsteemi olekust sõltumatu 2

Termodünaamika
226 allalaadimist
thumbnail
10
odt

Füüsika 10. klassi teemad

· V(ruumala) konsentratsioon) Kui üht olekuparameetrit. · T(abs. Temperatuur) · v(molekulide muuta, siis muutub vhmlt · (tihedus) keskmine kiirus veel üks ja seega ka olek. Molekul- molekulaarfüüsikas vähim osake, millest ained koosnevad ja mis on pidevas kaootilises liikumises Temperatuur- iseloomustab keha soojuslikku seisundit; molekulide liikumise keskmise kineetilise energia ja siseenergia mõõt (t) Absoluutne temperatuur- temperatuur Kelvini skaalal (T) Absoluutne nulltemperatuur- temperatuur, mille saavutamisel molekulid lakkavad liikumast Ideaalne gaas- lihtsaim mudel gaasi kirjeldamiseks, milles ei arvestata molekulide mõõtmeid ja vastastikmõju Mool- ainehulk, mis sisaldab Avogadro arvuga võrdse arvu molekule või aatomeid (mol) Avogadro arv- aatomite või molekulide arv ühes moolis aines (N A) Molaarmass- ühe mooli aine mass (M)

Füüsika
60 allalaadimist
thumbnail
52
ppt

Dermodünaamika

Termodünaamika · Termodünaamika käsitleb soojusülekannet ja soojuse muundumist tööks · Termodünaamika tegeleb igasugust kütust tarbivate masinate konstrueerimise üldiste seaduspärasustega. · Termodünaamika on makrokäsitlus. Seepärast on kasutusel makroparameetrid ­ p, V, T, Q, U, m. · Termodünaamika põhineb kahele printsiibile ­ need on TD I ja II printsiip Ideaalse gaasi siseenergia ·Siseenergia on keha molekulide soojusliikumise keskmise kineetilise energia ning molekulidevahelise vastasmõju potentsiaalse energia summa. E = Ekin + Epot . ·Ideaalse gaasi puhul potentsiaalset energiat ei ole, seega siseenergia sõltub vaid kineetilisest energiast. ·Kineetiline energia sõltub temperatuurist. Seega ­ Keha siseenergia sõltub keha temperatuurist. Keha temperatuuri muutmise viisid Keha temperatuuri,seega ka siseenergiat, saab muuta kahel viisil 1

Füüsika
66 allalaadimist
thumbnail
30
docx

Füüsika eksam vastustega: liikumine

mc 2 E kin   m0 c 2 2 v 1 c2 Kineetiline energia , m0c2 on seisuenergia (keha koostisosade vastastikuse seose ja sisemise liikumise energia). 27.Ideaalse gaasi olekuvõrrand. Ideaalne gaas on selline gaas, mille osakesed on punktmassid ning mille vahel vastastikmõju puudu. Ideaalgaasi võrrand seob omavahel gaasi olekuparameetreid. pV=nRT, kus p-gaasi rõhk(Pa), V-gaasi ruumala (m3), n-gaasi moolide arv (mol), R-universaalne gaasikonstant 8,314 J/K*mol, T-gaasi temperatuur (K) 3   kT 2 kulgliikumise energia 28.Isoprotsessid. Isoprotsessiks nim oleku muutumist, milles mingi olekut iseloomustav parameeter jääb konstantseks.

Füüsika
47 allalaadimist
thumbnail
1
docx

Füüsika - ENERGIA

Siseenergia on aineosakeste energia(nii aineosakeste kineetiline kui ka potentsiaalne energia). U= 3/2 ·m/M ·R·T. (U-siseenergia, 1J; m-mass, 1kg; M-molaarmass; R-gaasi universaalkonstant; T-temp, 1K; R=8,31J/mol·K) Siseenergia muutmise kaks viisi: 1)mehaanilist tööd tehes(nt. hõõrumine, tagumine, muljumine), 2)soojusülekanne(lusikas kuuma tee sees, saunas käimine). Soojusjuhtivus levib energia kandub osakeselt osakesele põrkumise teel, (nt. lusikas kuuma vette, raudnael lõkkel). Konvektsioon levib soojus levib ühelt kehalt teisele liikuva ainega (nt. õhu ringlus toas, tuule liikumine, tõmme korstnas). Soojuskiirgus levib energia levib kiirguse teel, (nt. päikese kiirgus, lõkke soojuskiirte abil)

Füüsika
6 allalaadimist
thumbnail
2
docx

Siseenergia

· Siseenergia on kõikide aineosakeste energia.( kineetline energia+pot. Energia) U=RT · Siseenergia võib muutuda kahel viisil: · Mehhaanilist tööd tehes(hõõrdumine) · Soojusülekandel · Soojusjuhtivus-soojus levib osakeselt osakesele põrgete teel. Nt. Lusikas kuumas tees · Konvektsioon- soojus levib ühelt kehalt teisele liikuva ainena. Nt: vee keetmine, hoovused. · Soojuskiirgus- energia levib kiirguse teel. Nt päikesekiirgus · Soojushulk on energiahulk, mida keha saab või annab soojusülekande protsessis. Ühikud: Djaul(J) · Kalor(cal)- soojushulk, mis on vajalik 1g vee temp tõstmiseks 1 kraadi võrra · Soojenemine ja jahtumine Q-cm(t2-t1) Q-soojushulk, m- mass, t2-lõpptemp, t1-algtemp · C- erisoojus- soojushulk, mis on vajalik 1kg aine temp tõstmiseks 1C võrra. Nt: 4200 J/kg C, st et ühe kg vee temp. Tõstmiseks ühe kraadi võrra on vaja 4200J/kg C soojust.

Füüsika
14 allalaadimist
thumbnail
4
doc

Termodünaamika

TERMODÜNAAMIKA 1. Tuletada ideaalse gaasi siseenergia valem ja sõnastada lõpptulemus. m0 v 2 3 U = NE k = N = kTN Ideaalse gaasi siseenergia ei sõltub ainult temperatuurist ning ei sõltu gaasi 2 2 ruumalast ega rõhust. 2. Kirjuta energia jäävuse seaduse üldine sõnastus. Energia ei teki ega kao, ta võib vaid muunduda ühest liigist teise ning kanduda ühelt kehalt teisele. 3. Tuletada ideaalse gaasi poolt tehtava töö seos gaasi ruumala isobaarilisel muutumisel. Gaas saab teha tööd siseenergia arvelt. Olgu kolvis oleva gaasi rõhk p ning selle ristlõikepindala S. Leiame

Füüsika
56 allalaadimist
thumbnail
15
doc

Soojusõpetus

Pa ehk N / m2 kgf/cm2 mmHg Pa 1 10 -5 0,0075 kgf/cm2 10 (98067) 5 1 735,6 mmHg 133,3 1,36× 10 - 3 1 4. Ideaalse gaasi olekuvõrrandid Ideaalne gaas on kujutletav gaas, milles täielikult puudub molekulide vastastikune mõju. Tugevasti hõrendatud reaalsed gaasid (näiteks õhk nornaaltingimustel) on omadustelt lähedased ideaalsele gaasile. Olekuvõrrand annab seose gaaside rõhu, temperatuuri ja ruumala vahel Tihti vaadeldakse protsesse, mille puhul üks olekuparameeter jääb konstantseks (ei muutu). Rõhu jäävuse puhul nimetatakse protsessi isobaarseks. Temperatuuri jäävuse puhul nimetatakse protsessi isotermiliseks

Füüsika
178 allalaadimist
thumbnail
20
pdf

Füüsika eksam

 siseenergia(keha kin ja pot energia vms). Ideaalse gaasi korral on ; A= pdV (dA=pdV) u  2 RT Termodünaamika I seadus sätestab, et keha siseenergia saab muutuda tänu soojushulgale, mis saadakse väliskeskkonnast ning tööle, mida süsteem teeb välisjõudude vastu. Termodünaamika I seadus valemi kujul: ∆u=Q+A, kus Q-soojushulk (J), ∆u-süsteemi siseenergia muut(on võrdne soojusefektiga konstantsel ruumalal) (J), A-töö (J) Kõige lihtsam töö vorm on mehaaniline töö. Näiteks gaas teeb paisumisel tööd dA = pdV, kus p on gaasi rõhk ning dV on ruumala muut. Võimalikud on ka muud töö vormid (nt

Füüsika
91 allalaadimist
thumbnail
13
doc

Mehaanika ja soojus

arvuga N: mo=m/N=m/NA=M/NA Molekul koosneb kindlast arvust üksteisega seotud keemiliste elementide aatomitest. Kõige väiksem osake, mis kannab selle aine omadusi. Pindpinevus ­ vee pinda võib vaadelda elastse kilena (vedeliku pinnamolekulidel on suurem pot energia). Kapillaarsus ­ pinnaenergia arvelt tõuseb märgav vedelik torus üles. Difusioon ­ erinevate ainete segunemine soojusliikumise tagajärjel 2. Ideaalne gaas, P, T põhivõrrand Id. gaas ­ s.o. reaalse gaasi lihtsaim mudel. Selle mudeli aluseks on järgmised eeldused: 1) molekulide endi ruumala on anuma ruumalaga võrreldes kaduvväike (Id.gaasi on võimalik kokku suruda nii, et V=0); 2) molekulide vahel ei mõju tõmbejõude; 3) molekulide omavahelisel põrkumisel ja põrkumisel vastu anuma seina mõjuvad neile tõukejõud. 4) arvestatakse ainult kineetilist energiat, potentsiaalsest ei saa rääkida.

Füüsika
95 allalaadimist
thumbnail
34
docx

Füüsika eksami konspekt

ja tahketes kehades niisama hästi kui gaasides. Helilainete edasikandumiseks peab olema mingi keskkond, seega vaakumis heli levida ei saa. Helitaset mõõdetakse detsibellides(dB). Laine on võnkumiste ruumis levimine, mida põhjustab võnkeallika võnkumine. Kui võnkeallikas võngub harmooniliselt, siis on ka tekkiv laine harmooniline. Laine põhitunnuseks on energia edasikandmine. 26,* Gaaside kineetilise energia põhivõrrand P=2/3 E*n 27*, Ideaalse gaasi olekuvõrrand. Ideaalne gaas on selline gaas, mille osakesed on punktmassid ning mille vahel vastastikmõju puudub. Ideaalgaasi võrrand seob omavahel gaasi olekuparameetreid. pV=nRT, kus p-gaasi rõhk(Pa), V-gaasi ruumala (m3), n-gaasi moolide arv (mol), 3   kT 2

Füüsika
46 allalaadimist
thumbnail
4
doc

Füüsika

Mool on sellise süst ainehulk, kus osakeste arv võrdub 0,012 kg süsiniku aatomite arvuga. Aine molekulide hulga N ja ainehulga V suhet nim Avogaadro arvuks. See näitab, mitu aatomit või molekuli on ühes moolis aines. Molaarmassiks M nim suurust, mis võrdub aine massi m ja ainehulga V suhtega. Molekuli massi m0 tuleb keha mass m jagadasselle keha molekulide arvuga. St; molekuli massi leidmiseks tuleb teada selle molaarmassi M ja Avogaadro arvu. Ideaalse gaasi olekuvõrrand. Ideaalne gaas ­ gaas, kus molekulide vahlised tõmbejõud puuduvad, tõukejõud mõjuvad aga molekulide omavahelisel põrkumisel ja põrkumisel vastu anuma seina. Ideaalse gaasi olekuvõrrand seob 3e gaasi parameetrit: See on Clapeyroni võrrand. Nende 3e suuruse vaheline seos on konstantnesuurus, mis on ühe mooli gaasi puhul kõikidel gaasidel ühesugune. Seda nim unevrsaalseks gaasi konstandiks ja tähis on R. Medeleejev andis olekuvõrranditele sellise kuju: See on Medeleejevi Clapeyroni võrrands.

Füüsika
109 allalaadimist
thumbnail
25
doc

Termodünaamika õppematerjal

(2) Eksisteerib kindel kvantitatiivne seos molekulide kollek-tiivi omaduste ja üksikmolekuli iseloomustava füüsikalise parameetri keskväärtuse vahel. (3) Aine makroskoopiliste ning mikroskoopiliste omaduste vaheliste seoste leidmiseks on vaja teada vaid üksikmolekule iseloomustavate suuruste teatud tõenäoseid väärtusi. Molekulaarkineetilises teoorias kasutatakse ideaalse gaasi mudelit. Sisuliselt on ideaalne gaas antud definitsiooniga: (i) Ideaalse gaasi molekulid on punktmassid, mille kogu-ruumala võrreldes gaasi sisaldava anuma ruumalaga on kaduvväike, s.t. seda ei arvestata. (ii) Ideaalse gaasi molekulide vahel puuduvad tõmbe- ja tõukejõud (molekulaarjõud), väljaarvatud molekulide põrgete korral ilmnevad lühiajalised tõukejõud. Põrked on absoluut-selt elastsed. Paljud kergemad gaasid alluvad normaaltingimustel küllalt hästi ideaalse gaasi mudelile.

172 allalaadimist
thumbnail
76
pdf

Soojusõpetuse konspekt

Soojuspaisumine ja mehaanilised pinged.........7 1.7. Ideaalse gaasi olekuvõrrand......................................................................................................9 II Gaaside kineetiline teooria..............................................................................................................12 2.1. Gaaside kineetilise teooria põhialused....................................................................................12 2.2. Temperatuur ja siseenergia......................................................................................................13 2.3. Siseenergia ja soojusmahtuvus...............................................................................................15 2.4. Adiabaatiline ja polütroopne protsess ....................................................................................16 2.5. Ideaalse gaasi töö erinevates protsessides........................................................................

Füüsika
31 allalaadimist
thumbnail
113
doc

Energia ja keskkond konspekt

....................35 4.2 PÕLEVKIVIÕLI TOOTMINE..............................................................................................................................35 5 SOOJUSELEKTRIJAAMAD...........................................................................................................................36 5.1 SOOJUSJÕUSEADMETE RINGPROTSESSID.......................................................................................................36 5.1.1 Carnot` ringprotsess........................................................................................................................36 5.1.2 Rankine'i ringprotsess ..................................................................................................................37 5.1.3 Sisepõlemismootorid......................................................................................................................39 5.1.4 Otto ringprotsess................................

Energia ja keskkond
56 allalaadimist
thumbnail
28
docx

Hoone- ja soojusautomaatika

Hoone- ja saoojusautomaatika Soojusmootorid Üldandmed ja mootorite liigitus Kütuse põlemisel silindril paisub gaas paneb enamjuhtudel kolvi liikuma kusjuures ja kolb sooritab kulgliiklemist aga nn rootormootorites on kolb asendatud pöörleva rootoriga. Tavalistes kolbmootorites kus on tegemist kulgliikumisega muudab väntvõllmehhanism selle energia hoorattakaudu pöörlevaks liikumiseks. Mootori pidevaks tööks on vajalik 1. Gaasi jaotusmehhanism(klapid), mis on oluline, sest ta juhib kütuse ja õhu sisselase silindrisse ja heitegaasi eemaldamist silindris. 2. Toitesüsteem 3. Õlitus 4.

Soojustehnika
56 allalaadimist
thumbnail
66
docx

Füüsika I konspekt

2. ehk isohooriline protsess ehk Charles’i [šarl’i] seadus, mida kirjeldab seos p1 p2 p    const T1 T2 T T  const p  f (V ) 3. ehk isotermiline protsess ehk Boyle’i-Marionette’i seadus, mida kirjeldab seos p1V1  p2V2  pV  const 7. SISEENERGIA. TÖÖ GAASI PAISUMISEL JA KOKKUSURUMISEL. ENERGIA JAOTUS VABADUSASTMETE JÄRGI. Keha siseenergiaks nimetatakse keha molekulide kineetilise ja potentsiaalse energia summat. Siseenergia levimist ühelt kehalt teisele nim soojusülekandeks. Soojusülekandes levib siseenergia soojemalt kehalt või kehaosalt külmemale. Seejuures soojema keha siseenergia väheneb ja külmema keha siseenergia suureneb. Termodünaamika I printsiip: Gaasile antav soojushulk on võrdne siseenergia

Füüsika
72 allalaadimist
thumbnail
2
docx

Termodünaamika lühikonspekt

Termodünaamika lühikonspekt Soojusjuhtivuse põhiseadus: Mida rohkem temperatuur mingis suunas muutub ,seda rohkem soojus selles suunas levib. Difusiooniks nimetatakse mingit tüüpi osakeste liikumist sealt, kus neid on palju, ära sinna, kus neid on vähem (kontsentratsiooni vähenemise suunas). Termodünaamika (TD) uurib soojusnähtusi, tundmata huvi nende põhjuse vastu mikrotasemel. Ta uurib eelkõige tingimusi, millel soojus võib minna ühelt kehalt teisele. Kaks keha (ainekogust) on termodünaamilises tasakaalus, kui soojus ühelt teisele ei lähe (ehkki võiks minna). Kui kaks keha on TD tasakaalus, siis on neil sama temperatuur. Soojusmasin on seade, mis muundab soojust tööks. Soojusmasin võtab kuumalt kehalt (soojendilt) soojushulga Q1 , muudab osa sellest mehaaniliseks tööks A ning annab ülejäänud osa Q2 ära külmemale kehale (jahutile). Soojusmasina kasutegur = A / Q1 = (Q1 - Q2) / Q1 .

Füüsika
3 allalaadimist
thumbnail
22
docx

Füüsikalised suurused ja nende etalonid

o Mool ja molaarmass (+ mõõtühikud) Mool- on ainehulk, milles sisaldub Avogadro arv (6,022 × 1023) loendatavat osakest(aatomid, molekulid, ioonid, radikaalid, elektronid), molaarmass on ühe mooli mass Tähis: M, Ühik: g/mol o Termodünaamiline süsteem, selle tasakaaluolek ja oleku määravad põhiparameetrid Termodünaamiline süsteem, selle tasakaaluolek ja oleku määravad põhiparameetrid- Termodünaamilise tasakaalu puhul on süsteemi kõigi osade temperatuur ühesugune. o Termodünaamiline protsess Termodünaamiline protsess- kas pööratav või mittepööratav. Pööratavaks protsessiks nimetatakse niisugust protsessi, mis saab kulgeda vastupidises suunas, nii et süsteem läbib kõik olekud mis pärisuunaski ja jõuab algolekusse tagasi (gaasi lõpmata aeglane paisumine või kokkusurumine silindris)

Füüsika
37 allalaadimist
thumbnail
2
doc

Molekulaarfüüsika alused

pidevas korrapäratus liikumises. 3) Osakeste vahel mõjuvad väikestel kaugustel nii tõmbe- kui ka tõukejõud. · Soojusliikumine ­ aineosakeste pidev korrapäratu liikumine, mille iseloom sõltub aine agregaatolekust. · Ainehulk () ­ 1 mool on ainehulk, milles on Avogadro arv (NA = 6, 02 · 1023 1/mol) molekule. · Molaarmass () ­ 1 mooli antud aine mass (kg/mol). · Molekulmass (m0) ­ ühe molekuli mass. m0 = M / NA. · Ideaalne gaas ­ gaas, mille molekulide mõõtmeid pole vaja arvestada ja mille molekulidevaheline vastastikmõju on tähtsusetult väike. · Rõhk ­ on arvuliselt võrdne pinnaühikule risti mõjuva jõuga. p = F / S [Pa = N / m2]. · Gaasi rõhk ­ on tingitud gaasimolekulide põrgetest vastu anuma seinu. p = 1/3m0nv2. m0 ­ molekuli mass; n ­ molekulide kontsentratsioon; v2 ­ molekulide kiiruste ruutude keskväärtus.

Füüsika
90 allalaadimist
thumbnail
4
doc

Soojusnähtused

Soojusnähtused. 1. Siseenergia olemus ja selle muutmise viisid: Siseenergia – keha molekulide kineetilise ja nende vahelise vastastikmõju potentsiaalse energia summa a. Soojusülekande teel – Q=∆U (∆U – siseenergia muut) (Q – soojushulk – iseloomustab soojusvahetuse teel ülekantud energia hulka) Soojendamine – Q>0 ∆U>0 Jahutamine – Q<0 ∆U<0 Soojusjuhtivus – soojusenergia kandumine kuumemalt kehalt külmemale kehale aineosakeste vastasmõju tagajärjel (metallid) Konvektsioon – aine liikumisega kaasnev soojuse levimine vedelikus või gaasis Soojuskiirgus – soojuse levimine kehade poolt kiiratava, temperatuurist sõltuva elektromagnetkiirguse mõjul b

Füüsika
8 allalaadimist
thumbnail
14
docx

TTK füüsika kordamisküsimused

Võrrand seob voolava vedeliku rõhu, voolu kiiruse ja asendi potentsiaalse energia ning kirjeldab energia tasakaalu voolava vedeliku joas. Rakendades voolavale vedelikule energia jäävuse seadust saame, et voolava vedeliku koguenergia ei muutu niikaua kuni seda väljaspoolt ei lista või ei eemaldata. p+(roo x g x h) + (roo x v2 /2) = const Horisontaalses torus on voolava vedeliku rõhk seda väiksem, mida suurem on voolamise kiirus o Süsteemi siseenergia ja selle muut Süsteemi siseenergia- keha koostisosakeste ja väljade vastastikmõju ning osakeste liikumise energia summat nim siseenergiaks U=3/2m/MRT (üheaatomilise ideaalse gaasi

Füüsika
52 allalaadimist
thumbnail
5
doc

Üldloodusteaduse spikker II kT

Ideaalse gaas, olekuvõrrand, olekufunktsioonid ­ p, T, V, U (siseenergia). kineetilise teooria alused ­ rõhu, temperatuuri ja siseenergia avaldised osakeste liikumisolekute kaudu. 1) Ideaalne gaas on reaalse gaasi lihtsaim mudel, kus lihtsuse mõttes oletatakse, et : Molekulidel on lõpmata väikeste elastsete kerakeste omadused. Molekulide liikumine on kulgliikumine. Ideaalne gaas on lõpmatult kokkusurutav. Molekulide vastasmõju seisneb ainult nende omavahelistes elastsetes põrgetes . Ideaalset gaasi pole võimalik veeldada . Reaalsed gaasid käituvad ideaalsetena suurtel hõrendustel.; Ideaalne gaas on kõige lihtsam termodünaamiline süsteem. Gaas, mis koosneb täielikult elastsetest punktmassidest (millel pole sisemist struktuuri). 2) Siseenergia on: makrokäsitluses keha või süsteemi energia, mis on määratud selle keha

Üldloodusteadus
64 allalaadimist
thumbnail
2
doc

Mehaanika ja soojuse valemid

p1V1 pV 2 2 const pp,­V,gaasi rõhk, V ­ gaasi ruumala, T ­ gaasi temperatuur T on gaasi olekuparameetrid T1 T2 Temperatuur T t 273K T ­ absoluutne temperatuur (1K), t ­ Celsiuse skaala temperatuur (1C) Soojushulk on siseenergia hulk, mis kandub soojusvahetuse teel ühelt kehalt teisele. Q cmt c ­ aine erisoojus, t ­ temperatuuri muut Q qm q ­ kütteväärtus (J/kg) Termodünaa-mika I Süsteemile ülekandunud soojushulga arvel suureneb süsteemi siseenergia ja süsteem teeb mehaanilist tööd. printsiip

Mehaanika ja soojuse valemid
20 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun