Sisukord Eessõna Hea õpilane! Microsofti arenduspartnerid ja kliendid otsivad pidevalt noori ja andekaid koodimeistreid, kes oskavad arendada tarkvara laialt levinud .NET platvormil. Kui Sulle meeldib programmeerida, siis usun, et saame Sulle pakkuda vajalikku ja huvitavat õppematerjali. Järgneva praktilise ja kasuliku õppematerjali on loonud tunnustatud professionaalid. Siit leid uusimat infot nii .NET aluste kohta kui ka juhiseid veebirakenduste loomiseks. Teadmiste paremaks omandamiseks on allpool palju praktilisi näiteid ja ülesandeid. Ühtlasi on sellest aastast kõigile kättesaadavad ka videojuhendid, mis teevad õppetöö palju põnevamaks. Oleme kogu õppe välja töötanud vabavaraliste Microsoft Visual Studio ja SQL Server Express versioonide baasil. Need tööriistad on mõeldud spetsiaalselt õpilastele ja asjaarmastajatele Microsofti platvormiga tutvumiseks. Kellel on huvi professionaalsete tööriistade proovimiseks, siis tasub lähemalt tutvuda õppuritele
Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline eesmärk + Jagamine samadel tingimustel 3.0 Eesti litsents (http://creativecommons.org/licenses/by-nc-sa/3.0/ee/). Autoriõigus: Juhan Aru, Kristjan Korjus, Elis Saar ja OÜ Hea Lugu, 2014 Viies, parandatud trükk Toimetaja: Hele Kiisel Illustratsioonid ja graafikud: Elis Saar Korrektor: Maris Makko Kujundaja: Janek Saareoja ISBN 978-9949-489-95-4 (trükis) ISBN 978-9949-489-96-1 (epub) Trükitud trükikojas Print Best 4 Sisukord osa 0 – SISSEJUHATUS . .................... 17 OSA 2 – arvud ..................................... 75 matemaatika meie ümber ................... 20 arvuhulgad ....................
1. Põhimõisted 1.1 Riist- ja tarkvara, infotehnoloogia Andmed (ingl. data) mittestruktuursed faktid ja numbrid. Info ehk informatsioon (ingl. information) ka teave on struktuursed andmed, mida info valdaja saab kasutada analüüsimisel ja probleemide lahendamisel. Digitaalne (ingl. digital) omane andmetele, mis koosnevad numbritest. Informaatika on teaduse ja tehnika haru, mis tegeleb arvutite abil toimuva infotöötlusega. Infotöötlus on informatsiooniga süstemaatiline operatsioonide sooritamine (võib sisaldada ka andmeside ja bürooautomaatika operatsioone). Infotöötlussüsteem on üks või mitu andmetöötlussüsteemi (arvutid, välisseadmed, tarkvara, ka büroo- ja sideseadmed), mis sooritavad infotöötlust. Infosüsteem infot andev ja jagav infotöötlussüsteem koos oma organisatsiooniliste ressurssidega (tehnoloogiad, inimesed, finantsid, protsessid). Informatsiooni ja kommunikatsioonitehnoloogia (lüh. IKT) on arvutustehnika (arvutid ja
LIISI KINK 1 MATEMAATILINE ANALÜÜS I Vähendatud programm Selle programmi järgi saab ette valmistada teooria kontrolltööde A (so lihtsamateks) variantideks. Esimese kontrolltöö materjal hõlmab lõike 1 17 ja teise kontrolltöö materjal hõlmab lõike 18 - 33. Igas kontrolltöös on 4 küsimust, millest üks on valitud jämedas kirjas (bold face) bold face olevate teemade hulgast (see on kõige olulisem materjal), 2 küsimust on valitud ülejäänud teemadest ja viimase 4-nda küsimuse all on võimalik kirjutada omal valikul 1/4-1/2 lk teksti antud programmi ulatuses. Programm järgib otseselt Jaan Janno konspekti. Kontrolltöödes ei küsita konspektis esitat
tutvu lausearvutuse keskkonnaga: http://logik.phl.univie.ac.at/~chris/gateway/formular-uk-zentral.html Millistel muutuja väärtustel on lause (Av(B&A))v(-A&(Cv(B&-C))) väär? Panna tuleb results only, 0 on väär 1 on õige Tutvu ajalooga saidis kuni II maailmasõda: http://www.maxmon.com/history.htm Loe läbi jutt ja proovi andmetega mängida: http://math.hws.edu/TMCM/java/DataReps/index.html Kahend süsteemi arvu(101101001) ->kümnend süsteemiks. Nr sisse ja bianarile punkt, ja vaatan base ten integeri kümnendarvudest annab Ecki appletis juuresoleva graafilise kujutise, teen kujundi ja vaatan base integeri mis vastab kahendsüsteemi arvule 1110001 ASCII tabelis? Nr sisse ja punkt bianari, vaatan ...teksti Kümnendsüsteemi arv 33 on kahendsüsteemis? 33 kirjutan ja Base-ten integer, vaatan bianary Loe läbi jutud Atbashi ja Caesari šifri (Caesar cipher) kohta: http://www.wikipedia.org 2 Tutvu ajalooga kuni 1970ndad: http://www.islandnet.com/~kpolsson/comphist/ 47-68 ingli
MTMM.00.340 Kõrgem matemaatika 1 2016 KÄRBITUD loengukonspekt Marek Kolk ii Sisukord 0 Tähistused. Reaalarvud 1 0.1 Tähistused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0.2 Kreeka tähestik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 0.3 Reaalarvud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.4 Summa sümbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Maatriksid ja determinandid 7 1.1 Maatriksi mõiste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Tehted maatriksitega . . . . . . . . . . . . . . . . . . .
1 s OPERATSIOONISÜSTEEMID Referaat Juhendaja: 2011 2 Sisukord Operatsioonisüsteemi põhiülesanneteks on:......................................................................................9 3 Operatsioonisüsteemid: Windows, OS/2, Linux, UNIX, Mac OS Operatsioonisüsteem (operating system) on arvuti juhtprogramm, mis määrab kuidas arvutis programme täidetakse (käivitus, juhtimine, haldamine ja järelvalve). Operatsioonisüsteem ehk opsüsteem (operating system, lühend OS) on arvuti süsteemitarkvara, mis käivitatakse arvutis alglaadimisprogrammi poolt ning mis juhib arvutisüsteemi tööd ja t
LIISI KINK 10 MATEMAATILINE ANALÜÜS I Teooria töö 2 18) Esitada funktsiooni muut diferentsiaali ja jääkliikme summana. Kuidas käituvad diferentsiaal ja jääkliige argumendi muudu x suhtes, kui x läheneb nullile? Tõestada ei ole vaja. = + , kus = Mõlemad liidetavad on lõpmatult kahanevad protsessis 0. Diferentsiaal on sama järku lõpmatult kahanev suurus kui ja teine liidetav on kõrgemat järku lõpmatult kahanev suurus suhtes. Kehtib ligikaudne valem kui 0. 19) Funktsiooni lokaalsete ekstreemumite definitsioonid. Sõnastada Fermat' lemma (tõestust ei küsi). Öeldakse, et funktsioonil on punktis lokaalne maksimum, kui 1. Funkt
Kõik kommentaarid