Vajad kellegagi rääkida?
Küsi julgelt abi LasteAbi
Ukraina abi Ukraina kaitse vajab abi. Tee annetus täna! Tee annetus täna Sulge
Add link

Funktsioonid (0)

1 Hindamata
Punktid
Funktsioonid #1 Funktsioonid #2 Funktsioonid #3
Punktid 10 punkti Autor soovib selle materjali allalaadimise eest saada 10 punkti.
Leheküljed ~ 3 lehte Lehekülgede arv dokumendis
Aeg2013-03-07 Kuupäev, millal dokument üles laeti
Allalaadimisi 28 laadimist Kokku alla laetud
Kommentaarid 0 arvamust Teiste kasutajate poolt lisatud kommentaarid
Autor skaabo Õppematerjali autor

Sarnased õppematerjalid

1
doc

Funktsioonid

1. Millist funktsiooni nimetatakse lineaarfunktsiooniks ja mis on selle graafikuks? Lineaarfunktsioon on funktsioon y=ax+b, kus a ja b on mistahes reaalarvud. Selle graafikuks on sirgjoon 2. Mida nimetatakse funktsiooni määramispiirkonnaks? Funktsiooni määramispiirkonnaks nimetatakse selliseid argumendiväärtuseid, mille korral on reaalne funktsiooni väärtus olemas 3. Millised võimalused on funktsiooni esitamiseks Valemina, tabelina, graafiliselt, järjestatud arvupaaridena, nool diagrammidega 4. Mida nimetatakse funktsiooni null kohaks ja mida negatiivsus piirkonnaks? Funktsiooni null koht on selline x väärtus kui graafik lõikab x telge. y = null. Negatiivsuspiirkonna moodustavad need argumendi väärtused, mille korral on funktsiooni väärtus negatiivne ehk y on väiksem 0 5. Millal on funktsioon kasvav? Kui suuremale argumendi väärtusele vastab suurem funktsiooni väärtus 6. Mis on funktsiooni ekstreemumkoht? Argumendi väärtust, mille korral funktsioon saavutab oma

Matemaatika
1
odt

Funktsioonid I

Funktsioone, mille kahanemisvahemik Funktsioone, mille kasvamisvahemik ühtib ühtib määramispiirkonnaga, nimetatakse määramispiirkonnaga, nimetatakse kasvavateks kahanevateks funktsioonideks. funktsioonideks. Paarisfunktsiooni graafik on sümeetriline y- telje suhtes. Astmefunktsioonid : Paaritu funktsiooni graafik on sümeetriline y=X^-2 ehk Y=1/X^2 kordinaatide alguspunkti suhtes. y=X^-3 ehk Y=1/X^3 Paarisfunktsioon A

Matemaatika
30
pdf

Funktsioon loeng 2

Funktsioon Funktsiooni definitsioon Olgu X mingi reaalarvude hulk. Kui muutuja x igale väärtusele hulgas X vastab muutuja y üks kindel väärtus, siis öeldakse, et y on muutuja x funktsioon. Asjaolu, et üks muutuja on teise funktsioon, tähistatakse y = f (x), y = y (x), y = (x) jne. Muutujat x nimetatakse seejuures sõltumatuks muutujaks e. argumendiks. Muutujat y, mille väärtused leitakse vastavalt sõltumatu muutuja väärtustele, nimetatakse sõltuvaks muutujaks. Argumendi x väärtuste hulka, mille puhul saab määrata funktsiooni y väärtusi vastavalt eeskirjale f (x), nimetatakse funktsiooni määramispiirkonnaks. Määramispiirkonnale vastavat funktsiooni väärtuste hulka nim. funktsiooni muutumispiirkonnaks. 2 Funktsiooni esitusviise Funktsiooni esitus tabelina x x1 x2 ....... xn y y1 y2 ...... yn Funktsiooni graafiline esitusviis y

Matemaatika
12
doc

Funktsioonide lahendamine

FUNKTSIOONID. 1. (1997 A) Leidke funktsiooni y = 4x3 ­ 3x2 maksimum- ja miinimumkoht ning kasvamis- ja kahanemisvahemikud. 2 2. (1997 B) Leidke funktsiooni y 2 x määramispiirkond, maksimum- ja x 1 miinimumpunkt ning kasvamis- ja kahanemisvahemikud. 3. Joonisel on antud ruutfunktsiooni y = f(x) ja funktsiooni y = ex graafikud. Leidke a) Ruutfunktsiooni y = f(x) määrav valem; b) Punkti A koordinaadid; c) Funktsiooni y = f(x) nullkohad ja haripunkti koordinaadid; d) Funktsiooni y = ex väärtus kohal, mis vastab funktsiooni y = f(x) absoluutväärtuselt vähimale nullkohale; e) Antud funktsioonide ühine positiivsuspiirkond. 4. (1998) Heinakuhja telglõige on piiratud joonega y = 1 ­ x2 ja sirgega y = 0. Kuhjale toetub koonusekujuline katus, mille telglõike tipunurk on t

Matemaatika
35
pdf

Mitmemuutuja funktsioonid

MITME MUUTUJA FUNKTSIOON 1. Punkti ümbrus. Kinnine ja lahtine piirkond. Mitme muutuja funktsioon ja selle määramispiirkond. Def. 1.1. ( 0 0 )0 Punkti P x1 , x 2 ,..., x n ümbruseks n-mõõtmelises ruumis R n nimetatakse punktide hulka { U ( P ) , mis rahuldavad tingimust U ( P ) = Q( x1 , x 2 ,..., x3 ) R n ( P, Q ) < , kus } ( P, Q ) = PQ = (x1 - x10 ) + (x 2 2 - x 20 ) 2 ( + ... + x n - x n0 ) 2 Def. 1.2. Piirkonnaks D kahemõõtmelises ruumis nimetatakse selle ruumi osa, mis on piiratud mingi joonega L, mida nimetatakse rajajooneks. Kolme- või enamamõõtmelise ruumi piirkonnaks D nimetatakse selle osa, mis on piiratud

Matemaatiline analüüs 2
3
xlsx

Funktsioonid

Exeli funktsioonid jagunevad rühmadesse: 1) Maatemaatilised(Math ja Tig) 2)Kuupäeva- ja kellaaja funktsioonid(Date ja Time) 3) Otsimise ja viitamise funktsioonid(Lookup ja Reference) 4)Loogikafunktsioonid (Logical) 5) Finantsfunktsioonid (Financial) 6)Tekstifunktsioonid(Text) 7)Statistikafunktsioonid (Statistical) Matemaatilised funktsioonid 1)Liitmisfunktsioon SUM(Liidetav1;Liidetav2) 5 SUM(piirkond) - liidab kokku piirkonnas olevad arvud 5 7 9 40 12 3 4 9 18 2)Aritmeetiline keskmine AVERAGE(piirkond) - see on tegelikult statistiliine funktsioon - annab piirkonnas olevate arvude aritmeetilise keskmine 3 9 10 7.333333 3)Ruutjuur arvust SQRT(arv) 1.414214 4)Kümendlogaritm LOG(arv)

Funktsionaalne...
102
pdf

Kommunikatsioonimudel

1. Üldine kommunikatsioonimudel Sõnumi allikas->saatja(allikast info)->edastussüsteem->vastuvõtja->sihtjaam [üheks näiteks võiks olla: Arvuti->modem->ÜKTV->modem->arvuti] sisendinfoAllikas(sisendandmed g(t))->edastaja e. transmitter(edasi saadetud signaal s(t))->edastussüsteem(saadud signaal r(t))->vastuvõtja(väljund andmed g'(t))- >lõppunkti saaväljund informatsioon m' 2. Kommunikatsioonisüsteemi ülesanne • mõistlik kasutamine/koormamine • liidestus(kokku ühendamine. Ntx: võrk+võrk, arvuti+võrk) • Signaalide genereerimine(edastamine)(signaalide ühest süsteemist teise üleviimine) • Sünkroniseerimine [andmeedastuse algust(saatja) ja lõppu(vastuvõtjat)] • Andmeside haldamine • Vigade avastamine ja parandamine(näiteks side mürarikkas keskkonnas) • Voojuhtimine (vastuvõtja saab pakette vastu võtta kindla kiirusega->on vaja kont

Tehnoloogia
27
ppt

Funktsioonid ja nende graafikud

Funktsioonid ja nende graafikud © T. Lepikult, 2010 Funktsioon Kui muutuva suuruse x igale väärtusele, mis kuulub tema muutumispiirkonda, vastab teise suuruse y üks kindel väärtus, siis öeldakse, et y on x funktsioon. Asjaolu, et üks muutuja on teise funktsioon, tähistatakse y = f(x). Näited: Kuubi ruumala on tema serva pikkuse funktsioon, suusataja poolt läbitud teepikkus on aja funktsioon, vedru deformatsioon on tõmbejõu funktsioon jne. Funktsiooni argument Muutujat x nimetatakse seejuures sõltumatuks muutujaks e. argumendiks. Argumendi x väärtuste hulka, mille puhul saab määrata funktsiooni y väärtusi vastavalt eeskirjale f(x), nimetatakse funktsiooni määramispiirkonnaks. Määramispiirkonnale vastavat funktsiooni väärtuste hulka nimetatakse funktsiooni muutumispiirkonnaks. Näide Ringi pindala sõltuvust raadiusest kirjeldab funktsioon S = r 2 , kus s

Matemaatika



Märksõnad

Mõisted


Meedia

Kommentaarid (0)

Kommentaarid sellele materjalile puuduvad. Ole esimene ja kommenteeri





Uutele kasutajatele e-mailiga aktiveerimisel
10 punkti TASUTA

Konto olemas? Logi sisse

Sellel veebilehel kasutatakse küpsiseid. Kasutamist jätkates nõustute küpsiste ja veebilehe üldtingimustega Nõustun