Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse
✍🏽 Avalikusta oma sahtlis olevad luuletused! Luuletus.ee Sulge

Signaalide mõõteseadmed - sarnased materjalid

signaal, 1047, multimeeter, seadmed, generaator, nelinurksignaal, ukesk, ostsillograaf, vahelduvpinge, keskväärtus, jälgimine, automaatika, iss0050, mõõteseadmed, autorideklaratsioon, laboratoorse, koostanud, sagedustel, fasomeeter, sumbuvus, amplituud, pingelang, veast
thumbnail
5
doc

Signaalide mõõteseadmed - praktika

2 nimetusega SIGNAALIDE MÕÕTESEADMED aines LAV3730 Mõõtmine Töö tehti 5. aprill 2001 brigaadiga koosseisus: Veiko Lepp Anneli Kaldamäe Aruanne üliõpilane ANNELI KALDAMÄE 991476 LAP-41 aruanne esitatud aruanne kaitstud Töö iseloomustus Seadmed pinge ja voolu signaalide mõõtmiseks kõrgematel sagedustel on oluliselt erineva ehituse ja ühendusviisiga kui seadmed võrgupinge ja voolu mõõtmiseks. Töö eesmärk Tutvuda signaalide mõõtmiseks kasutatavate üldotstarbeliste mõõteriistatega: multimeetriga, ostsillograafiga, generaatoriga ja fasomeetriga. Mõõteriistade ühendamine skeemi, mõõtemääramatuse arvutamine. Töövahendid Multimeeter B7-37, multimeeter B7-40/5, generaator G3-112, ostsillograaf C1-83, fasomeeter F2-34, ühenduskaablid, klemmliist. Töö käik Vahelduvpinge mõõtmine Skeem: U1 U2

Mõõtmine
81 allalaadimist
thumbnail
5
doc

Praktikum 2 "Signaalide mõõteseadmed"

Töö iseloomustus Seadmed pinge ja voolu signaalide mõõtmiseks kõrgematel sagedustel on oluliselt erineva ehituse ja ühendusviisiga kui seadmed võrgupinge ja voolu mõõtmiseks. Töö eesmärk Tutvumine signaalide mõõtmiseks kasutatavate üldotstarbeliste mõõteriistadega: multimeetriga, ostsillograafiga, generaatoriga, fasomeetriga. Mõõteriistade ühendamine skeemi, mõõtevigade määramine. Kasutatud seadmed -- Multimeeter B7-37 -- Multimeeter B7-40/4 -- Generaator G3-112 -- Ostsillograaf C1-83 -- Fasomeeter F2-34 -- Ühenduskaablid ja klemmliist Töö käik 1.Vahelduvpinge mõõtmine a) Siinuseline signaal: F = 2 KHz, U = 3 V, UP = 20 V, Generaatori sumbuvus 10dB

Mõõtmine
63 allalaadimist
thumbnail
5
docx

SIGNAALIDE MÕÕTESEADMED

Töö nr. 2 Aruanne Juhendaja: Rein Jõers Tallinn 2012 Töö iseloomustus Seadmed vahelduvsignaalide pinge ja voolu mõõtmiseks on oluliselt erineva ehituse ja ühendusviisiga kui seadmed alalissignaalide mõõtmiseks. Töö eesmärk Tutvuda signaalide mõõtmiseks kasutatavate mõõteriistatega: multimeetriga, ostsillograafiga, generaatoriga ja fasomeetriga. Mõõteriistade ühendamine ja kasutamine. Töövahendid Multimeeter B7-37, multimeeter B7-40/5, generaator G3-112, ostsillograaf C1-83, fasomeeter F2-34, ühenduskaablid, klemmliist. 1. Vahelduvpinge mõõtmine Kaks voltmeetrit ja generaator on ühendatud vastavalt skeemile. Kasutatav klemmliist: 1

Mõõtmine
11 allalaadimist
thumbnail
4
doc

Signaalide mõõteseadmed

Tallinna Tehnikaülikool Automaatikainstituut Praktikum nr.2 Signaalide mõõteseadmed Aruanne Töö iseloomustus Seadmed pinge ja voolu signaalide mõõtmiseks kõrgematel sagedustel on oluliselt erineva ehituse ja ühendusviisiga kui seadmed võrgupinge ja voolu mõõtmiseks. Töö eesmärk Tutvuda signaalide mõõtmiseks kasutatavate üldotstarbeliste mõõteriistatega: multimeetriga, ostsillograafiga, generaatoriga ja fasomeetriga. Mõõteriistade ühendamine skeemi, mõõtevigade määramine. Töövahendid Multimeeter B7-37, multimeeter B7-40/5, generaator G3-112, ostsillograaf C1-83, fasomeeter F2-34, ühenduskaablid, klemmliist. Töö käik 1.Vahelduvpinge mõõtmine Siinuseline signaal f=5000Hz U1=3,010 V U2=3,029 V

Mõõtmine
24 allalaadimist
thumbnail
5
doc

SIGNAALIDE MÕÕTESEADMED

Labor 2 Teostatud brigaadiga koosseisus: Esitatud ........................ Kaitstud ........................ Üliõpilane: Tallinn 2007 Üldine iseloomustus Seadmed pinge ja voolu signaalide mõõtmiseks kõrgematel sagedustel on oluliselt erineva ehituse ja ühendusviisiga kui seadmed võrgupinge ja voolu mõõtmiseks. Töö eesmärk Tutvuda signaalide mõõtmiseks kasutatavate üldotstarbeliste mõõteriistadega: multimeetriga, ostsillograafiga, generaatoriga ja fasomeetriga. Mõõteriistade ühendamine skeemi, mõõtemääramatuse arvutamine. Töövahendid multimeeter B737 multimeeter B740/4 generaator G3112 ostsillograaf C183 fasomeeter F234 1. Vahelduvpinge mõõtmine Skeem: U 1 U 2

Mõõtmine
69 allalaadimist
thumbnail
5
doc

Töö nr. 2 - SIGNAALIDE MÕÕTESEADMED

Tallinna Tehnikaülikool Automaatikainstituut Töö nr. 2 SIGNAALIDE MÕÕTESEADMED LAV3730 Mõõtmine Töö tehti 11. aprill 2002 brigaadiga koosseisus: Aruanne üliõpilane aruanne esitatud aruanne kaitstud Töö iseloomustus: Seadmed pinge ja voolu signaalide mõõtmiseks kõrgematel sagedustel on oluliselt erineva ehituse ja ühendusviisiga kui seadmed võrgupinge ja voolu mõõtmiseks. Töö eesmärk: Tutvuda signaalide mõõtmiseks kasutatavate üldotstarbeliste mõõteriistatega: multimeetriga, ostsillograafiga, generaatoriga ja fasomeetriga. Mõõteriistade ühendamine skeemi, mõõtemääramatuse arvutamine. Töövahendid: Multimeeter B7-37, multimeeter B7-40/5, generaator G3-112,

Mõõtmine
9 allalaadimist
thumbnail
4
doc

Signaalide mõõteseadmed

Tallinna Tehnikaülikool Automaatikainstituut Mõõtmine ISS0050 Laboratoorne töö nr. 2 SIGNAALIDE MÕÕTESEADMED Käesolevaga kinnitan, et töö on tehtud minu poolt ning selle aruande kirjutamisel ei ole kasutatud kõrvalist abi. ___________________ (allkiri) Tallinn 2010 Vahelduvpinge mõõtmine V1 ­ multimeeter B7-37 V2 ­ multimeeter B7-40/4 G - generaator G3-112 Siinuliseline signaal: f=2000 Hz U=3,0 V U1=3,0 V U2=3,009 V Mõõtemääramatused: B7-40 R1 = ± (0,6 + 0,1 * [(U / U k ) ­ 1])* U k /100 , kus U=20V R1 = ± (0,6 + 0,1 * (20/3,0 - 1)) * 3,0/100= ± 0,035 V B7-37 R2 = ± (1,5 + 0,2 * [(U / U k )- 1]) * U k /100 , kus U=20V R2 = ± (1,5 + 0,2 * (20/3.009 - 1)) * 3,009/100= ± 0,079117 V U1=3,00 V ± 0,08 V U2=3,009 V ± 0,035 V Tulemused langevad kokku mõõtemääramatuse piires. Nelinurksignaal

Mõõtmine
31 allalaadimist
thumbnail
3
pdf

Signaalide mõõteseadmed lab.

Tallinna Tehnikaülikool Automaatikainstituut Mõõtmine Labor 5 aruanne Maria Kohtla 103548IAPB 14.05.2011 Tallinn 2011 Töö käik V1 ­ multimeeter B7-37 V2 ­ multimeeter B7-40 G - generaator G3-112 Siinuseline signaal f = 1000Hz, U=3V U1 = 3,000 V; U2 = 3,010 V 20 U 1=±1,50,2 -1 %= ±2,63 %= ±0,0789V 3,000 20 U 2=± 0,60,1 -1 %= ±1,15 %= ±0,0346V 3,010 U1 = 3,000 ± 0,079 V U2 = 3,010 ± 0,035 V Mõõtetäpsuse piires langevad tulemused kokku. Nelinurksignaal f = 1000Hz, U=3V V1 mõõdab signaali mooduli keskväärtust V2 mõõdab signaali efektiivväärtust U1 =3.950 V U2 =3.568 V

Mõõtmine
10 allalaadimist
thumbnail
4
docx

Töö nr 2 nimetusega SIGNAALIDE MÕÕTESEADMED

TALLINNA TEHNIKAÜLIKOOL Infotehnoloogia teaduskond Automaatikainstituut Töö nr 2 nimetusega SIGNAALIDE MÕÕTESEADMED Aruanne ai nes ISS0050 Mõõtmi ne Õppejõud: Rein Jõers Tallinn 2011 Üldine iseloomustus Seadmed vahelduvsignaalide pinge ja voolu mõõtmiseks on oluliselt erineva ehituse ja ühendusviisiga kui seadmed alalissignaalide mõõtmiseks Töö eesmärk Tutvu signaalide mõõtmiseks kasutatavate mõõteriistadega: multimeetriga, ostsillograafiga, generaatoriga, fasomeetriga. Mõõteriistade ühendamine ja kasutamine. Kasutatud seadmed: Generaator G3-112/1 2 Voltmeeter B7-40/4 1 Voltmeeter B7-37 Ostsillograaf S1-83 Fasomeeter F2-34 Töö käik 1. Vahelduvpinge mõõtmine a) Siinuseline signaal: sagedus 2 kHz, pinge 3 V

Mõõtmine
25 allalaadimist
thumbnail
6
docx

Signaalide mõõteseadmed

Automaatikainstituut Rauno Kaasik 093581 Signaalide mõõteseadmed Labor 2. Aines ISS0050 Môôtmine Juhendaja: Rein Jõers Brigaadis: Rauno Kaasik Esitatud: Kaitstud: Tallinn 2010 Töö eesmärk Tutvuda üldotstarbeliste signaali mõõtevahenditega: multimeetri, fasomeetri, ostsillograafi ja generaatoriga. Ühendada mõõteriistu skeemi ja hinnata mõõtevigasid. Kasutatud seadmed Generaator G3-112, Multimeetrid B7-37 ja B7-40, Ostsillograaf C1-83, Faseomeeter F2-34, ühenduskaablid. Töö käik 1. Vahelduvpinge, f=2000 Hz, 3 V V1 ­ multimeeter B7-40 V2 ­ multimeeter B7-37 Vali voltmeetritel sobivad mõõtepiirkonnad kus mõõtetäpsus on kõige suurem, või lülita sisse piirkonna automaatne valik. Automaatse mõõtepiirkonnaga 20V: U1 = 3,005 V [B7-40] U2 = 3,00 V [B7-37] U1 = (0,6 + 0,1 * (20 / U1 ­ 1)) * U1 / 100 =

Mõõtmine
29 allalaadimist
thumbnail
5
pdf

Laboratoorse töö nr. 2 aruanne - Signaalide mõõteseadmed

Tallinna Tehnikaülikool Automaatika instituut Mõõtmine ISS0050 Laboratoorse töö nr. 2 aruanne Signaalide mõõteseadmed Rein-Sander Ellip 112989 IAPB21 Tallinn 2012 Töö iseloomustus: Seadmed vahelduvsignaalide pinge ja voolu mõõtmiseks on oluliselt erineva ehituse ja ühendusviisiga kui seadmed alalissignaalide mõõtmiseks. Töö eesmärk: Tutvu signaalide mõõtmiseks kasutatavate mõõteriistadega: multimeetriga, ostsillograafiga, generaatoriga, fasomeetriga. Mõõteriistade ühendamine ja kasutamine. Kasutatavad seadmed: Generaator: G3-112 Voltmeeter 1: B7-37 Voltmeeter 2: B7-40 Ostsillograaf: C1-83 Fasomeeter: A3261 1.2 Ühenda generaator kahe voltmeetriga (skeemid) 1.3 Siinuselise signaali mõõtmine f=2000 Hz, U=3V Kahe voltmeetri näidud U1=2,99 V U2=3,003 V

Mõõtmine
10 allalaadimist
thumbnail
5
pdf

Mõõtmise aruanne - SIGNAALIDE MÕÕTESEADMED

Infotehnoloogia teaduskond Automaatikainstituut OLGA DALTON 104493IAPB Töö nr 2 nimetusega SIGNAALIDE MÕÕTESEADMED Aruanne aines ISS0050 Mõõtmine Õppejõud: Rein Jõers Tallinn 2011 Üldine iseloomustus Seadmed vahelduvsignaalide pinge ja voolu mõõtmiseks on oluliselt erineva ehituse ja ühendusviisiga kui seadmed alalissignaalide mõõtmiseks Töö eesmärk Tutvu signaalide mõõtmiseks kasutatavate mõõteriistadega: multimeetriga, ostsillograafiga, generaatoriga, fasomeetriga. Mõõteriistade ühendamine ja kasutamine. Kasutatud seadmed: Generaator G3-112/1 Voltmeeter V7-40/4 Voltmeeter V7-37 Ostsillograaf S1-83 Fasomeeter F2-34 Töö käik 1. Vahelduvpinge mõõtmine a) Siinuseline signaal: sagedus 2 kHz, pinge 3 V

Mõõtmine
33 allalaadimist
thumbnail
5
doc

Labor 2 Signaalide mõõteseadmed

Aruanne esitatud _________________ Aruanne kaitstud _________________ Käesolevaga kinnitan, et töö on tehtud minu poolt ning selle aruande kirjutamisel ei ole kasutatud kõrvalist abi. ________________ (allkiri) Tallinn 2009 1.Vahelduvpinge mõõtmine Siinuliseline signaal: F=2kHz U=3V U1=2,99 U2=3,005 Mõõtemääramatused: B7-37 U=±[1,5+0,2(Ux/Uk-1])*Uk/100 kus Ux =20V U1=±[1,5+0,2(20/2,99-1])*2,99/100=0,07887 V B7-40 U=±[0,6+0,1(Ux/Uk-1])*Uk/100 kus Ux =20V U2=±[0,6+0,1(20/3,005-1])*3,005/100=0,035025 V U1=(2,99± 0,08) V U2=(3,005± 0,035) V Tulemused langevad kokku mõõtemääramatuse piires . Nelinurksignaal: U1=3,76V (signaali mooduli keskväärtus Um) U2=3,412V (signaali efektiivväärtus Ue) Ukesk=Um*2/ Um=Ue*2 Ue=K*Ukesk K=Ue/Uk=Ue*/Um*2=

Mõõtmine
113 allalaadimist
thumbnail
3
docx

Mõõteseadmed

Tallinna Tehnikaülikool Automaatikainstituut Aruanne Aines ISS0050 Mõõtmine Mõõteseadmed Õpilane: Tallinn 2011 1.Vahelduvpinge mõõtmine U1 ­ B7-40 U2 ­ B7-37 Siinuliseline signaal: F=1000 Hz U=2.5V U1=2.50V U2=2.505V Mõõtemääramatused: B7-40 B7-37 U1=2.50V±0.01V U2=2.505V±0.053V Nelinurksignaal: U1=3.144V (efektiivväärtus Ue) U2=3.47V (signaali mooduli keskväärtus Um) Voltmeeter B7-37 mõõdab signaali mooduli keskväärtust U m , kuid B7-40 signaali efektiivväärtust U e . Signaali keskväärtus ­ U k . Um = Ue 2 Um 2 Ue 2 2 U 2 2 Uk = = Ue = k , millest ning seega 2

Mõõtmine
13 allalaadimist
thumbnail
8
docx

Mõõtmine 2 aruanne

1. Voltmeetrite vearajad B7-37 20 U1 1,5 0,2 1 2,55% 3,21 U1 0,082V B7-40 20 U 2 1 0,1 1 1,52% 3,219 U 2 0,049V U1 3,21 0,08V U 2 3,219 0,049V Tulemused langevad kokku mõõtemääramatusega. Nelinurksignaal U1 4,03V -signaali mooduli keskväärtus Um U 2 3,639V -signaali efektiivväärtus Ue Ukesk=Um*2/ Um=Ue*2 Ue=K*Ukesk K=Ue/Uk=Ue*/Um*2=Um*/Um*2*2=/ (2*2)=1,1107 Seosest U1=K*U2 tuleb: U1=1,1107*3,639 =4,04 V. Võrreldes arvutamisel saadud U1 väärtust ja mõõtmisel saadud tulemust, siis arvud erinevad teineteisest väga vähe. Ukesk=Um*2/ Um=Ue*2 Ue=K*Ukesk K=Ue/Uk=Ue*/Um*2= Um*/Um*2*2= / (2*2)=1,1107

Mõõtmine
10 allalaadimist
thumbnail
197
pdf

Elektroonika

Voolu juhib ühes suunas. Dioodi ehitus: Kui anoodil on + potentsiaal, siis tekib elektronide liikumine katoodist - anoodile. 1907.a. - Li de Forest - elektronvaakumtriood. 5 6 Elektroonikas: potentsiaal on pinge mingi väljavalitud ühise elektroodi (juhtme) suhtes. Võre potentsiaal on negatiivne - selleks, et ei tekiks võrevoolu. küttepinge 2...12,6V küttepinge, taval. 6,3V vahelduvpinge, 50Hz Otsese küttega katood Kaudse küttega katood Pentood - 3 võrega el.lamp. Oktood - 6 võrega el.lamp. 1914.a. - el.lambid Venemaal. 1922.a. - 400 kW(!!!) raadiosaatja Moskvas. ------------------------------------------------------------------------- 7 Elektronkiiretoru (EKT, ERT, CRT, ). Kiirendamiseks ja fokuseerimiseks on anoodid (2 -3 tk) Hälvetussüsteem --- elektrostaatiline

Elektroonika ja IT
74 allalaadimist
thumbnail
62
pdf

Lihtajamid

programmeerimiseks saab kasutada erinevaid mooduseid. Joonisel 4.6 on näidatud mootori käivituslülituse (a) programmeerimine loogikakontrolleris kontaktaseskeemi (b), loogika- skeemi (c) ja käsulisti (d) abil. Programmi koostaja saab valida endale kõige sobivama programmeerimismooduse, kusjuures kontrolleri valmisprogrammi saab automaatselt teisendada soovitud kujule. Käivitusnupule S1 vastab kontrolleri sisendsignaal E 0.0 ning peatamisnupule signaal E0.1. Kontaktori K1 olekule vastab kontrolleri väljundsignaal A 1.0. a b d U( E 0.0 E 0.1 A 1.0 O E 0.0 O A 1.0 S1 K1

Automaatika
26 allalaadimist
thumbnail
10
doc

Elektrotehnika kordamisküsimused ja vastused

Elektrotehnika kordamisküsimused: 1. Milliseid eeliseid annab elektrotehnika tundmine insenerile? See annab oskusi muundada looduslikku energiat ning oskusi saada ja edastada elektrilist informatsiooni. Elektrotehnilised seadmed annavad võimaluse tootmist kompleksselt automatiseerida ning võtta kasutusele tehnoloogiaid, mille rakendamine näiteks kõrge temperatuuri, rõhu või ohtliku kiirguse tõttu oleks muidu võimatu. Elektronarvutite abil saab töödelda ning salvestada informatsiooni. Elekter on meie igapäevaelu vältimatu osa. 2. Milliseid eeliseid annab elektroonika tundmine insenerile? Elektroonika tundmine annab oskuse käsitleda keskmise ning suure võimsusega seadmeid,

Elektrotehnika
313 allalaadimist
thumbnail
138
pdf

Elektrotehnika alused

6.1 Vahelduvvoolu mõiste 70 6.2 Vahelduvvoolu periood ja sagedus 71 6.3 Siinuselise elektromotoorjõu saamine 72 6.4 Faasinurk ja faasinihe 74 6.5 Vektordiagramm 75 6.6 Siinussuuruste liitmine 77 6.7 Voolu ja pinge keskväärtus ja efektiivväärtus 78 6.8 Aktiivtakistusega vooluring 80 6.9 Induktiivtakistusega vooluring 82 6.10 Mahtuvusega vooluring 85 6.11 Aktiiv- ja induktiivtakistus vahelduvvooluringis 87 6.12 Aktiivtakistus ja kondensaator vahelduvvooluringis 91 6.13 Induktiivsuse ja mahtuvuse jadaühendus. Pingeresonants 92 6

Mehhatroonika
141 allalaadimist
thumbnail
42
doc

Raadiovastuvõtuseadmed

juhtimine VV sisendlülitusse. 2. VV sisendlülitused ehk sisendvooluringid Nende ülesanne on sidestada VV antenn VV esimese astmega nii, et antennist kanduks sisendile võimalikult suur osa soovitava sagedusega KS- energiast. Samal ajal peab sisendlülitus............ 3. Detektor ehk demodulaator Eraldab moduleeritud või manipuleeritud raadiosageduslikust kandevsagedusest ülekantav infot sisaldav kasulik signaal. Nt: raadioringhäälinguks helisignaal, TV-signaali puhul nii pildi. Kui ka helisignaal, milleks kasutatakse kahte eraldi detektorit. Detektori tööpõhimõtte lülitus sõltub moduleerimise liigist (AM, FM, SSB, IM). *Ainult antennist ja detektorist koosnev vastuvõtja toimib täielikult antennist saadava KS-energia arvel, mistõttu tundlikkus ja tarbijale ülekantav väljundvõimsus on väga väikesed, sõltudes oluliselt:

Raadiovastuvõtuseadmed
49 allalaadimist
thumbnail
34
doc

Elektrotehnika vastused

ja temas indutseeritav elektromotoorne jõud on dI EMJ ei L dt kus on voolutugevuse I poolt tekitatud magnetvoog. 9. Perioodilised pinged, voolud ja elektromotoorjõud Vahelduvpinge on perioodiliselt muutuva polaarsusega pinge. Kõige laiemalt on kasutusel siinusfunktsiooni kohaselt muutuv vahelduvpinge siinuspinge. Vahelduvpinget iseloomustavateks põhisuurusteks on hetkväärtus u, efektiivväärtus U ja amplituudväärtus Um. Siinuspinge efektiivväärtus: U = . Muutuva suuruse väärtus mingil hetkel kannab nimetust hetkväärtus ja seda tähistatakse väiketähega. Seega on i voolu hetkväärtuse tähis, u pinge hetkväärtuse tähis jne. Perioodiliselt muutuva suuruse suurimat hetkväärtust nimetatakse maksimaalväärtuseks ehk

Elektrotehnika ja elektroonika
74 allalaadimist
thumbnail
54
pdf

Elektrimõõtmiste konspekt

sündmuse toimumist võimalik kindlaks määrata. Näiteks täringu viske puhul ei tea me kunagi täpselt ette, mitu silma saame. Nii on täringuviske resultaat juhuslik suurus. Tingituna juhuvigadest on ka üksikmõõtmise tulemus juhuslik suurus. Näide 1. Oletame, et mõõtsime multimeetriga füüsikahoones 8 minuti jooksul n = 100 korda vahelduvpinget. Katsetulemuste jaotus on kujutatud joonisel 2. Näeme, et vahelduvpinge väärtus ei ole ajas konstantne vaid fluktueerub mingi väärtuse ümber, s.t on juhuslik suurus. Antud näites on selle põhjuseks nii juhuvead kui ka vahelduvpinge väärtuse sõltuvus kogu võrgus tarbitavast võimsusest. 228.8 228.6 U Pinge, /V/ 228.4 228.2 228 0 1 2 3 4 5 6 7 8

Elektrimõõtmised
65 allalaadimist
thumbnail
46
doc

Elektroonika Alused

(tegelikud v22rtused umb 1000000). 3) sagedustunnusjoon: pingev6imendsutegur s6ltub sagetusest, suurtematel sagedustel k0 v2heneb. w(t) -> k0=1, nimetatakse OV piirsageduseks. ideaaljuht oleks kui k0 ei s6ltuks sagedusest. 4) v2ljundahelad peaksid olema v2ikese v2ljundtakistusega r(v)=Va/i(lyhis); Paljude OV v2ljundit ei tohi lyhistada, sest ... (l6petage lause mul konspektis polnud) 5) peab suutma v6imendada ka alalissignaale (k0 != 0 & w0 = 0) OV v2ljundiks on m6lema sisendi summaarne signaal. Kui +sisend ja -sisend on v6rdsed (ühissignaal), siis k->0, ja yhisignaali ideaaljuhul ei v6imendata. Differentssignaal: V(d) = +sisend - -sisend. V(v2ljund)=k0*V(d) ja k0 -> l6pmatus. Ühissignaali summutamisest ei j6udnud teha, sest hetkel polnud materiali. Keegi v6iks t2iendada!!! [va 17. Tagasisidega OV, inverteeriv võimendi. mu

Elektroonika alused
149 allalaadimist
thumbnail
240
pdf

Elektriajamite elektroonsed susteemid

..........................................................237 Aineregister................................................................................................................. 238 5 Tähised Sümbolid A võimendi q töötsükkel B andur R takistus kondensaator r raadius D digitaalseade S lipistus G generaator s operaator L reaktor, drossel T periood, ajakonstant M mootor t aeg R takisti U pinge S lüliti v kiirus T trafo X reaktiivtakistus VD diood x,y tasandi teljed VS türistor z vahemuutuja VT transistor Z näivtakistus

Elektrivarustus
90 allalaadimist
thumbnail
114
doc

Elektroonika alused

Trafo + U välj ­ ~220V JOONIS.3.1. Plokkskeemil toodud osade ülesanded on järgmised. Trafo ülesandeks on muuta vahelduvvooluvõrgust saadavat pinget sel määral, et väljundis saada nõutava suurusega alalispinget. Sellest tulenevalt võib toiteseadme trafo olla nii pinget tõstev kui pinget vähendav. Alalduslülituse ülesandeks on muundada võrgust saadud vahelduvpinge alalisvooluks ja sel eesmärgil kasutatakse reeglina pooljuhtdioode. Alalduslülitusest saadav pinge on vähemal või enamal määral pulseeriva (muutuva) iseloomuga. Selle pulsatsiooni ehk lainelisuse vähendamiseks on silufilter, milline silub alaldatud pinge pulsatsiooni nõutava tasemeni.. Vahelduvvoolu võrgupinge stabiilsus ei ole väga kõrge, üldiselt on lubatud pinge kõikumine ±10%. Selline pinge kõikumine on mitmete elektroonikaseadmete toiteks liiga suur

Elektriahelad ja elektroonika...
144 allalaadimist
thumbnail
151
pdf

PM Loengud

V.Jaaniso Pinnasemehaanika 1. SISSEJUHATUS Kõik ehitised on ühel või teisel viisil seotud pinnasega. Need kas toetuvad pinnasele vundamendi kaudu, toetavad pinnast (tugiseinad), on rajatud pinnasesse (süvendid, tunnelid) või ehitatud pinnasest (tammid, paisud) (joonis 1.1). a) b) c) d) J o o n is 1 .1 P in n a s e g a s e o tu d e h i tis e d v õ i n e n d e o s a d .a ) p i n n a s e le t o e t u v a d ( m a d a l - j a v a iv u n d a m e n t) b ) p i n n a s t t o e t a v a d ( t u g is e in a d ) c ) p in n a s e s s e r a j a tu d ( tu n n e li d , s ü v e n d i d d ) p in n a s e s t r a j a tu d ( ta m m i d , p a is u d ) Ehitiste koormuste ja muude mõjurite tõttu pinnase pingeseisund muutub, pinnas deformeerub ja võib puruneda nagu kõik teisedki materjalid. See põhjustab

Pinnasemehaanika, geotehnika
200 allalaadimist
thumbnail
210
docx

Elektroonilised laevajuhtimisseadmed konspekt

vastastikuse mõju ruumi mõõtmetest. Õõnesresonaatorid on vastastikuse mõju ruumi kaudu üksteisega ühenduses, seepärast on võimalikud mitmed erineva resonantssagedused. 8 õõnesresonaatoriga magnetronides kasutatakse π võnketüüpi laineid, mis annavad suurema võimsuse kui teised võimalikud võnketüübid (nt. 1/2π, 3/4π). + __--_ + ____--_ + ____--_ + ____--_ ____--_ π võnketüüpi lained Antenni – lainejuhtme seadmed. Magnetroni poolt genereeritud ülikõrgsageduslike signaalide edastamiseks kasutatakse kahejuhtmelist liini -koaksiaalkaablit ja ristkülikukujulise ristlõikega lainejuhte. Kahejuhtmeliseks liiniks nimetatakse süsteemi kahest teineteisest isoleeritud juhtmest, mille kaugus teineteisest on väiksem kui lainepikkus Δλ Δl Kahejuhtmeline liin

Laevandus
29 allalaadimist
thumbnail
162
pdf

Täiturmehanismid, ajamid, mootorid

(motion control) Tüüpilise elektriajami üldistatud plokkskeem on näidatud Joonis 3.1. Joonis 3.1. Elektriajami struktuur [6] Joonise ülemine pool kujutab elektriajami jõuahelat, alumine pool juhtimissüsteemi. Jõupooljuhtmuundur, mida toidetakse ühe- või kolmefaasilisest kindla sageduse ja amplituudiga vahelduvvooluvõrgust, on ette nähtud elektrimasina (mootori) juhtimiseks. Elektrimootor juhib omakorda töömasina kiirust, momenti ja asendit. Kõik seadmed on varustatud anduritega, mis edastavad regulaatorile infot süsteemi oleku kohta. Regulaator võrdleb omavahel anduritelt saadud väärtusi sisendsignaalidega ning juhib sellele vastavalt jõupooljuhtmuundurit. Paljudes üldotstarbelistes rakendustes, nt ventilaatorid ja pumbad, kasutatakse elektriajamite kiiruse ja momendi juhtimiseks avatud juhtimissüsteemi (ilma tagasisideta anduritelt). Elektriajamite peamisteks rakendusaladeks on tööstus, energeetika ja elektertransport, kuid

Energia ja keskkond
51 allalaadimist
thumbnail
81
doc

Elektroonika aluste õppematerjal

­ JOONIS.3.1. Plokkskeemil toodud osade ülesanded on järgmised. Trafo ülesandeks on muuta vahelduvvooluvõrgust saadavat pinget sel määral, et väljundis saada nõutava suurusega alalispinget. Sellest tulenevalt võib toiteseadme trafo olla nii pinget tõstev kui pinget vähendav. Alalduslülituse ülesandeks on muundada võrgust saadud vahelduvpinge alalisvooluks ja sel eesmärgil kasutatakse reeglina pooljuhtdioode. Alalduslülitusest saadav pinge on vähemal või enamal määral pulseeriva (muutuva) iseloomuga. Selle pulsatsiooni ehk lainelisuse vähendamiseks on silufilter, milline silub alaldatud pinge pulsatsiooni nõutava tasemeni.. Vahelduvvoolu võrgupinge stabiilsus ei ole väga kõrge, üldiselt on lubatud pinge kõikumine ±10%. Selline pinge kõikumine on mitmete elektroonikaseadmete toiteks liiga suur. Eriti kui on tegemist

Elektroonika alused
377 allalaadimist
thumbnail
33
docx

Elektriajamid

EA06 Rakenduselektroonika Uudo Usai Võimendid 10.02.09 Võimendi on seade, mille abil toimub signaali amplituudi suurendamine sel määral, et signaalist piisaks võimendi väljundisse ühendatud tarbijale. See juures võimendamise käigus ei tohi signaal moonutuda. Võimendusprotsess toimub alati toiteallikate energia arvel, nii et võime vaadelda võimendit kui reguraatorit, mis juhib toiteallikate energijat tarbijatesse kooskõlas sisendsignaali muutustega. Võimendi sisendsignaaliks võib olla ükskõik milline elektriline signaal, milline on kasutamiseks liiga väikse amplituudiga. Näiteks mikrofon (1- 3mV), maki helipea (50-100mV), termopaar (10-40mV), elektrokeemilised andurid, pH meeter (100mV)

Rakenduselektroonika
81 allalaadimist
thumbnail
158
pdf

Elektriajami juhtimine

Tallinna Polütehnikum Energeetika õppesuund Rein Kask ELEKTRIAJAMITE JUHTIMINE Õppevahend TPT energeetika õppesuuna õpilastele Tallinn, 2007 Saateks Erialaainete õpikute ja muude õppevahendite krooniline puudus on juba palju aastaid raskendanud kutsehariduskoolide õpilastel omandada erialaseid teadmisi. Käesolev kirjatöö püüab mingilgi määral leevendada seda olukorda Tallinna Polütehnikumi energeetika õppesuuna õpilastele sellise õppeaine kui ,,Elektriajamite juhtimine" õppimisel. Elektriajamid on üheks põhiliseks elektritarvitite liigiks ja neid kasutatakse laialdaselt kõikides eluvaldkondades. On selge, et tulevased elektriala spetsialistid peavad neid hästi tundma ja oskama neid ka juhtida. Elektriajamite juhtimine ongi valdkonnaks, mida käsitleb käesolev õppevahend. Selle koostamisel on autor lähtunud põhimõttest selgitada probleeme nii põhjalikult kui vajalik ja nii napilt kui võimalik ­ siit ka õppe-

Elektriaparaadid
86 allalaadimist
thumbnail
282
pdf

Mikroprotsessortehnika

8 1. DIGITAALELEKTROONIKA ALUSED 1.1. Diskreetsed ja arvsignaalid 1.1.1. Kvantimine Kvantimine tähendab klassikaliselt füüsikateoorialt kvantteooriale siirdumise menetlust. Informaatikas on kvantimine signaalitöötluse operatsioon, millega pidevale signaalile omistatakse kindlaks ajavahemikuks diskreetne väärtus. Kvantimine toimub nii signaali nivoo järgi kui ka ajas. Lisagem, et signaal on sõnumi (informatsiooni) füüsikaline kandja. Sõltuvalt füüsikalisest olemusest liigitatakse signaale pneumo-, hüdro-, elektri-, valgus- jms signaalideks. Mikroprotsessortehnikas käsitletakse peamiselt elektrisignaale, kuid erijuhtudel ka optilisi ehk valgussignaale. Suur osa looduslikest ja tehisprotsessidest on pidevatoimelised, s. t neid iseloomustavad pidevad olekusignaalid, mida saab mõõta või hinnata suvalisel ajahetkel. Pidevatoimelisi

Tehnikalugu
45 allalaadimist
thumbnail
36
doc

Elektromagnetism

ühes sekundis läbivoolava vee hulgaga, nii mõõdetakse ka elektrivoolu hulka voolutugevust. Elektrivoolu tugevuseks ( tähis I ) nimetatakse juhtme ristlõikest ühes sekundis läbinud elektrilaegute hulka . I=q/t. Voolutugevuse mõõtühikuks 1 A ( amper ) 1 A = 1C / 1 s. q ( C ) - laengu suurus, t ( s ) - aeg. Vooluring (elektriahel, vooluahel) koosneb juhtmete kaudu omavahel ühendatud vooluallikast (elektrivoolu generaator, akupatarei) ja tarvitist ( elektrilampidest, -mootoritest ) ja lülitist . 8 A1 A2 V1 V2 V A - ampermeeter V voltmeeter elektitarviti (mõõtmed 10 x 3) Joonisel on antud vooluringi hargnemata osa. Seda nimetatakse järjestikku

Füüsika
175 allalaadimist


Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun