Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Logi sisse

Ruutfunktsioonid (4)

3 KEHV
Punktid

Lõik failist

Ande Andekas–Lammutaja
Matemaatika
Ruutfunktsioonid

Ruutfunktsiooni harud avanevad üles, kui a>0 ja alla, kui a

Ruutfunktsioonid #1
Punktid 5 punkti Autor soovib selle materjali allalaadimise eest saada 5 punkti.
Leheküljed ~ 1 leht Lehekülgede arv dokumendis
Aeg2007-11-27 Kuupäev, millal dokument üles laeti
Allalaadimisi 505 laadimist Kokku alla laetud
Kommentaarid 4 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor Rain Ungert Õppematerjali autor

Autori kodulehekülgkool.spikriladu.net:

Sarnased õppematerjalid

thumbnail
1
doc

Parabooli skitseerimine uus

Ruutfunktsioon avaldub kujul y = ax2 + bx + c, kus a, b ja c on mistahes arvud ja ruutliikme kordaja a 0. Ruutfunktsiooni y = ax2 + bx + c graafikuks on parabool. Kui a > 0, siis parabooli harud avanevad üles, kui a < 0, siis alla. Parabooli sümmeetriatelge nimetatakse parabooli teljeks ja punkti, kus parabool lõikub oma teljega nimetatakse parabooli haripunktiks. Parabooli skitseerimiseks tuleb leida nullkohad ( võrrandi ax2 + bx + c = 0 lahendid) ja x + x2

Geomeetria
thumbnail
14
doc

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Punkti liigutamisel muutuvad ka koordinaadid (sõiduks kulunud aeg ja sõidukiirus). Joonisel 13 annavad punkti A koordinaadid vastuse esimesele ülesandele. 5. Ruutfunktsioon ja selle graafik Ruutfunktsiooniks nimetatakse funktsiooni, mille saab esitada kujul y = ax2 + bx + c, kus a 0 ning b ja c on antud arvud. Ruutfunktsiooni käsitlemiseks koolis on mitmeid võimalusi: 1) ruutvõrrandi lahendamist käsitletakse enne ruutfunktsiooni tundmaõppimist; 2) ruutfunktsiooni graafiku konstrueerimine on seotud vastava ruutvõrrandi lahendamisega; 3) ruutfunktsiooni käsitletakse enne vastavat võrrandit. 10 Kuna olen juba aastaid kasutanud teist varianti, siis pakun välja võimaliku teemade käsitlemise järjekorra: 1. Funktsioon y = ax2. 2. Ruutfunktsioon y = ax2 + c. 3. Ruutvõrrand ax2 + bx + c = 0. 4. Ruutfunktsioon y = ax2 + bx. 5. Ruutvõrrand ax2 + bx = 0. 6

Matemaatika
thumbnail
63
doc

Põhikooli matemaatika kordamine

x2 + x ­ 6 = 0 x1 = ­ 0,5 + 2,5 = 2 x2 = ­ 0,5 ­ 2,5 = ­ 3 Kontroll: x1 = 2 vasak pool: (2 . 2 + 3)3 ­ 316 = 73 ­ 316 = 27 parem pool: (2 . 2 ­ 1)3 = 33 = 27 Vasak pool on võrdne parema poolega. x2 = ­ 3 vasak pool: (2 . (­ 3) + 3)3 ­ 316 = (­ 3)3 ­ 316 = ­ 343 parem pool: (2 . (­ 3) ­ 1)3 = (­ 7)3 = ­ 343 Vasak pool on võrdne parema poolega. Vastus: x1 = 2 ja x2 = ­ 3 Ruutfunktsioon - Sissejuhatus ruutfunktsiooni Praeguseks momendiks peaksid tundma niisuguseid seosei muutujate x ja y vahel, nagu a võrdeline seos y = ax, pöördvõrdeline seos y ning lineaarseos ehk lineaarfunktsioon y = x ax + b. Kordame neid seoseid. Edasi vaatame ülesandeid. 1. Joonesta võrdelise seose y = 1,5x graafik ja leia selle abil muutuja y väärtused, kui x 2; 1; 0; 1; 2; 3 . Lahendus:

Matemaatika
thumbnail
2
doc

Funktsioonid 2

ülespoole, kui a<0, siis allapoole. Mida suurem a, seda kitsam on parabool. Ruutfunktsioon y=ax+bx, kus a Ruutfunktsiooni Graafikuks on y=ax+bx: ja b on antud y=ax+bx parabool, mis ei arvud ning x ja y graafikuks on ole y teljega muutujad. kordinaatide sümeetriline. nullpunkti läbiv Parabool läbib 0 parabool, mida on punkti. võimalik ühitada Paraboolil

Matemaatika
thumbnail
20
pptx

Ruutfunktsioon ja selle graafik

Ruutfunktsioon ja selle graafik EESMÄRGID Parabooli y = ax2 + k joonestamine Tutvustada lihtsamat parabooli Parabooli y = ax2 + bx +c joonestamine Paraboolide joonestamine Parabooli y = ax2 + k joonestamine Sümmeetriatelg y = x2 x=0 x y (x, y) (–2, 4) y –2 4 –1 1 (–1, 1) 0 0 (0, 0) 1 1 (1, 1) x 2 4 (2, 4) Parabool avaneb ülespoole. Haripunkt (0, 0) Parabooli y = ax2 + k joonestamine Võrrandis y = x2 , mis on a ? a = 1 . Kuid, mis juhtub, kui a ei võrdu 1? Näiteksy võrrandis y = – 4x2 . Mis on a ? a=–4 x y (x, y) x –2 – 16 (–2, –16) –1 –4 (–1, –4) 0 0 (0, 0)

Matemaatika
thumbnail
7
ppt

Ruutfunktsioon

40 30 20 10 0 -6 -4 -2 0 2 4 6 -10 -20 -30 Koostas: -40 Ruutfunktsioonid · Ruutfunktsioon y = x² · Ruutfunktsioon y = ax² · Ruutfunktsioon y = ax² + c · Ruutfunktsioon y = ax² + bx · Ruutfunktsioon y = ax² + bx + c Ruutfunktsioon y = x² Ruutliikme kordaja on 1 30 y Graafikut nimetatakse 25 PÕHIPARABOOLIKS 20 Graafik avaneb ÜLES

Matemaatika
thumbnail
5
doc

Valemid põhikoolile

ruutvõrrand. 355, 359 Ruutfunktsioon ja KONTROLLTÖÖ 30. 12. 10. 06 KT ruutvõrrand. "Ruutvõrrandi lahendamine" Ruutfunktsiooni mõiste. Ruutfunktsioon.Parabool. Ruutfunktsioon ja 1) lk 31-33 ül 115,117 31. 12. 10. 06 Ruutfunktsioonid y = x2 ja Parabooli telg, haripunkt. Nädalakodutöö ruutvõrrand. y =x2+c Nullkohad.

Matemaatika
thumbnail
7
doc

Kõrgem matemaatika

Kõrgema matemaatika kordamisküsimused eksamiks 1. Kahe vektori skalaar- ja vektorkorrutis Vektoriks nim suunaga ja pikkusega sirglõiku. Tähistatakse , kus A ja B tähistavad vastavalt vektori algus- ja lõpp-punkti. Vektori mooduliks nim vektori pikkust. Tähistatakse . Ühikvektoriks nim vektorit, mille pikkus võrdub ühega. . Nullvektoriks nim vektorit, mille alguspunkt ja lõpppunkt ühtivad. . Vabavektoriks nim vektorit, mille alguspunkt ei ole fikseeritud, st vektori asendit võib paralleellükke abil muuta. Kahte vektorit nim võrdseks, kui nad on võrdsete moodulitega ning samasuunalised. Vektorite võrdsus erineb lõikude võrdsusest. Vektoreid nim kollineaarseteks, kui nad pärast ühisesse alguspunkti viimist asuvad ühel ja samal sirgel. Võivad olla sama või vastassuunalised. . Vektoreid nim komplanaarseteks, kui nad pärast ühisesse alguspunkti viimist asuvad ühel ja samal tasand

Kõrgem matemaatika




Kommentaarid (4)

raguel profiilipilt
raix pertel: 3 m6tetut valemit, ajuvaba fail
15:50 16-02-2011
liisukas23 profiilipilt
liisukas23: pole väga asjalik
12:26 31-03-2013
karmeen profiilipilt
karmeen: suht mõtetu,
20:23 20-10-2008



Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun