Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Natalia Novak Teostatud: Õpperühm: YAMB11 Kaitstud: Töö nr. 5 OT KULGLIIKUMINE Töö eesmärk: Töövahendid: Ühtlaselt kiireneva sirgliikumise Atwoodi masin, lisakoormised teepikkuse ja kiiruse valemi ning Newtoni teise seaduse kontrollimine Skeem 1. Töö teoreetilised alused Atwoodi masinaga saab kontrollida ühtlaselt kiireneva sirgliikumise valemeid ja Newtoni teist seadust. Seejuures on kontroll ligikaudne, sest esineb hõõrdumine.
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Kai Salm Teostatud: Õpperühm: YAMB11 Kaitstud: Töö nr: 5 TO: KULGLIIKUMINE Töö eesmärk: Töövahendid: Ühtlaselt kiireneva sirgliikumise Atwoodi masin, lisakoormised. teepikkuse ja kiiruse valemi ning Newtoni teise seaduse kontrollimine. Skeem 1. Töö teoreetilised alused: Atwoodi masinaga saab kontrollida ühtlaselt kiireneva sirgliikumise valemeid ja Newtoni teist seadust. Seejuures on kontroll ligikaudne, sest esineb hõõrdumine.
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Taivo Tarum Teostatud: Õpperühm: EAEI20 Kaitstud: Töö nr: 5 OT allkiri: Külgliikumine Töö eesmärk Töövahendid Ühtlaselt kiireneva sirgliikumise Atwoodi masin, lisakoormised. teepikkuse ja kiiruse valemi ning Newtoni teise seaduse kontrollimine. 1. Tööülesanne Ühtlaselt kiireneva sirgliikumise teepikkuse ja kiiruse valemi ning Newtoni teise seaduse Kontrollimine. 2. Töövahendid Atwoodi masin, lisakoormised 3. Töö teoreetilised alused 3.1. Atwoodi masin Atwoodi masinaga saab kontrollida ühtlaselt kiireneva sirgliikumise valemeid ja Newtoni teist seadust. Seejuures on kontroll ligikaudne, sest esineb hõõrdumine. Masina põhiosadeks on vertikaalne metallvarb A, millele on
KATSEANDMETE TABELID Tabel 1: Raskuskiirenduse määramine matemaatilise pendliga Katse nr. l, cm n t, s T, s T2, s2 gi, m/s2 (gi- )2, m2/s4 1 47,5 7 9,775 1,39643 1,95001 9,61647 0,00316 2 42,7 7 9,240 1,32000 1,74240 9,67475 0,01310 3 36,1 7 8,513 1,21614 1,47900 9,63602 0,00573 4 27,9 7 7,593 1,08471 1,17661 9,36124 0,03962 5 18,0 7 6,050 0,86429 0,74699 9,51300 0,00224 Keskmine: 9,56030 Tabel 2: Raskuskiirenduse määramine füüsikalise pendliga Katse nr. l, cm n t, s T, s T2, s2 gi, m/s2 (gi- )2, m2/s4 1 59 7 8,245 1,17786 1,38735 9,81852 0,00009
Tallinna Tehnikaülikooli Füüsika instituut Üliõpilane: Martti Toim Teostatud: Õpperühm: AAAB11 Kaitstud: Töö nr. 5 OT Kulgliikumine Töö eesmärk: Töövahendid: Ühtlaselt kiireneva sirgliikumise Atwoodi masin, lisakoormised. teepikkuse ja kiiruse valemi ning Newtoni teise seaduse kontrollimine. Skeem Teoreetilised alused. Atwoodi masinaga saab kontrollida ühtlaselt kiireneva sirgliikumise valemeid ja Newtoni teist seadust. Seejuures on kontroll ligikaudne, sest esineb hõõrdumine. Masina põhiosadeks on vertikaalne metallvarb
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Teostatud: Õpperuhm: Kaitstud: Töö nr: 5 OT allkiri Kulgliikumine Töö eesmark: Ühtlaselt kiireneva Töövahendid: Atwoodi masin, sirgliikumise teepikkuse ja kiiruse lisakoormised valemi ning Newtoni teise seaduse kontrollimine Skeem Töö teoreetilised alused Atwoodi masinaga saab kontrollida ühtlaselt kiireneva sirgliikumise valemeid ja Newtoni teist seadust. Seejuures on kontroll ligikaudne, sest esineb hõõrdumine.
Tallinna Tehnikaülikool Füüsikainstituut Üliõpilane: Martti Toim Teostatud: Õpperuhm: AAAB11 Kaitstud: Töö nr: 5 OT allkiri Kulgliikumine Töö eesmark: Ühtlaselt kiireneva Töövahendid: Atwoodi masin, sirgliikumise teepikkuse ja kiiruse lisakoormised valemi ning Newtoni teise seaduse kontrollimine Skeem Töö teoreetilised alused Atwoodi masinaga saab kontrollida ühtlaselt kiireneva sirgliikumise valemeid ja Newtoni teist seadust. Seejuures on kontroll ligikaudne, sest esineb hõõrdumine.
TALLINNA TEHNIKAÜLIKOOL, FÜÜSIKAINSTITUUT FÜÜSIKALISTE SUURUSTE MÕÕTMINE. MÕÕTMISVEAD, MÕÕTEHÄLBED JA MÕÕTEMÄÄRAMATUS FÜÜSIKA PRAKTIKUMIDES 1. Füüsikaliste suuruste mõõtmine Mõõtmiseks nimetatakse antud füüsikalise suuruse võrdlemist teise sama liiki suurusega, mis on võetud mõõtühikuks. Mõõtetulemus on mõõtmise teel saadud mõõtesuuruse väärtus, mis koosneb mõõtarvust (arvväärtusest) ja vastavast mõõtühikust. Mõõtetulemuse täielik esitus peab sisaldama informatsiooni mõõtemääramatuse kohta. Määramatus (ebakindlus) mõõtmistes tekib nii mõõdetava objekti kui selle mõõtmise olemuslikust ebatäiuslikkusest (ligikaudsusest). Esialgu võtame teadmiseks, et mõõtemääramatus on mõõtetulemuse kui juhusliku suuruse hajuvust iseloomustav parameeter, mis piiritleb vahemiku, kuhu mõõdetava suuruse väärtushulk usutavasti satub. Tavaliselt on määramatuse arvuliseks väärtuseks selle vahemiku poolla
Kõik kommentaarid